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ABSTRACT 

This paper presents a novel method based on Maximum- 
Likelihood Estimation (MLE) to evaluate pixel directivity for 
depicting image contours of objects as perceived by human 
eyes.  The method is characterized by employing discrete masks 
with different shapes centered at a target pixel to sample gra-
dient orientations of neighboring pixels for evaluating direc-
tivity of the target pixel, and applying MLE to determine one 
of these discrete sampling masks that best fits the orientation 
similarity of the target pixel.  We show that such a fitting process 
in effect fulfils the similarity and proximity laws in Gestalt 
theory, and a salient alignment location can be determined by 
subjecting the optimal directivity in conjunction with the 
gradient magnitude of the target pixel to a Bayesian process.  
Finally, the directivity of salient alignment locations is in-
corporated with the extension field (Guy and Medioni, 1992) 
to detect perceptual contours.  Experiments tested on complex 
images and underwater images are provided to justify the su-
periority of the work over others. 

I. INTRODUCTION 

Finding contours that fit human visual perception in acoustic/ 
raster-scan images has long been an interesting research issue, 
and continuously considered one of the most desirable capa-
bility on machine vision in applications of security surveillance 
system, medical image analysis and autonomous inspection, 
etc.  Recently, attentions have been drawn to autonomous un-
derwater structures inspection (Foresti, 2001; Kim and Eustice, 
2009; Galceran et al., 2014), such as ship hulls, pipelines and 
dams that need to be periodically inspected for purposes of 
maintenance, degradation assessment and underwater security, 

etc.  Conventional inspection methods for underwater struc-
tures require either deploying human divers (Mittleman and 
Swan, 1993) or piloting a remotely operated vehicle (ROV) 
(Negahdaripour and Firoozfam, 2006).  In modern underwater 
inspection, the use of remote devices to capture underwater 
images is constantly increasing, this is particularly true when it 
is necessary to avoid direct involvement of human divers op-
erating in risky foul weather or radiation contaminated water.  
Compared to manual operations by divers, remote image cap-
ture and analysis are useful for performing subsequent inspec-
tions with improved coverage and better precision, and more 
importantly, for reducing overall need of human intervention.  
For instance, depiction of object contours in sonar images 
captured at the inspection site is never a trivial task for human 
operators, due to the low image quality mainly caused by gra- 
nular effect.  In addition, an inspector may easily lose his at-
tention due to the lengthy time required for capturing quality 
images of every part of a target subject.  Therefore, algorithms 
able to auto detect object contours in accord with the human 
visual perception are highly demanded. 

Other applications concerning acoustic images can be the 
underwater object manipulation performed by a robotic vehicle 
equipped with acoustic cameras and robotic arms, and AUV 
(Autonomous Underwater Vehicle) navigation accomplished 
by using a sequence of landmarks, which are navigation cues 
fixed to the sea-bottom and can be observed by an imaging 
sonar.  Planar array of sensors is an essential part of acoustic 
cameras to provide real-time three-dimensional (3D) maps of 
scenes that are some meters away from the planar array (Kunz 
and Singh, 2013; Mallios, 2014).  These 3D maps are frequently 
displayed in a projective 2D version, like orthoscopic images 
or section images.  Another kind of sonar system is the multi- 
beam forward looking sonar (Quidu et al., 2012; Yufit and 
Maillard, 2013), which normally steers along the moving di-
rection of the vehicle and provides real-time 2D acoustic im-
ages of the local sea-bottom presented in front of the vehicle.  
Due to the rapid development of acoustic imaging technology, 
many novel acoustic devices find their applications on-board 
of both ROVs and AUVs for a vast number of different tasks.  
Considering the increasing trend of autonomy in diverse en-
gineering applications, the issue of detecting perceptual con-
tours in acoustic images must be resolved. 

Paper submitted 04/14/15; revised 05/24/15; accepted 06/16/15.  Author for
correspondence: Jung-Hua Wang (e-mail: jhwang@mail.ntou.edu.tw). 
1 Department of Electrical Engineering, National Taiwan Ocean University, 
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Fig. 1. Images before and after Bazeille et al.’s processing are shown in 

left and right columns, respectively (Courtesy of Bazeille et al., 2006). 

 
 

mally have to consider its imaging characteristic different from 
in the air, namely physical limits such as light propagation in 
the water medium.  Underwater raster-scan images are essen-
tially characterized by their poor visibility because light is ex-
ponentially attenuated as it travels in the water, and hence the 
camera can only capture underwater scenes in a poor light 
condition.  Statistically, light attenuation limits the visibility 
distance at about twenty meters in clear water and five meters 
or less in turbid water, and this limitation is mainly caused by 
absorption and scattering effects of the light in water.  To be 
more specific, the forward scattering effect (i.e., randomly 
deviated light on its way from an object to the camera) gen-
erally leads to blurring of the image features, and the back-
ward scattering (i.e., the fraction of the light reflected by the 
water towards the camera before it actually reaches the objects 
in the scene) generally limits the contrast of the images, thus 
generating a special “veil” that superimposes itself on the 
image and hides the scene.  The absorption and scattering 
effects are arising from not only the water itself but other 
factors such as dissolved organic substances or small floating 
particles commonly known as “marine snow”.  In summary, 
the raster-scan images can suffer from the following problems: 
low contrast, blurring and noise.  Fortunately, as shown in Fig. 
1, (Bazeille et al., 2006) proposed a method able to alleviate 
the aforementioned problems by pre-processing raster-scan 
images to improve underwater image quality.  Therefore, we 
can simply focus on solving the issue of perceptual contour 
detection without considering the low contrast and blurring 
problems by using Bazeille’s method as a preliminary step. 

