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ABSTRACT 

Considering the axial-flexural coupling nature of an arch 
bridge subjected to seismic wave, this paper is aimed at inves- 
tigation of dynamic response for a train moving over a railway 
arch-bridge shaken by horizontal ground motions.  For analytical 
formulation, the arch bridge is idealized as a flat-rise parabolic 
arch with constant sectional properties uniformly distributed 
along the horizontal span and the train moving over it as a 
sequence of identical sprung mass units with constant intervals.  
To perform dynamic analysis of vehicle-bridge system shaken 
by horizontal earthquakes, an incremental-iterative procedure 
is proposed in this study.  From numerical results, the multiple 
support motion induced by seismic wave propagation plays a 
key factor in affecting the dynamic response of the arch-bridge/ 
vehicle system during earthquakes. 

I. INTRODUCTION 

Because of regular feature of identical intervals d of bogie- 
sets for a train travelling over a bridge at speed v, the bridge 
may experience a periodic action of successive moving loads 
with an exciting passage frequency v/d.  Once the exciting fre- 
quency matches any of circular natural frequencies () of the 
bridge, the resonant response will be developed on the bridge 
and the oscillating amplitude of the vibrating bridge is am- 
plified along with the increasing number of passing vehicles 
along the bridge (Yang et al., 1997).  Since then, a lot of re- 
searcher and engineering scientists have devoted themselves 
to train-induced resonant behaviors of rail bridges (Li and Su, 
1999; Yang et al., 2001; Yau, 2001; Ju and Lin, 2003; Xia et al., 
2005; Yau, 2007).  Considering seismic effect of earthquakes 
on vehicle/bridge interaction dynamics, Yang and Wu (2002) 

presented a three-dimensional (3D) train-rails-bridge model to 
deal with the dynamic stability of trains moving over bridges 
shaken by ground motions.  In their study, the authors pointed 
out that the vertical component of earthquakes plays an im- 
portant role in running safety and stability of moving trains, 
especially for near fault ground excitations.  On the other hand, 
to the best of our knowledge, there are comparatively few 
papers conducting the interaction response of a train running 
over arch-type bridge structures (Chatterjee and Datta, 1995; 
Fryba, 1999; Ju and Lin, 2003; Wu and Chiang, 2004; Huang, 
2005), compared with those of traditional elevated-bridges 
(Yang and Wu, 2002). 

Arch is usually considered as a structural component in 
modern railway transportation infrastructure for its gentle 
profile and aesthetic features.  In this study, a rail arch-bridge 
would be simulated as a two-hinged parabolic arch with flat- 
rise ratio (Leontovich, 1959) for analytical investigation, and 
the train travelling over it as a sequence of identical sprung 
mass units with equal interval.  Meanwhile, only the horizontal 
component of ground motions will be considered for simu- 
lating earthquakes to shake an arch bridge under the action of a 
moving train.  The numerical simulation of dynamic response 
for the arch bridge due to both moving sprung masses and 
ground excitations will be carried out using the Newmark´s 
scheme in conjunction with direct integration method (Newmark, 
1959).  From the numerical study, horizontal seismic ground 
excitations may amplify primarily both responses of the arch 
bridge and train, especially for the train moving at resonant 
speeds.  Moreover, the maximum peak response of acceleration 
for the running sprung masses is related to the seismic wave 
speed passing the arch bridge supports during earthquakes. 

II. THEORETICAL FORMULATION 

For a vertically loaded arch with hinged supports, the su- 
pports would be subjected to horizontal reactions due to load 
transfer of arching effect and axial-flexural coupling nature of 
an arch.  Similarly, once the arch is subjected to horizontal 
seismic inputs at supports, the arch would produce vertical 
vibrations due to the ground excitations transmitted from the 
support movements.  For analytical formulation, only vertical  
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Fig. 1.  Schematic diagram of a vertically loaded arch. 

 
 

motions of the vehicle-bridge interaction system shaken by in- 
plane horizontal ground motions are considered in this study.  
The following are the assumptions adopted for the vehicle-bridge 
system (Leontovich, 1959): 

 
(1) The linear theory of a flat-rise parabolic arch is taken into 

account for deriving the governing equation of motion of a 
single-span flat-arch bridge. 

