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ABSTRACT 

Industrial businesses must respond efficiently to market 
demands; therefore, industrial construction must accurately 
predict the project duration at the pre-investment stage.  In 
practice, project duration predictions rely on the experience of 
project managers.  To provide impartial expertise and quan- 
titative estimate the predicted duration of constructing an in- 
dustrial building, an extensive history of industrial building 
cases were collected to form a database.  Principal component 
analysis was applied to the database to identify key factors to 
serve as input data for a back-propagation neural network 
(BP-NN) that was used to estimate the project duration.  Three 
prediction models were identified and developed separately 
based on the total cost for large, medium, and small con- 
struction projects.  The derived BP-NN prediction models  
are applicable for estimating construction duration during the 
initial stages of a project. 

I. INTRODUCTION 

Because the industrial marketplace is subject to rapid 
change of new competition, an accurate and expedient fore- 
cast of the amount of time required to construct a building  
is critical because it enables business to remain competitive.  
For example, the building construction cost of 12-in fly ash 
brick is only 5% of the total project cost—the remaining  
95% of the cost includes equipment, installation, test runs, 
operation, and other factors.  In addition, monthly sales con- 

stitute approximately four times the cost of constructing a 
building, creating an even greater incentive to complete con- 
struction on schedule.  Ultimately, time is the principal con- 
cern of an industrial construction project.  This study proposes 
a methodology for predicting the duration of industrial 
building construction projects that involves using principal 
component analysis (PCA), a back-propagation neural network 
(BP-NN), and a database containing 50 years of records of 
petrochemical industrial construction in Taiwan.  The research 
scope of this study was limited to predicting industrial 
building construction duration, and the time requirements of 
equipment purchases, installation, test runs, and operation 
were excluded from the analysis. 

II. PREDICTION ON PROJECT DURATION 

Duration prediction has been extensively studied in nu- 
merous fields including management science (Yang et al., 
2003), security inspection (Ding et al., 2003), medical research 
(Kelly, 2002), trade analysis (Goulielmos and Siropoulou, 
2006; Huang et al., 2010), natural events (Monton and Kierland, 
2006), and supplier selection (Jaskowski et al., 2010; Lam  
et al., 2010).  Prediction methods can be classified into two ca- 
tegories: bottom-up methods and top-down approach methods.  
Table 1 shows a comparison between these methods.  Bottom- 
up methods involve considering orders, resources, and the 
duration of each task in a construction project.  To apply bottom- 
up methods, a skilled engineer’s experience and attention to 
detail regarding the design are required for an accurate sche- 
dule prediction.  Bromilow (1969) indicated that only 12.5% 
of cases are completed on schedule, 40% are completed late,  
and 47.5% are completed before scheduled.  Factors of un- 
certainty that can affect construction duration include the 
engineer’s experience, a contractor’s skill level, weather, ec- 
onomic conditions, price changes, and project alterations; ad- 
ditionally, a detailed design requires a substantial amount of 
time to prepare.  Despite these uncertainties, accurately esti- 
mating construction duration is still crucial during the early 
stage of a project in professional practice. 
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Table 1.  Comparison between duration prediction methods. 

 
 
Top-down approaches start from the case study of con- 

struction projects, decompose the relative factors, and build  
a reliable model based on information in a history database.  
These approaches can be used to estimate construction duration 
directly by integrating known project information into an 
artificial intelligence algorithm.  Statistical and heuristic 
methods have been widely applied in top-down approaches.  
Hojjat Adeli (2001) thoroughly reviewed artificial neural 
network (ANN) applications in civil engineering, structural 
engineering, and engineering management.  Combining PCA 
and ANN to forecasting models has been studied in several 
fields (Jan, 2003; Ran et al., 2004; Wang et al., 2009; Ma et al., 
2011), but not to industrial construction. 

The current study adopted a top-down approach by com- 
bining PCA with ANN to estimate the duration of con- 
structing industrial buildings.  To develop a practical model,  
a database containing 50 years of history data was used.  
Various factors were analyzed, such as location, weather, price 
variation, the number of design changes, and contractor skill 
level.  The proposed method enables directly estimating con- 
struction duration at the early stage of an industrial construction 
project.  Although the proposed method cannot entirely replace 
the detailed planning involved in estimating a construction 
period, the results can serve as a critical reference for signing 
con- tracts and managing operational strategies. 