As a common sense, our retina senses a pointillist array of 
light intensity values just like a digital camera recording a ma-
trix of brightness values (Malik, 2006), but instead of simply 
recording the entire image pixel by pixel, the human visual 
system has the capability to interpret the pointillist array into 
essential information in various forms, including the most 
intriguingly visual perception in the brain.  It is widely known 

that the human visual system has a preference for perceiving 
salient or aligned edges that form recognizable but not nec-
essarily existing objects (Ullman, 1976), and when our eyes 
encountering a nature scene, what is actually perceived in-
cludes objects such as bridge, house or some particular align-
ments of boundaries, rather than a bunch of nuances of colors 
(Ellis, 1999).  In other words, the human visual system has the 
capability to grasp the “gist” (i.e., alignment) vital for discrimi-
nating objects in the input images even if the existing contours 
of the objects are incomplete or vague (Sajda et al., 2010), for 
example, the contours of two divers in the top right image in 
Fig. 1 are in fact incomplete due to the inevitable presence of 
“marine snow”, bubbles and noises when dealing with un-
derwater images, yet our eyes can easily perceive the seem-
ingly complete contours of two divers.  Clearly, in order to de-
velop machine executable algorithms that may find extensive 
applications in perceptual contour detection, decision-making 
and recognition, it is necessary to exploit, in view of compu-
tation perspective, some rationale principles underlying the 
human visual perception capability (Ren et al., 2008) in grasp-
ing and interpreting the “gist” such as aligned edges.  To this end, 
this paper proposes an optimization method based on Maximum- 
Likelihood Estimation (MLE), which is capable of estimating 
the directivity (a value for representing the perceived align-
ment) of individual pixel useful for detecting salient alignment 
locations essential for constructing object contours consistent 
with human perception. 

The proposed method mainly consists of three stages: (i) 
selecting pixels of interest; (ii) gradient orientations sampled 
with different shapes of a sampling mask M(x, y) are statisti-
cally analyzed and their corresponding entropic values are 
ordered, and the concept of MLE is applied to the entropic 
results to determine the best shape of M(x, y), which will be 
shown useful for selecting the optimal directivity value (0 ≦ 
D(x, y) ≦ 1) of a target pixel that essentially represents per-
ception likelihood; (iii) subjecting D(x, y) and the logarithmic 
gradient magnitude of the target pixel to a Bayesian process 
(Laplace, 1814) to determine whether the target pixel belongs 
to a salient alignment location, and finally, perceptual contours 
are depicted by incorporating the directivity of salient align-
ment locations with the concept of extension field (Guy and 
Medioni, 1992).  The MLE process in stage (ii) are character-
ized in that (a) the shapes of a sampling mask are treated as a 
parameter set under estimation, so that directivity associated 
with pixels that best fit the orientation similarity of the target 
pixel can be estimated, meanwhile the well-known Gestalt 
laws (rules of understanding human visual ability to acquire 
and maintain meaningful perceptions) of proximity and simi-
larity can thus be fulfilled (b) the problem of lacking direc-
tivity of individual pixel in region-based perceptual contour 
detectors (Desolneux et al., 2007; Von Gioi et al., 2010) can be 
overcome. 

The remainder of this paper is organized as follows: lit-
eratures and researches related to the development of our work 
are discussed in the next section, and algorithmic details of  
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(a) (b)  
Fig. 2. Images for demonstrating the human visual tendency.  (a) A com- 

plex image.  (b) Result of applying Canny detector to (a). 

 
 

depicting perceptual contours are described in Section III.  
Characteristic analysis of the proposed method is given in 
Section IV, and extensive experimental results to justify the 
perceptual contour performance of our work are demonstrated 
in Section V.  Finally, concluding remarks and future work are 
given in Section VI. 

II. RELATED LITERATURES 

The purpose of edge detection is to identify pixels in an 
input image at which the pixel intensity or brightness changes 
sharply such that most of object contours can be obtained from 
the detected edges.  Ideally, edges composed of a set of straight 
and curved line segments useful for constructing object con-
tours can be detected, with the least amount of data to be proc-
essed within the least amount of time and hence benefiting 
diverse research areas such as object segmentation (Cai and 
Miklavcic, 2013), pattern recognition (Shotton et al., 2008) 
and motion tracking (Cai et al., 2011; Sánchez-Nielsen, 2011), 
etc.  To understand the motive of this work, suitability of using 
prior edge detection methods to facilitate perceptual contours 
depiction is examined and related approaches for depicting 
perceptual contours are also described. 

