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ABSTRACT 

In this note, based on a control Lyapunov function approach, 
an integrated design of switching laws and feedback control-
lers for uncertain switched nonlinear control systems with two 
modes is discussed.  A sufficient condition for the existence of 
globally asymptotically stabilizing state feedback laws (switch-
ing laws  controllers) is derived.  Moreover, an explicit rule 
for constructing switching laws and an explicit formula for 
synthesizing feedback controllers are presented.  An illustra-
tive example is given for verifying the benefit of our approach. 

I. INTRODUCTION 

It is known that many physical and engineering systems can 
be described by switched systems (see Zefran and Burdick, 
1998; Dayawansa and Martin, 1999; Liberzon, 2003).  More-
over, there exist practical control systems that cannot be as-
ymptotically stabilized by a single smooth feedback control 
law (Brockett, 1983).  By these reasons, the study of switched 
systems has attracted much attention in the control community.  
Most of the published results on switched systems focused on 
stability analysis (see Ye et al., 1998; Dayawansa and Martin, 
1999; Hespanha and Morse, 1999; Liberzon et al., 1999; 
Liberzon and Morse, 1999; Agrachev and Liberzon, 2001; Zhao 
and Dimirovski, 2004; Zhao and Hill, 2008; Lin and Antsaklis, 
2009; Yang et al., 2011).  In particular, it has been proven that 
a switched system is asymptotically stable under arbitrary 
switching if and only if a common Lyapunov function exists 

for all subsystems (Liberzon, 2003).  By the dwell-time ap-
proach, it has been shown that a switched system is asymp-
totically stable if all subsystems are asymptotically stable and 
the switching is slow enough (see e.g., Hespanha and Morse, 
1999). 

For controller synthesis of switched control systems, most 
of the results were derived in the linear subsystems case, (see 
e.g., Zefran and Burdick, 1998; Daafouz et al., 2002; Xu and 
Antsaklis, 2004, etc).  Few results have been proposed for 
control synthesis of switched nonlinear control systems.  In 
(Wu, 2008) a common control Lyapunov function approach 
was proposed to derive necessary and sufficient conditions for 
the existence of stabilizing controllers for switched nonlinear 
control-affine systems with arbitrarily switching between two 
nonlinear control-affine subsystems.  In addition, an explicit 
formula for constructing uniformly stabilizing controllers was 
provided.  The other results were almost all derived for switched 
nonlinear control systems in some particular forms (e.g., strict- 
feedback form, lower triangular form, feed forward form, and 
p-normal form) and under arbitrary switching, (Wu, 2009; Ma 
and Zhao, 2010; Long and Zhao 2011a, 2011b ; Hou and Duan, 
2013).  The backstepping-based approaches were employed in 
these studies for constructing common control Lyapunov 
functions or for synthesizing stabilizing controllers.  On the 
other hand, some of the published results dealt with the design 
of switching laws for stabilizing switching nonlinear systems 
without control inputs (Yang et al., 2009). 

In the literature, few results have been presented about the 
integrated design of switching laws and feedback controllers 
for achieving stability of switched nonlinear control systems.  
In this paper, we try to address this problem.  Based on a con-
trol Lyapunov function (CLF) approach (see e.g., Artstein, 
1983; Sontag, 1983, 1989; Krstic et al., 1995), sufficient con-
ditions for the existence of stabilizing feedback control laws 
(switching laws  feedback controllers) for uncertain switched 
nonlinear systems with two subsystems will be derived.  
Moreover, an explicit rule for constructing switching laws and 
an explicit formula for synthesizing feedback controllers will 
also be presented.  To the best of our knowledge, the result 
along this direction has not been reported yet prior to this 
work. 
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II. PROBLEM FORMULATION AND 
PRELIMINARIES 

This section formulates the problem to be solved and recalls 
the concept of control Lyapunov functions. 

1. Problem Formulation 

Consider an uncertain switched control system with two 
nonlinear subsystems: 

 ( ) ( ) ( )( ) ( ) ( )x x xx f x f x g x u      , ( ) {1, 2}x   (1) 

where nx R  is the state, mu R  is the control input, (.)if  

and (.)ig , 1i   and 2, are known smooth functions, ( ) :x  

{1, 2}nR   is a state-dependent switching signal to be de-

signed.  Suppose that the uncertain terms ( ) ( )i i if x F x  , 

1i   and 2, where 1i   is an uncertain parameter and 

( )iF x  is a known function with (0) 0iF  .  Without loss of 

generality, assume that (0) 0if  , i = 1 and 2. 

The design objective is to find a switching law )(x  and 

two continuous functions mn RRpp :(.) (.), 21  such that the 

closed-loop system 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )x x x xx f x f x g x p x       , ( ) {1, 2}x  , (2) 

is globally asymptotically stable for all possible uncertainties 
)(xfi , i = 1 and 2.  