III. METHODOLOGY 

Fig. 1 presents a flowchart depicting the methodology 
employed in this study.  First, a set of target cases and factor 
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Fig. 1.  Flowchart. 

 
 
selection criteria were selected, which are explained in the 
subsequent section.  In PCA, direct oblimin rotation was used 
to determine the critical principle components of the selected  

Bottom-up Methods Top-down Methods 
Scheduling Methods Empirical Methods Statistical Methods 

Scheduling methods used in Program Evaluation and 
Review Technique (PERT): MS_Project, P3, Gantt 
chart, Critical Path Method, Probability Network 
Evaluation Technique (PNET), etc. 

Risk analysis (considering probability dis-
tribution and cumulative probability) with 
uncertainty ( Hui, 2003; Žujoet al., 2009)

Linear regression (Lam et al., 2010) 

Monte Carlo Casimulation (Song et al., 2008) DELPHI method (Liu, 2002) Case-based reasoning (Yau et al., 1998) 
Optimization techniques such as TABU Search 
(Zhang, 2002), Genetic Algorithms (Lin, 2003), etc.  

Expert's option (Yao, 2002) Construction Database (Lin, 2005) 

  Forecast model (Zou et al., 2004) 
Comparison 

1. Based on duration of each task in a construction 
project. 

2. Restricted by the finished time of detail design and 
the experience of engineers.  

3. The task order could be changed at the construction 
location.  

4. The probability obtained from simulation runs may 
not be able to provide solid reference for decision 
making.   

5. External conditions cannot be considered such as 
weather, political issues, material prices, 
constructors' skill level, etc. 

1. Based on duration of each task. 
2. Expert’s opinion or risk parameters are 

guessed and cannot be verified. 
 

1. Linear relationship could over-simplify 
the relationship between construction 
duration and related factors. 

2. Database is not easy to build. 
3. Database could incorporate unknown 

factors. 
4. Consideration on duration using macro-

scope viewpoint. 
5. Provide reference data in the early 

stage of a construction project.  
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Table 2.  Basic information of the selected cases. 
Contractors 

Type 
Civil  

engineering 
contractors 

Level A 
construction 

company 

Level B 
construction 

company 

Level C 
construction 

company 

Engineering 
material 
company 

Miscellaneous 
Company 

Consulting 
company 

Engineering 
company

Total

AF_Decoration works style 18 4 10 1 7 1 3 14 58 

AH_Steel Structure works style 62 11 146 6 20 44 12 37 338 

AS_Reinforce Concrete structure works style 34 3 122 11 71 31 9 66 347 

AT_Miscellaneous works style 11 0 11 2 11 4 7 19 65 

AU_the utilities work style 1 12 0 1 2 1 0 1 18 

CB_Harbor and bridge works style  40 47 13 31 6 19 5 13 174 

CF_RC Foundation works style 1  76 4 2 2 2 89 176 

CG_Ground preparation, backfilling and road 
pavement works style 

23 60 25 14 36 24 20 31 233 

HM_Machinery and Electrical construction work 
style 

74 1 2 26 0 0 1 25 129 

Total 264 138 405 96 155 126 59 295 1538

 
 

Table 3.  Introduction of selected factors. 
Direct Factor 

Category Factor Instruction 

Work Type (WT) (Jan, 2003; Lam et al., 2010) 9 work types1 
Case type 

Contract Type (CT) (Jan, 2003) 7 contract types2 
Contractor Level (CL) (Liu, 2002; Jan, 2003; 
Jaskowski et al., 2010; Cheng et al., 2013) 

The level is classified using company type (such as Inc., Ltd, etc.) and the skill 
level approved by the government 3 

Establishment Year (EY) The founded year of the company 

Capital (Ca) (Jan, 2003) The founded capital (NTD) 

