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ABSTRACT 

The principal purpose of this paper was theoretically to 
study the carbonation resistance of a semi-infinite medium 
which concrete has a mortar coating having diffusion proper-
ties different from those of the rest of the medium.  The ana-
lytical solution of a semi-infinite composite medium was used 
to predict the time required for subsidence due to concrete 
with mortar coating.  The inaccurate analytical solution was 
published in previous books.  Thus, the analytical solution of a 
semi-infinite composite medium is re-derived in this article.  
The governing equations without initial and boundary condi-
tions in the previous books are also pointed out.  In order to 
verify the feasibility and applicability for this analytical solu-
tion, the previously experimental data were cited as input 
parameters.  The investigated results show that the calculated 
time required for subsidence of concrete subjected to mortar 
coating is in good agreement with that the measured time 
required for retard the carbonation of concrete with surface 
mortar coating.  The present studied results may be offered as 
a crucial reference for durability design of newly building con-
crete or reinforced concrete (RC) structures. 

I. INTRODUCTION 

Concrete is one of the most generally employed construction 
materials.  Owing to its composition and porous nature, it is 
frequently susceptible to crack, damage and deterioration in 
consequence of physical and chemical processes.  Carbon di-
oxide (CO2) is one of the chemical materials which can generate 
deterioration of reinforced concrete (RC) structures.  Deterio-
ration of RC structures caused by carbon dioxide is commonly 
called carbonation.  Concrete carbonation can lead to dangerous 

corrosion of reinforcing bars (rebars) and substantially diminish 
the service life of RC structures.  RC structures placed in the 
plenty of carbon dioxide environments should accordingly be 
completely enhanced the designed strength and the defended 
manipulation such as surface coating.  In point of this issue, 
coating materials may be employed to protect both newly built 
and existing structures from carbonation. 

Numerous important investigations on the performance of 
coated concrete have been narrated.  Papadakis et al. (1992) 
employed a mathematical model derived from Fick’s first law 
of diffusion to study the influence of composition, environ-
mental factors, and cement-lime mortar costing on concrete 
carbonation.  If its water/cement ratio is very low and its lime 
content higher than a lime-cement mortar coating of the usual 
thickness (around 20 mm) is found to be an extremely effective 
means of delaying or even preventing carbonation-induced 
corrosion initiation.  This means that it delays the start of con-
crete carbonation by the time required for carbonation to fully 
penetrate the coating, and it postpones its further penetration 
into the concrete because atmosphere CO2 has to travel farther 
to reach the carbonation front.  Kazmierczak and Helene (1995) 
used accelerated carbonation tests to estimate concrete coating 
resistance to CO2 permeability.  The coating materials are four 
types resin such as acrylic emulsion or dispersion, methyl 
methacrylate dispersion, polyurethane and silane/siloxane plus 
acrylic dispersion.  They found that the painting procedure 
results in different coating thickness, which will lead to differ-
ent carbonation depths in the same specimen.  Roy et al. (1996) 
performed the effect of plastering on the carbonation of a 19- 
year-old RC commercial building that was located in a tropical 
environment.  If the plaster (render) thickness was at least 30 
mm thick then no carbonation of the concrete occurred in this 
building.  Swamy et al. (1998) investigated the performance of 
concrete slabs coated with an acrylic-based coating against 
atmospheric carbon dioxide attacks.  Throughout the period of 
field exposure, uncoated concrete specimens with water to 
cement ratios of 0.6 and 0.75 disclosed average carbonation 
depths of 3 and 7.5 mm, while the acrylic-based coating de-
creased the average carbonation depths to 0.5 and 3 mm, re-
spectively.  Seneviratne et al. (2000) used dynamically me-
chanical thermal analysis to study three elastometric surface 
coatings.  All there coating systems were applied to naturally 
carbonated concrete components obtained from buildings that 
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were suffering from reinforcement corrosion.  It was indicated 
that the use of an elastometric coating system can protect car-
bonated concrete from water ingress.  It can thus extend the 
service life of a carbonated RC structure by controlling the rate 
of corrosion of embedded steel in cases where significant chlo-
ride contamination does not exist and where the only sub-
stantive route for moisture ingress is via the coating.  Sanjuan 
and del Olmo (2001) investigated mortar coating on the sur-
face of specimens.  The resistance to carbon dioxide pierce 
through the concrete was enumerated by comparing the dif-
ference of carbonation depths between coated and uncoated 
surface coatings.  An industrial mortar coating was showed 
excellent performance as a carbon dioxide barrier when ap-
plied to plain concrete.  Yodmalai et al. (2011) experimentally 
studied the carbonation resistance of concrete coated with 
crystalline coating material (CCM).  Specimens with different 
water to binder ratios of 0.4, 0.5, and 0.6 and fly ash contents 
of 0 and 30% with and without CCM coating were tested 
under an accelerated carbonation environment.  It was found 
that carbonation depths of coated specimens were lower than 
those of the uncoated specimens of the same mix proportion.  
Huang et al. (2012) inspected carefully concrete carbonation 
of a 35-year-old educational RC building that was located in a 
subtropical environment.  A very important reduction in car-
bonation was detected for the column and beams of building 
that was plastered (sand-cement render) and/or putted tile/ 
coating.  No concrete carbonation was found when the plaster 
(render) thickness surpassed 50 mm.  The surface coating such 
as tile with high compacted and impermeable material may 
evidently postpone the carbonation of concrete. To date, 
however, no studies have attempted to predict the time re-
quired for subsidence of the carbonation of concrete with 
mortar coating.  This is a notable shortcoming, because the use 
of analytical solution of a semi-infinite composite medium in 
previous studies may have resulted in wrong results. 