1. Conventional Edge Detection Methods 

Low-level edge detectors such as Sobel, Laplacian (Gon-
zalez and Woods, 2007), and Canny are based on differential 
calculation or criterion-based optimization (Canny, 1986).  
Although most edges, even the finest ones, can be detected by 
these methods with proper adjustment in parameters, it is very 
difficult, if not impossible, for them to produce perceptual 
contours.  To see this, Fig. 2(a) shows an example in which most 
people would easily perceive two divers at a glance, rather 
than the overly connected or minute edges in Fig. 2(b), where 
the solid line and curves are results of the Canny detector.  The 
intriguing tendency (Goldstein, 2013) to perceive the divers in 
the complex image of Fig. 2(a) reveals the fact that adjacent 
edges with an similar orientation (e.g. divers) are more notice-
able to our eyes than the rest, thus enabling the human visual 
system to group these edges into perceptual contours, while 
unconsciously paying less attention to neighboring pixels of 
different orientations (e.g. those of divers’ equipment).  Thus, 
one can readily perceive the human body contour when looking 
at Fig. 2(a) even if the body is partially occluded by the “ma- 

(a) (b)

(c) (d)  
Fig. 3. (a) (c) Test images.  (b) (d) Results of applying Desolneux’s 

method and Von Gioi’s to (a) and (c), respectively. 

 
 

rine snow” and bubbles. 
Fig. 2(b) clearly indicates that using the Canny detector 

alone makes virtually any linking or grouping algorithms in- 
feasible to construct contours, these contours are essential to 
enable a computing machine to “perceive” objects such as the 
divers in Fig. 2.  In fact, a deeper insight into the human visual 
system, which is able to quickly compile complex scenes into 
simple object contours just to serve the survival purpose, would 
help substantiate the conjecture that accurate depictions of per- 
ceptual contours is not only essential in simplifying low-level 
operations of edge linking, but beneficial to high-level tasks of 
image analysis and pattern recognition.  Thus, it is desirable to 
embody this capability of depicting perceptual contours on a 
computing device. 

2. Approaches for Depicting Line Segment 

Recognizing its great potentiality in engineering applica-
tions, numerous researchers have attempted to depict percep-
tual contours in various ways.  Recently, gradient of pixels and 
Gestalt laws are considered in performing the contour depic-
tion (Azriel and Thurston, 1971; Elder and Goldberg, 2002; 
Tseng et al., 2012).  Challenging problems such as line scratch 
detection in old film can be overcome by using local statistical 
gradient estimation (Newson et al., 2014), and using Edge 
Orientation Histograms (EOH) as feature descriptors is always 
a popular way for recognition applications (Timotius and 
Setyawan, 2014).  Desolneux et al. (2007) proposed a prob-
abilistic method mainly based on gathering gradient orienta-
tions to depict aligned segments in an input image.  The result 
of applying Desolneux’s method to Fig. 3(a) is shown in Fig. 
3(b), we can see that curves and junctions of clothes, creases 
and human body are not well depicted, even though the method 
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attempted to exploit similar orientation for continuity analysis 
on line segments. 

Von Gioi et al. (2010) introduced a fast line segment de-
tector (LSD) that incorporates Desolneux’s method for evalu-
ating gradient orientations within a line support region, that is, 
a growing region is used to sample and evaluate orientations in 
order to determine a principal orientation for the region.  De-
spite the efficient computation owing to the region-growing 
scheme, only straight lines are preserved (as shown in Fig. 
3(d)) when tested with real images such as the one in Fig. 3(c), 
accordingly reconstruction of curved contours of the zebra is 
virtually impossible.  Both aforementioned methods are re-
gion-based as they are purposely designed to produce straight 
line segments each representing the principal orientation of a 
region, yet information other than this “lump sum” principal 
orientation, such as the directivity of individual pixel relative 
to its neighboring pixels is lacking.  Therefore, an approach 
different from the region-based methods and capable of in-
ferring psychologically important features such as curves and 
junctions is needed. 

III. THE PROPOSED METHOD 

This section explains in detail how to incorporate the con-
cepts of MLE and entropy as the theoretic basis for evaluating 
the directivity. 

1. Selecting Pixels of Interest 

At the initial stage, a smoothed image I is obtained by ap-
plying a Gaussian blurring (McAndrew et al., 2010) with  = 
0.5 to the input image.  Subsequently, gradients in two direc-
tions Gh and Gy are obtained by applying any gradient opera-
tions such as Sobel operators to I.  Matrices of the magnitude 

G and orientation  are calculated as 2 hG G2
y  and arc-

tan(Gy/Gh), respectively.  GL(x, y) is then obtained by nor-
malizing the result of taking a logarithm operation on G, 
which is in fact a simple way to suppress the scattering range 
of the gradient magnitude.  If GL(x, y) is smaller than 0.5, the 
corresponding value of θ(x, y) is replaced with an angle value 
randomly chosen from [-90, 90], the rationale of such re-
placement lies in that pixels with GL < 0.5 generally have 
diverse orientations, that is, we are not sure about which ori-
entation is really associated with these pixels since their 
brightness don’t change sharply.  Considering the fact that par-
tial perceptual contours themselves must be edges too, but the 
converse is not always true, thus it is obvious that a subset of 
all pixels in I can be selected as targets for the depiction of 
perceptual contours with less computation time.  Furthermore, 
because the Canny detector itself includes aforesaid steps of 
Gaussian blurring and computing G and θ, unless otherwise 
stated, we will use the MATLAB-implemented Canny detector 
(McAndrew et al., 2010) hereinafter to select pixels of interest, 

and denote  as the subsets of GL(x, y) containing 

gradient magnitudes of pixels detected by the Canny detector.  