Number of Stuffs (NS) Total number of people/works available for the contractor  

Recent Revenue (RR) (Jan, 2003) The revenue of the contractor in recent years ( millions of NTD/Year) 

Inspector (ID) (Jan, 2003; Lam et al., 2010) Personal inspector which relates the construction duration to the person who can 
control the quality of the construction 

Participant 

Supervisor (Su) (Liu, 2002) 18 organizations of supervisors 

Location (Lo) (Jan, 2003) The construction location4 Location 
(site) Project Effective Year (PEY) The starting year of the construction project 

Project Effective Date (PED) The starting time of the construction project (YY/MM/DD) 

Project Due Date (PDD) The ending time of the construction project (YY/MM/DD)  Time 

Number of Design Change (NC) (Liu, 2002) The number of design changes required by owners (times) 
Derived Factors 

Category Factor Instruction 

Participant Seniority (Se) (Liu et al., 2012) The experienced year of the contractor which can be expressed as (PED-EY) 

Start Season (SS) (Jan, 2003) The season when the project started. Four seasons: spring (Jan.-Mar.), summer 
(Apr.-Jun.), Fall (Jul.-Sep.), and Winter (Oct.-Dec.) 

Work Difficulty (WD) (Liu, 2002; Jan, 2003; 
Lam et al., 2010) 

WD = Year (PED-FY)/3 
WD is used to indicate the management rules that are getting more and more 
restricted. 

Price Index (PI) (Lam et al., 2010) PI is provided by government.  The PI value equals to 1.000 for the reference year 
1991. 

Time 

Duration (Du) Construction duration using 0.5 year as an interval.  

1.Work Type (WT) include AF_Remodeling, AH_Steel works, AS_Structure Engineering, AT_Miscellaneous construction, AU_Utility works, 
CB_Harbor and bridge, CF_Foundation, CG_Ground & road, HM_Machinery. 

2. Seven contract types are outsourcing-processing, outsourcing, turnkey, outsourcing appointment, outsourcing design, outsourcing design 
(type D), and procurement. 

3. Contractor Level includes general company, grade A constructional company, grade B constructional company, grade C constructional 
company, pre-mix plant or material supplier, consulting company, engineer incorporated company (Inc.), limited company (Ltd.) and some 
other company (decoration, surveying, landscape gardening companies). 

4. Locations include Taipei, Taichung, Tainan, Ilan, Linkou, Nantou, Taoyuan, Tarzan, Kaohsiung, Keelung, Mailiao, Chiayi, Changhua, 
Shulin, and Guanyin. 
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factors.  The obtained principle components and construction 
duration records from the history database were used to train 
the BP-NN model.  The objective function denotes the di- 
fference between the true value and estimated result.  The 
stopping criteria of the algorithm were the number of iterations 
and mean square error (MSE).  The construction duration is 
presented as the construction cost per day (NT$/day).  This 
general representation is applicable to construction projects of 
various scales. 

1. Database 

The database comprised more than 20,000 cases of industrial 
building construction.  The selection criteria were that the 
construction duration was longer than 6 months and no missing 
data.  After filtering the construction data according to these 
requirements, 1,538 cases were identified.  Table 2 shows the 
construction types and contractor classification of these cases. 

Although numerous factors may affect construction duration, 
this study first classified a set of major categories, and then 
selected the corresponding representative factors from each 
category.  All of the selected factors were quantified to facilitate 
conducting a scientific analysis and developing a forecasting 
model. 

Recent studies (Lin, 2005) have indicated that critical 
factors include constructability, workspace acquisition, learning 
curve, weather, supervision efficiency, building type, contract 
systems, management effectiveness, district environment, and 
financial issues.  The present study classified the factors into 
four categories: case type, participant, location, and time.  
Each category contains additional descriptive factors that could 
be directly obtained from the studied database.  By contrast, 
factors requiring further calculation or were obtained from 
another database (e.g., economic indices) were regarded as 
derived factors.  Table 3 lists these factors and their definitions.  
All of these factors were subjected to PCA and then applied to 
the BP-NN model for training. 