The primary purpose of this paper is to study the carbona-
tion resistance of concrete with mortar coating.  To do this 
scheme, the analytical solution of the semi-infinite composite 
medium is first re-derived.  The previously experimental data 
(Huang, 2013) were cited as input parameters.  The time re-
quired for subsidence due to the thickness of coating material 
will be predicted.  The results of the present study may be 
provided as an important reference for durability design of 
newly building concrete or RC structures. 

II. THE SEMI-INFINITE COMPOSITE MEDIUM 

In order to establish the theory for modeling the carbona-
tion resistance of concrete with mortar coating, we assume the 
concrete with mortar coating to be a semi-infinite composite 
medium (Carslaw and Jaeger, 1959; Crank, 1975; Poulsen and 
Mejlbro, 2006) as shown in Fig. 1.  A semi-infinite medium 
has a mortar coating which is of diffusion properties different 
from those of the concrete.  In this way, suppose in the 
semi-infinite region d < x < , the diffusion coefficient 

x

Mortar
Coating
C1  D1

Concrete
C2
D2

x = 0 x = −d 

CS

CO2

 
Fig. 1. Schematic diagram of concrete carbonation in the sight of a mortar 

coating. 
 
 

(diffusivity) is D1 in the region d < x < 0, and that the con-
centration of CO2 is denoted by C1 there, whereas the corre-
sponding quantities in x > 0 are D2 and C2.  The two linear 
partial differential equations (PDE, see Eqs. (1) and (2)) 
(Carslaw and Jaeger, 1959) with initial condition (see Eq. (3)), 
the discontinuous conditions at the interface between the two 
media ( i.e. at x = 0, see Eqs. (4) and (5)) (Carslaw and Jaeger, 
1959; Crank, 1975; Poulsen and Mejlbro, 2006), and boundary 
conditions (see Eqs. (6) and (7)) to be solved are 
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where x is the distance, t is the time, d is the thickness of 
mortar coating, and CS is the surface concentration of CO2 on 
mortar costing. 