(2) The centrodial axis of cross section in the arch is a para- 
bolic curve, and the bridge deck of the arch remains flat in 
a horizontal level. 

(3) The mass of the arch bridge is uniformly distributed along 
the horizontal axis of bridge span. 

(4) The train traveling over the arch bridge is simulated as a 
sequence of equidistant sprung mass units moving with 
constant speed. 

(5) The arch-bridge is far away from the earthquake epicenter 
so that the vertical components of seismic wave are neg- 
ligible. 

 
Fig. 1 depicts a theoretical model of a two-hinged parabolic 

arch under the action of vertical uniform load -mg over the 
entire span.  Here, m is denoted as the constant self-mass per 
unit length along the horizontal axis of span.  The geometrical 
shape function y(x) of the parabolic arch is given by (Leontovich, 
1959). 

  2

0( ) 4 / / ,y x y x L x L     (1) 

where L = span length, and y0 = rise of arch.  Taking the equi- 
librium conditions of resultant forces and resultant moment at 
point x of the arch span, one can obtain the following cross- 
sectional forces: 
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 (2a-c) 

Here, (H0, V0) = reactions at supported ends of the parabolic 
arch under the self-weight of the structure, w = mg self-weight 
of the arch bridge along the span, and g the gravity accele- 
ration.  Differentiating Eq. (2c) twice with respect to x yields 
Hy" - mg = 0.  Examination of this equality reveals that only 
axial force but no bending exists on the cross-sectional force 
of a parabolic two-hinged arch under the action of vertical 
uniform load over the entire span (Leontovich, 1959), and that 
the horizontal component of cross-sectional forces will remain 
constant as well, that is, H = -mgL2/8y0.  Based on such a cha- 
racteristic of constant horizontal component of internal forces 
in a parabolic arch, the equilibrium equations of shear and be- 
nding moment for the deformed arch element shown in Fig. 1(b) 
can be determined by 

 
( ) ( , ) ,

( ) ( ) 0.

dV wdx mu cu dx p x t dx

dM Vdx H h d y u
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 
 (3) 

where V = shear force in the arch, M = bending moment in the 
arch, h = dynamic increment of horizontal force in the deformed 
arch, c = damping per unit length of the arch, p(x, t) = external 
load function, and u(x, t) = vertical displacement of the arch.  
The notation of over dot denotes the partial derivative with 
respect to time t.  From the simple bending theory of a flatrise 
arch, one can obtain the following approximate moment cur- 
vature relationship 

 
2

1
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1 ( ')
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
  (4) 

where a prime represents the derivative with respect to length 
x, and EIs the flexural rigidity that varies along the centrodial 
axis of the arch bridge,  the slope of the centrodial axis in  
the arch at point x with respect to the horizontal axis of span, 
and EI the flexural rigidity along the coordinate x-axis of the 
arch.  Here, EI would be regarded as constant based on the 
consideration that cossEI   is assumed to remain constant 

along the coordinate x-axis of span length.  By considering the 
relationship between bending moment and shear force and 
substituting Eqs. (1), (2) and (4) into Eq. (3), the differential 
equation of vertical motion for the flat-rise parabolic arch is 
written as 

  "" ( )( " ") ( , ),mu cu EIu H h u y mg p x t         (5) 
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letting ds0 denote the original length of the arch element and ds 
the deformed length, then 

 2 2 2 2
0 ( ) ( ) ,   ( ) ( ) .ds dx dy ds dx dy du      (6) 

According to Hooke’s law, the linear stress-strain relation for 
a deformed flat-arch element can be determined by (Leontovich, 
1959). 
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where h is the horizontal component of incremental force in 
the arch, EAs means the axial rigidity that varies along the 
centrodial axis of the arch, and EA is the axial rigidity of the 
flat arch along the horizontal axis of the span.  In this study, the 
axial rigidity EA is treated as constant along the coordinate 
x-axis of span length by regarding cossEA   as a uniform 

rigidity in the horizontal direction along the span of arch.  The 
integration of Eq. (7) from 0 to L over span length yields the 
following horizontal component of incremental force 
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where Le denotes the effective length of the arch curve.  
Introducing Eq. (8) into the left hand side of Eq. (5), and 
considering the equality Hy" - mg = 0 as well as the following 
approximation ( " ") "h u y hy  , one can rewrite the dif- 

ferential equation in Eq. (5) as 
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where the loading function p(x, t) represents sequential sprung 
masses moving over the arch-beam, as shown in Fig. 2. 