Note that double thresholds 0.25 and 0.1 are used in Canny 
detector, as they are low enough to meet the requirement of 
preserving most of applicable edges. 

( , )L
CanG x y

2. Estimation of Directivity 

At this stage, the semi-minor axis length Rsr and orientation 
of an elliptical sampling mask MRsr are allowed to change, just 
as in our previous work (Tseng et al., 2012).  However, instead 
of using the lengthy iterative training process and changing 
the mask shape according to the entropy contained in the mask, 
here several different shapes of sampling mask are subjected  
to the MLE to determine the optimal shape of the mask for 
evaluating the orientation similarity of the target pixel.  The 
following discussions explain one embodiment of it: 

 
(i) Constructing an elliptic sampling mask MRsr centered on 

a selected pixel (x, y) by (1) 

 Rsj(x, y) = 
2

( , )

r

Rsr x y
, (1) 

without loss of generality, Rsr = 1, 2, 3 and 4 (pixels), Rsj 
and Rsr are the semi-major and semi-minor axis of an 
ellipse, respectively.  The area of MRsr is defined by r2, 
and r = 4 is used throughout this paper. 

(ii) θ is quantized by 
180

180

Bn

Bn

 
 , Bn is the total number 

of bins and x  denotes the nearest integer to x.  Note 

that MRsr is rotated to align its semi-minor axis with θ(x, 
y) and remain un-rotated afterwards. 

(iii) With the quantized θ, compute the histogram of orien-
tation data within MRsr, where each bin (occurrence fre-

quency) is denoted as ) .  In particular, we 

denot )  as the largest bin among all bins 

, i = 1, 2… Bn, and h x  as the bin as-

sociated with the target pixel, respectively.  The quantized 

orientation  in a sense corresponds to the prin-

cipal orientation in the region-based methods (Desol-
neux et al., 2007; Von Gioi et al., 2010). 

 s ( ,R r
ih x y

sR r
T

e s
max ( ,R rh x y

( , )y

s
max ( ,R rh x

sR r
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(iv) Defining the directivity DRsr for a selected pixel (x, y) as 

 
s s

s

max

( ( , ) ( ,
D ( , ) 1

R r R r
offsetR r

Bn

EN x y EN x y
x y

EN


 

))

s

,where (2) 

 , and (3) s s s

1

( , ) ( , ) log( ( , ))
Bn

R r R r R r
i i

i

EN x y h x y h x y


 

  (4) s s
max( , ) (1 ) ( ( , ) ( , ))R r R r R r

offsetEN x y EN x y EN x y   

where max
BnEN  and  are the global maximum en-

tropy and local maximum entropy defined in (11), re- 

Rsr
maxEN
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Fig. 4. Example for demonstrating a perceiving area A and a mask M 

(the gray region). 

 

 
spectively, and  is defined as / .  The 
term (1-) mathematically accounts for the discrepancy be-
tween occurrence frequencies of the target pixel and the prin-
cipal orientation, it offers interesting implications particularly 
related to human visual perception, details of which will be 
given later.  Here, the base of the log( ) in (11) can use 2, e, or 
10. 

Rsr
T ( , )h x y Rsr

max ( , )h x y

 
After executing the foregoing steps, we have obtained four 

separate directivity values DRsr.  Next, the concept of MLE is 
applied to determine the optimal directivity representing the 
orientation similarity with the target pixel, 

 
1

( ) ( ;
Bn

)Rsr Rsr
i

i

L M f a M


 , (5) 

where ai can be treated as an observation or sample in the 
context of MLE, it corresponds to the occurrence frequency of 
a specific orientation within a perceiving area A of human 
vision (e.g., the orientation of arrows in Fig. 4).  On the other 
hand, M can be viewed as an approximation for A (the gray 
region in Fig. 4) such that ai can be treated as equivalent to hi.  
Taking nature logarithm of (5) yields (6), 

  (6) Rsr Rsr

1

ln ( ) ln ( ; )
Bn

i
i

L M f a M


 

where sln ( ; )R r
if a M  is written as , 

which in fact corresponds to the entropy prescribed in (3).  If 
we treat MRsr as a parameter set in MLE, then because the area 
of MRsr is fixed and the possible number of shapes of MRsr is 
finite in the discrete space, the theory of MLE requires that the 
maximum value of L(MRsr) must be corresponding to the op-
timal shape of MRsr for sampling (or observing) orientations in 
A.  By the same token, we can simply use DRsr to approximate  

Rsr Rsr( , ) log( ( , ))
i i

h x y h x y

(a) (b)

(c)  
Fig. 5. (a) A 2D matrix B.  (b) 2D Gaussian distribution ( = 15).  (c) 

Result of applying Hadamard product to (a) and (b). 

 
 

ln(L(MRsr)), and the maximum of ordered D at (x, y), denoted 
as DO(x, y) hereafter, corresponds to the optimal directivity. 

3. Determination of Salient Alignment Location 

Examining Fig. 2(a) and (b) reveals the fact that not all 
detected edge pixels correspond to salient alignment locations.  