Taking Laplace transformation (O’Neil, 2003) with respect 
to t to Eqs. (1), (2), (4), (5), (6) and (7) and using Eq. (3), we 
obtain 
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, and p is a number whose  

real part is positive and large enough to make the Laplace’s 
integral transformation convergent. 

A solution of Eq. (8) which satisfies Eq. (12) is 

     1 1, cosh sinhSC
C x p q d x A q d x

p
   1   (14) 

where A is an unknown constant. 
A solution of Eq. (9) which satisfies Eq. (13) is 

   2
2 , q xC x p Be  (15) 

where B is an unknown constant. 
Inserting Eqs. (14) and (15) into Eq.(11), we have 

 1cosh sinhSC
B q d A

p
  1q d  (16) 

Using Eqs. (10), (14), (15), and (16) and applying the fol-
lowing formulae (Beyer, 1981) 
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we obtain the unknown constant 
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Putting Eq. (18) into Eq. (16) and using the following for-
mulae (Beyer, 1981) 
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we obtain the unknown constant 
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For convenience’ sake, we set the following notations 
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Substituting Eq. (18) into Eq. (14) and using Eq. (21) and 
the following formulae (Beyer, 1981) 

   1 1
sinh sinh cosh cosh

2 2
u v u v u v     (22a) 

   sinh cosh sinh sinh
2 2

u v u v u v1 1
     (22b) 

   cosh sinh sinh sinh
2 2

u v u v u v1 1
     (22c) 

   cosh cosh cosh cosh
2 2

u v u v u v1 1
     (22d) 

we obtain 

    
 

1
1

1 1

cosh sinh
,

cosh sinh
SC q x q

C x p
p q d q d








1x
 (23) 

Inserting Eq. (20) into Eq. (15) and using Eq. (21), we ob-
tain 
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We express the hyperbolic functions (Beyer, 1981) 
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in Eq. (24) in terms of negative exponentials, and expand in a 
series by the geometric series 
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Further, using Eq. (21) and 
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where erfc is the complementary error function and taking 
inverse Laplace transformation (O’Neil, 2003) to Eq. (24), we 
have 

Eq. (32) means that 
S
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In order to verify the applicability and feasibility of the 
present theory mentioned above, the experimental data previ-
ously obtained by Huang (2013) were cited for predicting the 
results of analytical solution stated above.  He casted cylinders 
(10 cm (diameter)  20 cm (height)) covered with different 
thickness of mortar coating.  After curing for 28 days, the sur-
face and one end of each cylinder were coated with epoxy resin 
to secure that carbon dioxide could diffuse only into the speci-
mens in a one-dimensional mode.  The specimens were trans-
ferred to a sealed chamber and subjected to accelerated car-
bonation at 23C in temperature, 70% RH, and a CO2 concen-
tration of 100% by volume for 91.98 and 131.4 hr. 

Taking the differentiation with respect to x at x = d 
(Carslaw and Jaeger, 1959) and using Leibniz’s rule (Hilde-
brand, 1974), we obtain 
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For very large values of the time, the exponentials in Eq. 
(30) may all be replaced by unity (Carslaw and Jaeger, 1959).  

Furthermore, 
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When the concrete surface is kept at zero and the initial 
CO2 concentration of the whole concrete is CS, it is very clear 
that the concentration gradient at x = d will be minus the 
above.  Based on Eq. (31), it is known that the concrete struc-
ture contains very different physical and chemical properties 
from the outer coating material : on this assumption the time 
required for subsidence to the present concentration gradient is 

 
1

2
2 1D D  times 1SC D t . 