2.  Control Lyapunov Functions 

To solve the problem in question, here we first recall the 
concept of control Lyapunov function (CLF).  Consider the 
following (nonswitched) nonlinear system: 

 ( ) ( )x f x g x u  . (3) 

Definition 1 (Sontag, 1989): A smooth, positive definite, and 

radially unbounded function : nV R R  is a CLF of system 

(3) if, for each \{0}nx R , 

 0)(
)(

)(
)(

inf 

















uxg
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xV
xf

x

xV
mRu

.  

It is known that the existence of CLFs is a necessary and 
sufficient condition for the existence of globally asymptoti-
cally stabilizing controllers for (3).  To ensure the existence of 
continuous stabilizing feedback laws, we still need the fol-
lowing small control property (SCP). 

 
Definition 2 (Sontag, 1989): A CLF ( )V x  of system (3) is 
said to satisfy the SCP if for each 0   there is a 0   such 

that, if 0x   satisfying x  , then there is some u  with 
u   such that 

 
( ) ( )

( ) ( ) 0
V x V x

f x g x u
x x

 
 

 
.  

In (Sontag, 1989), it is shown that if there is a CLF ( )V x , 
satisfying the SCP, for system (3), then 

 
2 2

( ) ( )

( ) ( ) ( ( ) ( ))
( ), if ( ) 0

( ) ( )

0, if ( ) 0

T
T

T

u x p x

a x a x b x b x
b x b x

b x b x

b x



  
  
 

 

  (4) 

is a globally asymptotically stabilizing controller, where ( )a x    

( )
( )

V x
f x

x




 and 
( )

( ) ( )
V x

b x g x
x





.  The function ( )p x  

defined in (4) is smooth in }0{\nR  and continuous at 0x   

(Sontag, 1989). 
To establish the main result of this note, we now review a 

useful lemma that will be used later. 

 
Lemma 1 (Petersen, 1987): Given any positive definite ma-
trix Q(x)  and any matrices M (x)  and N (x)  of compatible 
dimensions, the inequality 

 
xxNxQxNx

xxMxQxMxxxNxMx
TT

TTT

)()()(                               

)()()()()(2
1


 

holds for any   satisfying 1 .  

III. MAIN RESULTS 

This section proposes the main result of this note – an in-
tegrated design of switching laws and feedback controllers to 
stabilize uncertain switched nonlinear control systems. 

Here we first present a sufficient condition for the existence 
of robustly stabilizing switching laws for an unforced switched 
nonlinear system. 

 
Theorem 1: Consider the switched nonlinear system 

 ( ) ( )( ) ( ) ( ),x xx t f x f x     ( ) {1, 2}x  . (5) 

with ),()( xFxf iii   ,1i  i 1,2.  If there exist a scalar 

)1,0( , a positive definite function RRV n :(.) , and two 

positive define matrix functions 
nnn RRQ :(.)1  and 2 (.) :Q  

n n nR R   satisfying the following condition: 
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 2 ( ) 0,   0,F x x
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

 (6) 

then there exists a switching law  (x)  such that the system (5) 
is globally asymptotically stable for all possible uncertainties 

)(xfi , i = 1 and 2. 
 

Proof: 
Define (i = 1 and 2) 

1

( ) 1 ( ) ( )
( ) ( )

2

1
                   ( ) ( ) ( ) 0

2

T

i i
n

i

T
i i i

V x V x V x
f x Q x

x x xx R

F x Q x F x

              
    

 (7) 

The condition (6) implies that }0{\21
nR .  Notice 

that 

1( ) ( ) ( )
2 ( ) ( ) ( ) ( ) ( )

T
T

i i i i i

V x V x V x
f x Q x F x Q x F x

x x x
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Choose )(xV  as a candidate Lyapunov function for system 
(5).  If the switching law satisfies: 

 ix )(  only if ix  , i = 1 and 2, (8) 

then, for each nonzero x, 

.
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         





 

That is, the system (5) is globally asymptotically stable under 
any switching law satisfying (8). 

 

Now we consider the switched control system (1).  We want 
to design both switching laws and feedback controllers such 
that the closed-loop system is robustly globally asymptotically 
stable. 
 
Definition 3: A positive definite, smooth, and radially un-
bounded function V (x)  is called a robust switched control 
Lyapunov function (RSCLF) of system (1) if, for each 0x , 

  
{1,2}

( )
min max inf ( ) ( ) ( ) 0

m
i

i i i
i u R

V x
f x f x g x u

x


 

     
 

.  

Definition 4: A RSCLF V (x)  of system (1) is said to satisfy 
the switched small control property (SSCP) if for each 0  
there is a 0  such that, if 0x   satisfies x , then 
there is some u  with u  such that 

   0)()()(
)(

maxmin
}2,1{








 


uxgxfxf
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xV
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i i 



.  