The loading function p(x, t) is given as: 
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Fig. 2. Schematic diagram of successive sprung masses and flat-arch 

beam. 
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 (10a-c) 

in which, P = -(mv  mw)g = lumped weight of a moving 
oscillator, = Dirac's delta function, U(t) = unit step function, 
k = 1, 2, 3, , N-th moving load on the beam, tg = time lag for 
the first oscillator entering the arch bridge from the left hand 
side, tk = (k - 1)d/v = arrival time of the k-th load into the beam, 
uvk = vertical displacement of the k-th lumped mass, fvk = 
interaction force between the beam and the k-th wheel mass, 
and (xk) = track irregularity (vertical profile), and xk = po- 
sition of the k-th load along the rail line, as defined in Eq. (9).  
Here, xk < 0 represents the k-th load is not yet entering the 
bridge, 0  xk  L is running over the bridge deck, and xk > L 
has left the bridge.  As indicated in Eq. (9), the inclusion of 
horizontal support movements may amplify the dynamic res- 
ponse of the arch-beam, which would affect the response of  
the vehicles running over it.  On the other hand, the axial-flexural 
coupling nature of an arch may strengthen the flexural resis- 
tance of the flat-arch bridge. 

For the arch with two-hinged ends, the boundary conditions 
can be expressed as follows: 

 (0, ) ( , ) 0, "(0, ) "( , ) 0.u t u L t EIu t EIu L t     (11) 

Moreover, when the vibration of the arch bridge starts from 
rest, the initial conditions are 

 ( , 0) ( , 0) 0u x u x  . (12) 

Observation of Eq. (9) indicates that the term ( ) "H H u   
represents the second-order effect of horizontal component  
of cross-sectional force on the arch, and the parameter of  
means the coupling effect of axial rigidity on the in-plane 
flexure of a flat-rise arch due to overall additional compression 
force h. 

To account for the random nature and characteristics of rail  
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irregularity in practice, the following power spectrum density 
(PSD) function (Yang et al., 2004) is given to simulate the 
vertical profile of track geometry variations 
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where  = spatial frequency, and Av, (= 1.5  10-7 m), r (= 
2.06  10-6 rad/m), and c (= 0.825 rad/m) are relevant para- 
meters.  Fig. 3 plots the vertical profile of rail irregularity for 
the simulation of rail geometry variations in this study. 

III. DYNAMIC ANALYSIS 

From the homogeneous boundary conditions shown in Eq. 
(12), the dynamic component u(x, t) of deformation of a two- 
hinged arch can be represented by a series of sine functions 
(Yang et al., 2004). 

 
1
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n x
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where qn(t) means the generalized coordinate associated with 
the n-th natural mode of the arch.  The solution for the dynamic 
component u(x, t) of deformation in Eq. (9) can be performed 
using Galerkin’s method.  First, substituting Eq. (14) into Eq. 
(9), multiplying both sides of the equation with respect to the 
variation of the vibration deflection u(x, t), and then inte- 
grating the equation over the beam length L, one can obtain the 
following generalized equation of motion: 
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where the generalized force ( , , )k nF v t  of the k-th sprung 
mass is expressed as 
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  (16a, b) 

and /n n v L  .  As shown in Eqs. (15) and (16), the gene 

ralized equations for all the generalized coordinates are 
coupled due to the presence of the coupled terms, such as  

n  and 
1

( , , )
N

k nk
F v t

 , in which the inertial forces in 

( , , )k nF v t  are time-dependent on the location of the k-th 

oscillator traveling over the arch beam.  Obviously, the com- 
putational efforts required for solving such a set of time- 
dependent coupled differential equations are tremendous in CPU  
(Central Processing Unit) time consuming for updating the 
structural matrices at each time step.  This is especially true for 
the acceleration response, rather than the displacement response, 
is of concern in high speed rail bridges, for which the contri- 
bution of higher modes has to be included.  In this paper, an 
incremental-iterative procedure is used to solve the coupled 
generalized equations in Eq. (15) associated with the vehicle’s 
equation in Eq. (10c), which involves three major phases: 
predictor, corrector and equilibrium-checking (Yang and Kuo, 
1994). 