Following Crank (1975), the total quantity penetrating the 
medium CO2 through unit area of the coating surface x = d  

in time t is 
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.  Based on this concept, 

Eq. (31) may be written as 
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According to the previously experimental data (CS = 11.53% 
by mass of concrete, C1 = 11.51% by mass of concrete, C2 = 
10.16% by mass of concrete, t = 35 yrs, d = 0.01 m, x1 = 
0.0075 m, x2 = 0.0025 m (Huang, 2013), n = 2) and using  
Eqs. (21), (28) and (29), the values of D1 = 1.74  10–12 m2/s 
and D2 = 0.40  10–12 m2/s for the concrete specimen 35AX10 
can be calculated by the Mathcad software (2007) and listed in 
Table 1.  The values of D1 and D2 of the other concrete 
specimens can be calculated by the same way and listed in 
Tables 1 and 2.  Based on Tables 1 and 2, the compressive 
strengths of all specimens are much less than the designed 
strengths after the accelerated carbonation test for simulating 
35 and 50 years, respectively.  In accordance with the previ-
ously experimental data (Huang, 2013) and using Eq. (31),  

the values of  
1

2
1 ,SC D t   

1
2

2 1D D and  
1

2
1[ ]SC D t   

 
1

2
2 1D D  of concrete specimens were calculated and listed 

in Tables 1 and 2.  It is obvious from Tables 1 and 2 that the 
carbonation depths of 35A and 50A specimen sets are smaller 
than those of 35B and 50B, respectively.  This can be ex-
plained as the tightness of A with the ratio of cement to sand of 
1 2  is better than B with that of 1 3 .  It is clear from Tables 1 

and 2 that the compressive strengths of concrete specimens 
35A and 35B with X, Y and Z with 10, 15 and 20 mm are 
larger than those of 50A and 50B with X, Y and Z with 10, 15, 

and 20 mm, while the values of  and  of concrete 

specimens 35A and 35B with X, Y and Z with 10, 15, and 20 
mm are smaller than those of 50A and 50B with X, Y and Z 
with 10, 15, and 20 mm, respectively.  This may be interpreted 
as the carbonation depths of 35 years are less than those of 50 
years.  The time required for subsidence due to mortar coating 
were predicted by Eq. (31) and listed in Tables 1 and 2.  
Roughly speaking, the effect of compressive strength on pre-
dicting the time required for subsidence subjected to mortar 
coating on concrete specimen is increased if the designed 
strength increases.  In the case of the thickness of mortar  

1D 2D
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Table 1.  Carbonation depth, compressive strength, diffusivity, and concentration gradient of 35A and 35B specimen sets. 

   Diffusivity Concentration gradient (Eq.(31)) 

Specimen set 
Carbonation 

deptha  
(mm) 

Compressive 
strengthb 
(kgf/cm2) 

Coating 
Material  

D1 (m
2/s 10–12)

Concrete  
D2 (m

2/s 10–12) 1

sC

D t
 

1

2
2

1

D

D

 
 
 

 

1

2
2

1 1

sCD

D D t

 
 
 

35AX10+ 10.7 170.0 1.74 0.40 1.48 2.09 3.09 
35AX15 10.4 149.6 2.66 0.18 1.16 3.84 4.46 
35AX20 9.7 151.2 7.07 0.14 0.70 7.24 5.07 
35AY10 10.3 161.3 6.91 1.25 0.70 2.35 1.64 
35AY15 10.2 168.2 2.66 0.18 1.14 3.86 4.41 
35AY20 13.6 158.0 6.14 0.02 0.89 16.28 14.46 
35AZ10 13.4 179.7 4.16 0.34 0.77 3.48 2.66 
35AZ15 12.3 180.3 4.51 0.27 0.72 4.09 2.94 
35AZ20 14.4 199.5 3.72 1.85 0.71 4.49 3.18 
35BX10 13.8 127.2 5.87 0.44 0.74 3.65 2.69 
35BX15 13.5 136.4 5.77 0.30 0.75 4.40 3.32 
35BX20 14.1 147.8 8.86 0.36 0.73 4.97 3.61 
35BY10 14.4 146.6 3.24 5.79 0.71 0.75 0.53 
35BY15 12.1 144.3 5.71 0.19 0.58 5.54 3.21 
35BY20 11.1 160.6 6.90 0.09 0.50 8.58 4.30 
35BZ10 13.6 151.9 4.70 0.62 0.62 2.76 1.72 
35BZ15 12.3 168.2 1.91 0.07 0.91 5.11 4.63 
35BZ20 13.2 167.5 4.35 0.05 0.59 9.16 5.41 