Given DO(x, y) and , determination of salient 

alignment locations can be simply carried out in the context of 

Bayesian process, that is, if the parameter  is treated 

as a prior probability of a target pixel being located on a sa-
lient alignment location, then the optimal directivity DO(x, y) 
can be treated as the likelihood of the target pixel being located 
on a salient alignment location, namely the perception likeli-
hood DO(x, y) is a conditional probability of observing the 
events hO(x, y) given that the target pixel is a perceptual one.  

Now, by plugging  and DO(x, y) into the Bayesian 

formula in (7), the post probability of a target pixel being on a 
salient alignment location can be calculated as 

( , )L
CanG x y

( , )CanG x y

( , )L
CanG x y

L

O

O O

D ( , ) ( , )
( , )

D ( , ) ( , ) [(1 D ( , )) (1 ( , ))]

L
Can

L L
Can Can

x y G x y
S x y

x y G x y x y G x y




    
 (7) 

Because the target pixel is either salient or not, the Bayesian 
decision can be simply made by the following rule: if S(x, y) > 
0.5, the pixel at (x, y) is determined to be on a salient align-
ment location. 

4. Depicting Perceptual Contours 

In Guy’s method (1992) an extension field F defined as 

 F Ga B   (8) 

is used to depict perceptual contours, where B is a 150  100 
butterfly pattern with binary values 0 and 1 (see Fig. 5(a)),  
Ga is a 2D Gaussian distribution with  set to 15 (Fig. 5(b)).  
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Fig. 5(c) shows the resulting F by applying the Hadamard 
product of (8), where gradients in two directions Fh and Fy are 
obtained by applying any gradient operations such as Sobel 
operators to F.  Matrices of the magnitude FG and orientation 

F are calculated as 2 h
2
yF F  and arctan(Fy/Fh), respec-

tively.  As defined in Guy’s method, each pixel (x, y) in the 
input image is associated with a voting matrix [y1, y2,…, yBn], 
and each element F(xf, yf) (xf = 1, 2, …, 150 and yf = 1, 2, …, 
100) carries a voting value (i.e., gradient magnitude FG(xf, yf)).  
Also, the gradient orientation F(xf, yf) of an element F(xf, yf) is 
quantized and referred as an index j, j =1, 2, ..Bn, in accumu-
lating the voting values FG(xf, yf) in v j of the pixel located 
correspondingly at (x, y) in the input image.  Furthermore, 
depending on the gradient orientation (x, y) of an interest 
pixel, F should rotate correspondingly in order to accumulate 
the votes due to the human visual tendency of noticing adja-
cent edges with an similar orientation.  For instance, assume a 
vertical interest edge pixel (x, y) in the input image, because it 
actually has a gradient orientation of 0, thus it is necessary to 
center F on (x, y) and rotate by 90 degrees.  Afterwards, y j (j = 
1, 2, ..Bn) of each pixel (x, y) in the input image within the 
range correspondingly covered by F is accumulated by a vot-
ing value FG(xf, y f). 

In this work, instead of using an identical F throughout as  
in Guy’s method to accumulate voting values for each pixel, 
the directivity value DO(x, y) obtained in Section III is utilized 
to scale the size of F by multiplying DO(x, y) to the length and 
width of F.  After subjecting all salient alignment locations one 
by one to this modified voting region F', each pixel in the input 
image can be characterized by a resulting matrix V(x, y) = [v1, 
v2,…, vBn] on the 50 orientations (as Bn = 50), and the corre-
sponding index with the maximum value in V(x, y) is defined 
as m.  In order to avoid the nonlinear effect incurred by the 
boundary condition, namely when m equals v1 and vBn, an 
extended resulting matrix Vex is defined in (9), and a measure 
VO(x, y) more suitable for characterizing the degree of forming 
perceptual contours is prescribed in (10), where the index m is 
applied to (10), and L is denoted as the range for gathering 
voting results of similar orientations. 

 Vex = [V, V, V]1150 , (9) 

 VO(x, y) = 
1

( )
2 1

Bin m L

ex
q Bin m L

V q
L

 

     (10) 

Note that, because the directivity at every salient alignment 
location is not necessarily identical, modifying the size of F 
into F' seems a rationale step approaching the human visual 
system in forming recognizable but not necessarily existing 
objects based on salient or aligned edges.  In addition, the 
nonlinear calculation of VO, which considers similar orienta-
tions while depicting object contours as the human vision does, 
can advantageously overcome the problem of unexpected 
saliency map strength values incurred by the linear moment 

calculation of vector weights (Guy and Medioni, 1992). 

IV. CHARACTERISTIC ANALYSIS 

To fully understand the proposed method, some elabora-
tions are given below.  In (3) the entropy ENRsr(x, y) for each 
mask centered at the target pixel is calculated.  With QRsr 
denoting the total number of nonzero bins among all bins, the 

local maximum entropy  is calculated by Rsr
maxEN

 s
max s

1
( , ) log( )R r

R r
EN x y

Q
   (11) 

and the global maximum entropy max
BnEN  yields when QRsr = 

Bn, which is the extreme case when each pixel in MRsr by itself 
has a separate nonzero bin.  With r = 4, the total number of 
pixels in MRsr is 50, which is the maximum number of bins that 
occurs when QRsr = Bn. 