Fig. 4 shows the flow chart to carry out the nonlinear in- 
teraction analysis of the sequential train cars running on the 
arch-beam shaken by horizontal ground motion. 

The predictor is concerned with solution of the structural 
response for given loads including vehicular and earthquake 
loadings.  The corrector phase relates to recovery of the internal 
resistant forces from the displacements made available in the 
predictor.  In this phase, each of vehicle’s response should be 
updated in an iterative way.  In the equilibrium-checking phase, 
the effective internal forces computed from the corrector 
phase are compared with the external loads, the difference 
being regarded as the unbalanced forces.  Whenever the un- 
balanced forces are greater than preset tolerances (say 10-3), 
another iteration involving the three phases should be repeated. 

IV. ILLUSTRATIVE EXAMPLES 

As shown in Fig. 2, the properties of the flat-arch beam and 
moving sprung mass units are listed in Tables 1 and 2, 
respectively.  Here, 1 denotes the fundamental circular fre- 
quency of the first mode and 1resv d  the first resonant speed 

of the arch beam under the moving loads.  For the purpose of 
investigation, the damping ratio of the arch bridge is set 3%.   
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Fig. 4.  Flow chart of incremental-iterative procedure. 

 
 

To enhance the accuracy of dynamic response, the first 20 
assumed shapes in Eq. (14) for the dynamic components of 
deformation are employed to formulate the coupled equations 
of motion for the flat-arch beam.  The convergence of the as- 
sumed shape functions for a suspended beam was examined 
by Yau and Yang (2008).  A similar convergent test can be ap- 
plied to the present study. 

Based on the Newmark method of direct integration with  
 = 1/4 and  = 1/2 (Newmark, 1959), numerical solutions for 
the dynamic response of the arch bridge subjected to the action 
of successive moving loads and horizontal support motions 
have been computed using the incremental-iterative method 
described in Section III.  Generally speaking, the resonant phe- 
nomenon of train-induced acceleration for ballasted bridges 
may result in drastic vibration on track structures and further 
bring about the problem of ballast destabilization (Museros, 
2005; Yau et al., 2006).  For this reason, the acceleration res- 
ponse of the arch bridge due to successive moving oscillators 
and ground excitations will be explored in the following nu- 
merical examples. 

1. Phenomenon of Resonance 

In order to illustrate the train-induced resonance of a railway 
bridge, we first compute the mid-span acceleration response of 
a single-span arch beam under the action of successive moving 
sprung mass units given in Table 2 with the first resonant speed 
of 1resv d  (= 256 km/h) using the time step of 0.005 s. 

As shown in Fig. 5, the time history response of mid-span ac- 

Table 1.  Properties of the arch-beam. 

L 
(m)

y0 

(m)
EA 

(kN)
M 

(t/m)
EI 

(kN-m2) 
H  

(kN) 
c 

(kN-s/m/m)

Le 

(m)
1

(Hz)

45 3.2 2.0x106 40.0 5.33x108 3.1 x104 42.7 46.9 2.84

 
 

Table 2.  Properties of moving loads. 

N 
P  

(kN)
D  

(m)
mv  

(t) 
mw  

(t) 
cv 

(kN-s/m) 
kv 

(kN/m)
vres 

(km/h)

16 350 25 30.7 5 20.9 354 256
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Fig. 5. Resonance of midpoint acceleration of the arch beam due to 
moving loads. 
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Fig. 6.  Time history of vertical acceleration of sprung masses. 

 
 

celeration of the arch-beam is generally built up as the increase 
of moving oscillators passing through the beam.  In addition, 
the time-history responses of vertical acceleration for both the 
first and last (N = 16) sprung masses have been drawn in Fig. 6, 
respectively.  Due to the resonance phenomenon occurring in 
the vibrating beam, the dynamic response of the last sprung 
mass running on the beam has been dramatically amplified in 
comparison with that of the first one. 

To demonstrate the phenomenon of resonance for the arch  
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Fig. 7.  amax–v plot of the arch beam. 