a, b Experimental results were cited from Huang [6]. 
+: 1. “50” represents accelerated carbonation test for simulating 50 years. 
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coating, the rank of the time required for subsidence is : (1) 20 
mm, (2) 15 mm, and (3) 10 mm.  Moreover, using Eq. (32) and 
taking the 35AX10 as the semi-infinite to composite medium, 

the relationship between 
S

Mt
C d

 and 

1

2
1
2

D t

d

 
 
 

 is shown in the 

Fig. 2.  This is true that the concrete specimen 35AX10 at large 
times has some sorption curves with different values of 

1 2D D .  The purposed of sorption curve in Fig. 2 can be ex-

pressed as relationship between the total quantity penetrating 
the medium CO2 through unit area of the coating surface x = 
d in time t and the cross-section-area of mortar coating in 
non-dimensional form.  The physical meaning of sorption 

curve in Fig. 2 is that the relationship between 
S

Mt
C d

 and 

1

2
1
2

D t

d

 
 
 

 is varied directly as the increases of values of 1 2D D  

due to the formation of CaCO3 in the pore solution. 

IV. DISCUSSION 

In the case of the theory mentioned above, some important 
concepts are needed to be pointed out.  As we know, the exact 
analytical solutions, Eqs. (28) and (29), are obtained from the 
governing PDE Eqs. (1) and (2) associated with initial condi-
tion Eq. (3), discontinuous conditions Eqs. (4) and (5), and 
boundary conditions Eqs. (6) and (7).  However, Carslaw and 
Jasger (1959) and Poulsen and Majlbro (2006) did not write 
out Eqs. (3), (6) and (7).  Crank (1975) did not put down Eq. 
(7).  Without Eqs. (3), (6) and (7), we cannot obtain the exact 
analytical solutions (see Eqs. (28) and (29)).  Crank (1975) and 
Poulsen and Majlbro (2006) wrote out 

 2
0 1

2 (2 1)
( , )

1 2
nS

n

kC n d kx
C x t erfc

k D t






  

  

 


 (33) 

which was changed from Carslaw and Jaeger (1959). 
If we use Leibniz’s rule (Hildebrand, 1974) 
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Table 2.  Carbonation depth, compressive strength, diffusivity, and concentration gradient of 50A and 50B specimen sets. 

   Diffusivity Concentration gradient (Eq. (31)) 

Specimen set 
Carbonation 

deptha 
(mm) 

Compressive 
strengthb 
(kgf/cm2) 

Coating 
material  

D1 (m
2/s 10–12)

Concrete  
D2 (m

2/s 10–12) 1

sC

D t
 

1

2
2

1

D

D

 
 
 

 

1

2
2

1 1

sCD

D D t

 
 
 