Except for some special cases, ENRsr(x, y) inversely stands 
for the orientation similarity associated with MRsr, i.e. a 
smaller ENRsr(x, y) in general indicates a stronger similarity 
due to the distribution of hRsr(x, y) being more different from 
uniformity, and vice versa.  Thus, using hRsr(x, y) to compute 
ENRsr(x, y) allows us to conveniently infer the orientation 
similarity within MRsr, which in effect fulfils the similarity law 
of Gestalt theory (King and Wertheimer, 2005) that describes 
the perceptual tendency to group items (e.g. pixels, edges) into 
meaningful configurations if they are similar with respect to 
some features such as shape, colour or texture. 

Human perception is a rather intriguing task in view of 
information theory, which could make simple measures such 
as ENRsr(x, y) not sufficient, in some cases, for properly 
measuring the perceived directivity of the target pixel rela-
tive to the neighboring pixels.  To see this, we first assume 

( , ) 0Rsr
offsetEN x y  , then (2) is readily reduced to 

 
max

( , )
( , ) 1

Rsr
Rsr

Bn

EN x y
D x y

EN
   (12) 

Next, we use Fig. 6 to show two examples with an infinite 
mask, in which a target pixel is enclosed by a dashed square, 
with symbols → and ↑ representing two different orientations 
0 and 90, respectively.  One would easily perceive Fig. 6(a) 
as separate lines broken at the target pixel, and Fig. 6(b) as 
straight lines.  Despite that Fig. 6(a) and (b) are perceived 
differently by the human visual system, entropy computation 

by (3) yields ENRsr(x, y) = 0 for both cases, as =1 

(the occurrence frequencies of → in Fig. 6(a) and Fig. 6(b) are 
1 ( , )Rsrh x y

3


 and 



, respectively) and  = 0 (the occur-

rence frequencies of ↑ in Fig. 6(a) and Fig. 6(b) are 

2 ( , )Rsrh x y

3


 and  
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 (a) 

 (b)  
Fig. 6. (a) A target pixel is enclosed by a dashed square with a symbol ↑ 

representing 90°.  (b) A target pixel is enclosed by a dashed square 
with a symbol → representing 0°. 

 

 
0


, respectively).  Now plug ENRsr(x, y) = 0 into (12), the 

directivity values for Fig. 6(a) and Fig. 6(b) are both 1, which 
is obviously contradictory to the human visual perception.  To 
avoid this contradiction, the target pixel “↑” in Fig. 6(a) 
should have a much smaller directivity value than the target 
pixel “→” in Fig. 6(b).  Clearly, there exists a need of a com-
pensation term in (12) to cope with this perceptual contradic-
tion effect shown in Fig. 6.  In this work, the compensation 
term  is prescribed as in (4), in particular (1－α) is 

defined as the contradiction factor and it has two implications: 

Rsr
offsetEN

 

(i) Rsr
offsetEN  is regulated by α, given  >  

or even if  nearly equals one. 

max ( , )Rsrh x y ( , )Rsr
Th x y

max ( , )Rsrh x y

(ii) if  equals or close to , then   0, max ( , )Rsrh x y ( , )Rsr
Th x y

Rsr
offsetEN  is virtually not needed. 

 

To see the first implication, assume   1 and 

  0, which corresponds to Fig. 6(a) where a ma-

jority of sampled data share the same orientation (i.e., 0), 
namely a dominant mode exists and the entropy ENRsr(x, y) is 
nearly zero.  With the large contradiction factor (1-)  1, the 
perceptual contradiction effect is very prominent, and a large 

value of 

max ( , )Rsrh x y

( , )Rsr
Th x y

Rsr
offsetEN  is required to offset the contradiction effect.  

Now, by (4) Rsr
offsetEN    due to ENRsr(x, y)  0, thus a 

small directivity value of the target pixel can be correctly 
obtained by (2), and the problem in Fig. 6(a) is solved. 

RsrEN max

Next, it is interesting to see that as the number of ↑ in-
creases in Fig. 6(a), the value of (1-α) decreases, and as the 
number of ↑ goes to infinite, the perceptual contradiction 
effect completely fades away, which is exactly equivalent to 
the situation in Fig. 6(b).  Based on the above discussions, 

 indeed can properly offset the perceptual con-

tradiction effect, that is, with (4) a larger value of   

( , )Rsr
offsetEN x y

( , )Rsr
offsetEN x y
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Fig. 7. (a) Example of large Rsr.  (b) Example of small Rsr.  (c) Directivity 

value vs. . 

 
 

can be produced to correspondingly offset a stronger percep-
tion contradiction effect. 