 
 

0.25

0.20

0.15

0.10

0.05

0.00

M
ax

im
um

 a
cc

el
er

at
io

n 
(m

/s
2 )

100 150 200 250 300 350
Speed (km/h)

with ground propagation speed = 350 m/s
with ground propagation speed = 500 m/s
w/o earthquake

 
Fig. 8. Amplification of horizontal earthquakes on maximum acceleration 

of moving vehicles. 

 
 

beam under the action of successive moving sprung mass units 
with various speeds, the maximum acceleration responses of 
midpoint of the arch beam and the moving sprung masses 
against speed (v) have been plotted in Figs. 7 and 8, respectively.  
Obviously, both response curves reveal that there exists a main 
peak response at the resonant speed of 256 km/h, which agrees 
very well with the resonant speed predicted from the formula 

1resv d . 

2. Effect of Horizontal Support Motions Due to Seismic 
Waves 

As indicated in Eq. (9), for the case of synchronous support 
motions, the effect of ground motion on the response of the flat 
arch-beam would vanish due to the consideration of dx0 = dxL.  
However, the travelling effect of seismic wave on the arch- 
beam exists in reality.  For this reason, two types of soils will 
be considered for the construction site located of the arch-beam 
in this example.  One is the medium soil with seismic wave 
velocity (vw) of 350 m/s and the other one for the arch-beam 
built at bedrock with 600 m/s.  Thus, the ground motion at the 
right bridge support exists a time lag of L/vw behind the left 
one (see Fig. 2) when seismic waves travel along the arch- 
beam during earthquakes. 
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Fig. 9. Histogram of EW horizontal ground displacement of TAP003 

Station. 

 
 
To investigate the influence of seismic ground motion on 

interaction response of the vehicle/bridge coupled system, the 
far-field ground motion recorded at free-field station (TAP003) 
during the 1999 Chi-Chi Earthquake in Taiwan (Yang et al., 
2004) is used to simulate the seismic support inputs acting on 
the arch beam.  The histogram of ground displacement con-
taining the East-West (EW) horizontal component has been 
plotted in Fig. 9. 

As can be seen, the intensive zone of horizontal ground 
movements appears nearby 25 s.  On the other hand, as a train 
travels along a bridge with resonant speed, the rear part will 
experience larger excitation induced by the vibrating bridge 
from the previous example.  To let the rear part of the train 
model moving on the arch-beam meet the peak ground mo-
tions in the duration between 25 s and 28 s considering the 
TAP003 EW records, the critical time of 13(25 / )kkd v   is 

employed for the train model to enter the arch-beam.  Here, k 
represents the k-th sprung mass entering the arch-beam during 
the TAP003 EW ground motions.  Along with the response 
curves without considering earthquakes, the numerical results 
have been plotted in Figs. 7 and 8, respectively.  Generally, the 
maximum acceleration amplitudes of both the sprung mass 
units and the mid-span of the arch-beam have been amplified 
significantly.  However, the acceleration response curves for 
the sprung masses appear a noticeable amplification at lower 
speeds in 100~130 km/s.  Since the inclusion of horizontal 
support movements may amplify the dynamic response of the 
arch-beam (see the second term on right hand side of Eq. (9)), 
the amplified beam oscillations would affect the response of 
the vehicles running over it.  For this, as the train moves along 
the arch bridge with lower speeds during earthquakes, the car 
bodies may have more time to experience larger vertical ex-
citations transmitting from the vibrating bridge deck shaken by 
seismic loads.  Even so, the peak amplitude of maximum acce- 
leration response still occurs at the resonant speed 1resv d . 

V. CONCLUDING REAMRKS 

With an incremental-iterative procedure in dynamic analy-
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sis, the interaction response of a flat-rise parabolic arch beam 
under the simultaneous action of moving sprung masses and 
horizontal earthquake was analytically studied in this paper.  
From the numerical results, the following conclusions are 
made: 

 
(1) As a train travels along a rail bridge with resonant speed, 

the resonance phenomenon will be developed in the vi-
brating bridge and the dynamic response of the rear train 
cars will be dramatically amplified compared with the 
front ones; 

(2) Due to seismic travelling passage, the effect of multiple 
support motions play an important role in amplifying the 
interaction response of vehicle/bridge system; 

(3) As a train moves on a railway bridge built on a site with 
lower travelling wave speed (soft soils), the dynamic re-
sponse of the running train is significantly amplified due 
to travelling effect of seismic waves. 
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