50AX10+ 23.5 67.7 6.49 0.75 0.67 2.95 1.98 
50AX15 11.5 125.3 4.18 0.51 0.83 2.87 2.38 
50AX20 12.9 141.6 7.37 1.25 0.57 2.43 1.39 
50AY10 22.6 151.2 1.52 0.06 0.85 4.85  0.80 
50AY15 19.5 159.5 2.73 0.02 0.57 11.08 6.32 
50AY20 22.1 160.8 3.02 0.03 0.60 10.01 5.96 
50AZ10 21.4 155.3 4.41 2.76 0.61 1.26 0.77 
50AZ15 18.9 162.7 1.71 0.04 0.99 6.45  6.42 
50AZ20 20.4 171.5 4.40 0.04 0.68 10.56 7.13 
50BX10 23.5 121.5 2.04 0.07 1.10 5.62 6.18 
50BX15 21.5  97.9 1.43 0.02 1.24 8.37 10.37 
50BX20 23.5 138.9 3.14 0.02 0.76 11.80 9.00 
50BY10 19.3 127.9 6.01 0.62 0.52 3.11 1.62 
50BY15 16.3 134.2 2.74 0.02 0.55 11.06 6.04 
50BY20 16.1 154.0 2.68 0.02 0.71 10.46 7.39 
50BZ10 21.5 158.6 1.68 0.11 0.89 3.87 3.46 
50BZ15 16.9 170.4 2.04 0.14 0.92 3.76 3.47 
50BZ20 21.0 166.0 5.49 0.01 1.21 26.50 31.97 

a, b Experimental results were cited from Huang [6]. 
+: 1. “50” represents accelerated carbonation test for simulating 50 years. 
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Fig. 2. Sorption curves for a semi-infinite composite medium of 35AX10.  

Numbers on curves are values of D1/D2. 
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and Eqs. (29) and (33) to be substituted into Eqs. (1)-(7) for 
checking the analytical solutions.  It is actually failed.  Ob-
viously, Eq. (33) is really mistook.  Further, Poulsen and 
Mejlbro (2006) wrote the governing PDE as 

   ,   0,  0
C C

D x d x t
t x x

           
 (35) 

which is a non-linear PDE (Huang et al., 2012; Huang, 2013; 
Yodmalai et al., 2011) Nevertheless, Eqs. (1) and (2) are ac-
tually linear PDE. 

Herein, it is also needed to be pointed out that Eqs. (3.57) 
and (3.58) in Crank (1975) are really not correct.  They should 
be revised as 
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2 2

1

1

2
1

2
1

1 2
n d

D tnt

nS

M D t
e

C d d




 



           
   (36) 

and Eq. (32), respectively. 
Eq. (31) denotes that concentration gradient shows the time 

required for subsidence due to the thickness of mortar coating 

on the concrete specimen.  The values of 

1

2
2

1 1

SCD

D D t
 
 
 

 in 

the Table 1 can strongly verify that the experimental data well 
present the verification of analytical solution while the values 

of 

1

2
2

1 1

SCD

D D t
 
 
 

 in the Table 2 cannot do.  This reason may 

be caused that the experimental data of Table 2 have an ex-
perimental deviation due to not good concrete specimen.  It is 
needed to point out that the present theory is actually correct.  
In order to improve the defected trend occurred in Table 2, the 
potential way is more experimental programmes to be done. 

Moreover, Fick’s second law associated with initial and 
boundary conditions can be expressed as 

 
2

2
,   constant

C C
D D

t x

 
 

 
 (37a) 

 ( , 0) 0C x   (37b) 

 (0, )C t Cs

( , ) 0C x t 

 (37c) 

  (37d) 

where C(x, t) is the CO2 concentration at depth x and time t and 
CS is the CO2 concentration on the surface of concrete. 

The solution of Eq. (37) for semi-infinite concrete (Crank, 
1975) is 

( , ) 1
4 4

S S

x
C x t C erf C erfc

Dt Dt

   
     

    

x 
  (38) 

where erf is the error function. 
In general, Fick’s second law is a good approximate of the 

CO2 penetration into concrete.  Eq. (38) is suitable for pre-
dicting CO2 concentration profiles (i.e., CO2 concentration as 
a function of concrete depth).  This reason is due to the value 
of diffusivity (D) of CO2 with a range from 10–10 to 10–14 m2/s.  
It is obvious that the value of diffusivity is very small.  Al-
ternatively, the rate of CO2 penetration into concrete is very 
slow.  This means that CO2 concentration must vanish as x 
tends to infinity.  As a result, we may use Eq. (38) to predict 
CO2 concentration profile with respect to concrete specimen 
with finite length.  This notion can be extended for the semi- 
infinite composite medium stated as Eqs. (1), (2), and (3). 