For a candidate RSCLF V (x)  of system (1), define 
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And let 

 }0)( ,0)(|{ 21  xaxaRxD n
NP , 

 }0)( ,0)(|{ 21  xaxaRxD n
PN , 

 }0)( ,0)(|{ 21  xaxaRxD n
PP , 

 }0)( ,0)(|{ 21  xbxbRxD n
Z . 

Then, we have the following main result. 
 
Theorem 2: Consider the switched nonlinear control system 
(1).  If there exists a smooth, proper, and positive definite 
function )(xV , satisfying the SSCP, such that 
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(1) }0{ ZPP DD ; and 

(2) 1 1

2 2

( ) ( )
sup inf

( ) ( )NP ZPN Z
x D Dx D D

a x a x

a x a x  

   
     
   

, 

 
then we can find a switching law }2,1{)( x  and feedback 

control laws )(1 xp  and )(2 xp  such that the closed-loop system 

 )()()()()( )()()()( xpxgxfxftx xxxx    (9) 

is globally asymptotically stable for all possible uncertainties. 
 
Proof: 

By (2), let   be a positive constant satisfying 

 1 1

2 2

( ) ( )
sup inf

( ) ( )NP ZPN Z
x D Dx D D

a x a x

a x a x


  

   
      
   

. (10) 

We have 

 0)()( 21  xaxa  , for each  PN NP Zx D D D    (11) 

Let 






1

1
.  It is clear that 10  .  From (11) one 

can see that  

 1 2( ) (1 ) ( ) 0a x a x    , for each  PN NP Zx D D D  
 

  
(12) 

Define 

 )()1()()( 21 xaxaxa   , 

  )()1()()( 21 xbxbxb   . 

It is obvious that 0)( xb  if and only if Zx D .  By con-

dition (1) and (12) it is clear that  

 }0{\  ,0)( ZDxxa  . 

By Sontag’s formula (Sontag, 1989), let 
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Then, we have 
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  (14) 

From Theorem 1 we know that there exists a switching law 
such that the closed-loop system (9) is globally asymptotically 
stable.  More precisely, by (14) it is clear that, for all 0x  , 

 1 1 1( ) ( ) ( ) 0a x b x p x  , (15) 

or  

 0)()()( 222  xpxbxa . (16) 

Define  

 { | ( ) ( ) ( ) 0}, 1, 2n
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From (16) and (17), we know that 1 2 \{0}nR   .  If 
the switching rule satisfies  

 ( )x i   only if ix  , (18) 

one can see that  
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That is, the closed-loop system (9) is globally asymptoti-
cally stable for all possible uncertainties. 
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By (18), a switching law can be designed as follows: if 

1)0( x , let 1)0(  , else let (0) 2  .  For all 0t , 

define )(x  as: 

 

1 1

2 2

2 2

1 1

1,   if ( )  and ( ) , 

    or ( )  and ( )  
( )

2,  if ( )  and ( ) , 
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 
  

 (19) 

This is, switching occurs only when the state trajectory 
leaves region 1  or leaves region 2 . 

IV. AN ILLUSTRATIVE EXAMPLE 

Consider the switched nonlinear control systems 

 ( ) ( ) ( )( ) ( ) ( )x x xx f x f x g x u     , ( ) {1, 2}x   (20) 
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Fig. 1. State trajectories of the closed-loop systems with four different 
initial conditions and uncertain parameters.  
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Fig. 2. System response and switching signal. 

 
 

By definition, it is clear that  3(1/ 2, 2)ZD  .  It is easy to 

verify that conditions (1) and (2) in Theorem 2 hold, and 
therefore, we can find a switching law ( ) {1,2}x   and feed- 

back control laws )(1 xp  and 2 ( )p x  such that the closed- loop 

system is asymptotically stable.  Moreover, we can see that 
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By choosing 0.5   and using the feedback controller 

constructed by (13) and the switching law implemented by 
(19), the state trajectories of the closed-loop system with 4 
different initial conditions and different values of uncertain 
parameters 1  and 2  are shown in Fig. 1.  For clarifying the 

switching behavior, Fig. 2 shows the state response of the 
closed-loop system for an arbitrary initial state and arbitrary 
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choice of uncertain parameters.  It can be seen that the state tra- 
jectory asymptotically converges to the origin. 

V. CONCLUSIONS 

An integrated design of switching laws and feedback con-
trollers for asymptotically stabilizing uncertain switched non- 
linear control-affine systems with two modes has been discussed.  
A control Lyapunov function approach has been used to derive 
sufficient conditions for the existence of asymptotically stabi-
lizing feedback laws.  A numerical example has also been given 
for illustration. 
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