As to the second implication, it simply states that either 

 itself is the dominant mode (e.g., 0 in Fig. 6(b) and 

 is the largest bin) or there are at least two major 

modes, i.e.   , whichever the case is, the 

perception contradiction effect is insignificant, and 

( , )Rsr
Th x y

( , )Rsr
Th x y

max ( , )Rsrh x y ( , )Rsr
Th x y

Rsr
offsetEN  is 

nearly zero, making (12) essentially equivalent to (2). 
Another point worth noting: recall that Rsr(x, y) is rotated to 

align with θ(x, y) in the first iteration and remain un-rotated, 
the four mask shapes are narrower to wider with Rsr(x, y) = 1, 
2, 3 and 4, which not only facilitates pixels that share similar 
orientations with the target pixel to be covered as many as 
possible by MRsr, but also ensures pixels sharing no similar 
orientations with the target pixel to be encompassed for con-
firming the unlikely presence of directivity in MRsr.  Thus, the 
optimal mask shape estimated by MLE covers a region con-
taining pixels from which a directivity value that best char-
acterises the target pixel can be evaluated.  Fig. 7(a) shows an 
example of the mask with large Rsr centered at a target pixel of 
90 (↑) when  = 0.2 (three pixels of ↑ and fifteen pixels of 

→, i.e.  = 3 and  = 15), whereas Fig. 7(b) 

shows an example of the optimal mask centered at a target 

pixel of 0 (→) when   1 (i.e.,  =  = 

15).  By (2), the directivity value of the target pixel (enclosed  

( , )Rsr
Th x y max ( , )Rsrh x y

T ( , )Rsrh x y max ( , )Rsrh x y
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(d) (e)

(a) (b) (c)

 

(d) (e)

(a) (b) (c)

 
Fig. 9. (a) A shipwreck in a sonar image (Courtesy of Sture Hultquist 

www.abc.se/~m10354/uwa).  (b) Detection result of applying Canny 
to (a).  (c) Salient alignment locations determined from interest 
pixels (b).  (d) (e) Contours depicted by applying our method and 
LSD to (a), respectively. 

 
 

(a) (b) (c)

(d) (e) (f)  

Fig. 8. (a) A complex image.  (b) Detection result of applying Canny to 
(a).  (c) Salient alignment locations determined from interest points 
(b).  (d), (e) Contours depicted by applying our method and LSD 
to (a), respectively. 

 
 

by a square) in Fig. 7(a) is 0.05, which is relatively smaller 
than the directivity value 0.36 of the target pixel in Fig. 7(b) by 
(12).  As expected, the optimal mask shape Fig. 7(b) is more 
directional than that in Fig. 7(a).  For viewing convenience, 
both directivity values 0.05 and 0.36 are marked as a red circle 
in Fig. 7(c). 

Fig. 10. (a), (b), (c) and (d), (e), (f) are detection results of applying our 
method and LSD to right column images in Fig. 1, respectively. 

 
 

zero.  VO is normalized to [0, 1] and thresholded by 0.2, and L 
is set to 5 in all the experiments of nature images.  Although 
these parameters related to the extension field are set heuris-
tically, the following test results of nature images reveal that 
our algorithm is not sensitive to these parameters.  Binary im-
ages in Fig. 8(d) and (e) are shown first to compare the results 
of applying our method and LSD to Fig. 8(a), respectively.  
Even some edges of objects are missing in the detection result 
of Fig. 8(d), one can still distinctly perceive the bridge and 
waterfall in contrast that the detection result of LSD in Fig. 8(e) 
only roughly depicts an arch contour.  In particular, comparing 
Fig. 8(c) with Fig. 8(b) verifies that noise interferences by 
leaves and textures with dissimilar orientations have been su- 
ccessfully suppressed.  Fig. 9(d) is a ship contour obtained by 
applying our method to a sonar image (Fig. 9(a)), and Fig. 9(e) 
is the result of applying LSD to Fig. 9(a) in which only two 
line segments can be discriminated.  Furthermore, Fig. 10(a), 
(b), (c) and (d), (e), (f) show the detection results of applying 
our method and LSD to underwater raster-scan images in Fig. 
1 (right column), respectively, although it is difficult to tell if 
there exists objects in Fig. 10(d), one can perceive two humans  

We note that despite the histogram structures of Fig. 7(a) 
and (b) are the same, the mask shapes as well as the directivity 
values calculated with (2)-(4) for the two different pixels are 
quite different, sufficiently exhibiting the discriminant per-
formance in line with our human visual perception.  Statistical 
inferences of Fig. 7(a) and (b) are as follows: the different 
directivity values DRsr(x, y) with different Rsr calculated  
according to (2)-(4) are indeed effective in measuring the 
directivity of a target pixel, verifying that the proposed entropy- 
driven scheme can implement the proximity law in Gestalt 
theory that describes the perceptual tendency to group items as 
meaningful configurations according to their nearness to one 
another (King and Wertheimer, 2005). 

V. EXPERIMENTAL RESULTS 

In this section, extensive experimental results are provided 
to justify the feasibility and effectiveness of our method.  Note 
that if the standard deviation of V(x, y) is smaller than 3, which 
means that there is no significant orientation in the voting 
matrix V(x, y) and hence the corresponding VO(x, y) is set to  
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Table 1 Performances of different contour depiction methods. 

 Our method Papari and Petkov (2011) LSD (2010) Grigorescu et al. (2004) Canny 

Pratt’s (FOM) 0.54 0.39 0.44 0.33 0.13 
 
 

(a) (b) (c) (d) (e)  
Fig. 11. Pictorial comparison results.  Left to right columns: (a) Input 

images.  (b) Ground truth of the input images.  (c) Results of 
Papari et al.’s method.  (d) Results of the proposed method.  (e) 
Results of LSD. 

 
 

by looking at Fig. 10(a).  Apparently, these experimental re-
sults demonstrate superiority of our method over LSD in de-
picting contours conformal to our visual perception, In addi-
tion, they justify that the capability of correctly perceiving an 
object is indeed mainly attributed to the well depicted curved 
contours. 