V. CONCLUSIONS 

Based on the theoretical investigation presented in this 
paper, the following conclusions may be made as follows: 

 
1. The correct analytical solutions (see Eqs. (28) and (29)) of 

the two PDEs (Carslaw and Jasger, 1959) (see Eqs. (1) and 
(2)) with initial condition (see Eq. (3)), discontinuous  
(interface) conditions (Carslaw and Jaeger, 1959; Crank, 
1975; Poulsen and Mejlbro, 2006) (see Eqs. (4) and (5)), 
and boundary conditions (see Eqs. (6) and (7)) for a semi- 
infinite composite medium have been re-derived in this 
paper.  The correct analytical solution of Eq. (28) to replace 
the Eq. (3.55) in Crank’s book (1975) have also been 
pointed out in this article. 

2. This paper has proposed the correct analytical solutions of 
Eqs. (36) and (32) to replace the Eq. of (3.57) and (3.58) 
and (7.44) and (7.45) in Crank’s (1975) and Poulsen and 
Mejlbro’s (2006) books, respectively.   Eq. (36) for very 
large times is equivalent to Eq. (32).  Based on Eq. (32), the 

relationship between 
S

Mt
C d

 and 

1

2
1
2

D t

d

 
 
 

 is called sorption 

curve as shown in Fig. 2.  The purpose of sorption curve can 
be expressed as relationship between the total quantity 
penetrating the medium CO2 through unit area of the coat-
ing surface x = d in time t and the cross-section-area of 
mortar coating in non-dimensional form.  The physical 
meaning of sorption curve is that the relationship between 

S

Mt
C d

 and 

1

2
1
2

D t

d

 
 
 

 is varied directly as the increase of 

values of 1

2

D

D
 due to the formation of CaCO3 in the pore 

solution.  When k = 1 and  = 0, Eq. (3.58) in Crank’s book 

(1975) reduces to 

1

2
1
2

2t

s

M D t

C d d

   
 

 while Eq. (32) of this 

paper reduces to 

1

2
1
2

t

s

M D t

C d d

   
 

.  When D1 = 0, the coor-

dinate of Fig. (3.8) in Crank’s book (1975) is 
1

2
1
2

4
, 0,

1
t

s

M D t

C d d


2

 
            


  whereas the coordinate of 

Fig. 2 of this paper is 
1

2
1
2

,t

s

M D t

C d d

 
       

0,0 .  It is par-

ticularly worth pointing out that the sorption curves of Fig. 
(3.8) in Crank’s book (1975) are nonsensical when the 
values of D2 are equal to zero and infinite.  Since Eq. (3.58) 
in Crank’s book (1975) is wrong, the sorption curve as 
displayed in Fig. 3.8 in Crank’s book (1975) is thus quite 
different from that of Fig. 2.  Accordingly, the sorption 
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curve predicted by Eq. (3.58) in crank’s book (1975) is 
certainly of wrong consequence while the sorption curve 
predicted by Eq. (32) is actually of correct consequence. 

3. Eq. (31) indicates that concentration gradient presents the 
time required for subsidence subjected to the thickness of 
mortar coating on the concrete specimen.  The values of 

1

2
2

1 1

SCD

D D t
 
 
 

 in the Table 1 can strongly carry out that 

the experimental data well show the verification of ana-

lytical solution while the values of 

1

2
2

1 1

SCD

D D t
 
 
 

 in the 

Table 2 cannot do.  This reason may be occurred that the 
experimental data of Table 2 have an experimental devia-
tion due to not good concrete specimen.  It is needed to 
point out that the present theory is certainly correct.  In 
order to improve the defected trend occurred in Table 2, the 
potential method is more experimental works to be done. 
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