As in (Grigorescu et al., 2004), we next use forty images 
comprising complex backgrounds (e.g., rivers, rocks and 
bushes) and objects (e.g., animals and vehicles) as input im-
ages to test various contour detectors.  The Pratt’s FOM (fig-
ure of merit) is adopted to obtain a matching degree between 
the ground truth and the detection result (Papari and Petkov, 
2011).  Table 1 shows that our work has fairly superiority over 
other methods in detecting perceptual contours.  Note that the 
ratio value in Table 1 is acquired by averaging the corre-
sponding scores over 40. 

Moreover, as shown in Fig. 11, three nature images (first 
column) chosen from the forty images and the corresponding 
ground truth (second column) are demonstrated to show that 
our method can depict contours (fourth column) more consis-
tent with the contours perceived by human visual system than 
other methods (third column: Results of Papari et al.’s method, 
fifth column: Results of LSD). 

Furthermore, synthesized binary images in Fig. 12 (first 
row) are tested to demonstrate that the proposed method has 
the capability of depicting recognizable but not necessarily 
existing objects.  In the synthesised binary images, VO is nor-

malized to [0, 1] and thresholded by 0.5, and  has 

only two grey values, 0 and 1, resulting in the prior probability 
of a pixel being 1.  To perform the Bayesian calculations, each 

 is multiplied by 0.5.  This assumption of an arbi- 

( , )L
CanG x y

( , )L
CanG x y

 
Fig. 12. Performance of the proposed method on synthesized images.  

From top to bottom: (First row) synthesized images. (Second 
row) results of applying the proposed method to the synthesized 
images. (Third row) results of applying the Papari et al.’s 
method. (Fourth row) results of applying LSD. 

 

 

trary pixel being equally likely to be or not to be a perceptual 
pixel is reasonable, just as the symbols 0 and 1 are equally 
likely to be encountered on the Internet.  The results in Fig. 12 
(second row) clearly show that pixels with a constant orienta-
tion are accurately detected by our method, with all the cir-
cular contours with varying orientations being ignored.  In 
contrast, other methods cannot provide the same performance 
(as shown in the third and fourth rows).  These results justify 
that the proposed method can not only effortlessly construct 
Gestalt objects, but also perceive salient or aligned edges in 
accordance with the human visual tendency. 

Sensitivity to parameters of   and r is shown in Fig. 13, 
where each dot represents an average result of testing 10 dif-
ferent images randomly chosen from the aforementioned 40 
images.  As we can see, incrementing the value of  only incur 
slight negative effect on FOM.  On the other hand, although 
the highest FOM is obtained when r = 5 in Fig. 13 (b), it is not 
worthwhile to gain 8% in FOM performance (FOM = 0.5 
when r = 4 and FOM = 0.54 when r = 5) at the expense of 58% 
increase in computation time (the total number of pixels 
within a sampling mask is 50 when r = 4, whereas it is 79 when 
r = 5).  Therefore, r is set to 4 throughout this work. 
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VI. CONCLUDING REMARKS 

The beauty of this work is threefold: (1) by combining MLE 
and the entropy-driven scheme, a sampling mask that opti-
mally samples neighboring pixels and best fits the target pixel 
can be obtained.  Characterized by taking the possible per-
ception contradiction effect into account, the resulting direc-
tivity is useful for facilitating the decision of the salient alignment 
locations to be conveniently made under the Bayesian frame-
work.  (2) With a small set of parameters, one can fulfill the 
Gestalt laws of proximity and similarity simultaneously.  (3) 
Noise and outliers can be suppressed as they have relatively 
small directivity. 

Comparison results of extensive experiments including 
underwater images have justified that our method has superi-
ority in depicting both straight and curved contours perceived 
by the human visual system.  In particular, analysis in Section 
IV and experimental results in Section V have verified that the 
optimal directivity of individual pixel is effective in depicting 
perceptual contours via suppressing noise and outliers with 
scattering gradient magnitude and low orientation similarity, 
thus not only alleviating the problem that plagues aforemen-
tioned region-based perceptual contour detectors (i.e., unable 
to detect curves and junctions due to lacking the directivity of 
individual pixel relative to its neighboring pixels), but also 
breaking limitations of conventional edge detectors. 

The sampling mask in this work has a fixed area, extensive 
experiments have indicated that a mask with r > 5 is too large 
to work properly for most input images.  Thus, one possible 
future research may be directed to the determination of a dy-
namic mask size for improving the computation efficiency.  
Even though Canny detector is widely known as optimal in 
terms of various criteria, test results of Table 1 indicates that in 
some cases the Canny detector may not good enough for se-
lecting pixels of interest. 

Furthermore, as shown in Fig. 12 our method can better de-
pict most perceptual objects than other methods, yet due to its 
pixel based nature, there still exists a great improvement room 
for the computation efficiency.  Our method requires 0.016 s 
for processing a pixel on an Intel Core 2 Duo CPU 2.40 GHz, 
compared to < 0.0006 s in other methods.  Also, there exists a 
need of a better selection strategy than the Canny detector to 
further improve the FOM performance of our method.  Last 
but not least, psychology factors such as colors can be included 
as an additional feature for further improving the performance 
in the future. 
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