2. Construction Cost 

Although construction costs are strongly related to con- 
struction duration (Fig. 2), they are not considered a factor 
because different construction cost levels involve distinct 
relationships between the factors and construction duration.  
To account for the influence of construction costs, the factors 
were classified into three categories based on the project scale 
(large-, medium-, and small-scale construction projects), and 
the training was performed separately for each model. 

 
(1) Large-scale: Construction cost over NT$50 million, with  

a construction duration of more than 42 months (n = 183). 
(2) Medium-scale: Construction cost between NT$10 million 

and NT$50 million dollars, with a construction duration of 
12 to 42 months (n = 399). 

(3) Small-scale: Construction cost below NT$10 million, 
with a construction duration of 6 to 18 months (n = 956). 

y = −0.0003x6 + 0.097x5 − 2.6418x4 + 28.048x3 − 143.74x2 + 352.22x + 78.078

R2 = 0.5958

y = −0.0021x6 + 0.0895x5 − 1.4234x4 + 10.946x3 − 42.87x2 + 79.057x + 41.949

R2 = 0.7329
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Fig. 2. Two examples of relationship between construction cost and 
duration. 

 
 

Compo-
M11 M12

Su -0.227 -0.087
Se 0.067 0.594
NS 0.474 0.025
CL -0.014 -0.591
RR 0.460 -0.064

M11

Se

Su

CL
RR

NS
M12

-1. -0. 0. 0. 1.

Components after Direct Oblimin Coefficient of components 

Method: Component analys i
Rotation: Oblimin rotation with
Kaiser criterion   

Notes: Su, Se, NS, CL and RR are independent variables (xi) of the fallowing 
formula (13) for a maximal value. 

Fig. 3.  An output example from PCA using SPSS 17. 
 

3. Principal Component Analysis 

PCA is a statistical method for converting potentially co- 
rrelated variables of observation data into a set of linearly un- 
correlated variables called principal components.  The dimension 
of a principle component is equal to or less than the dimension 
of the original variable.  The selected principle components 
can be used as input data for BP-NN model training.  Because 
the original variables may be correlated, direct oblimin rotation 
is used for obtaining a non-orthogonal (oblique) solution, re- 
sulting in higher eigenvalues but diminished interpretability of 
the variables (Chen, 2005).  In the present study, PCA was 
conducted using SPSS Version 17.  Fig. 3 shows the output 
from PCA, wherein two principal components were obtained 
from analyzing five factors. 

PCA was performed separately for each construction project 
scale. 

 
A. Large-scale construction project: Three sets of principal 

components were selected. 
(1) Two principal components, denoted as M11 and M12, were 
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derived from the following five original variables: su- 
pervisor Su, seniority Se, number of stuffs NS, contractor 
level CL, and recent revenue RR.  The following two com- 
ponents explain 69.155% of the variance: 

RRCLNSSeSuM 460.0014.0474.0067.0227.011   

  (1) 

RRCLNSSeSuM 064.0591.0025.0594.0087.0 

12 0.978 0.127 0.126T SS Du Nc  

PI

0.586 0.028 0.737O CT WT PI  

12  

  (2) 

(2) Two principal components, denoted as T11 and T12, were 
derived from the following three original variables: start 
season SS, duration Du, and number of design changes  
Nc.  The following two components explain 78.916% of 
variance: 

  (3) 11 0.001 0.603 0.612T SS Du   Nc

  (4) 

(3) Other variables include location Lo, work difficulty WD, 
price index PI, and work type WT. 

 
B. Medium-scale construction project: Three sets of principal 

components were selected. 
(1) Two principal components, denoted as O11 and O12, were 

derived from the following three original variables: 
contract type CT, work type WT, and price index PI.  The 
following two components explained 57.563% of the 
variance: 

  (5) 11 0.185 0.614 0.145O CT WT  

  (6) 12

(2) Two principal components, denoted as M21 and M22, were 
derived from the following three original variables: 
supervisor Su, inspector ID, number of stuffs NS, and  
seniority Se.  The following two components explained 
63.963% of the variance: 

 21 0.064 0.069 0.598 0.607M Su ID NS Se     (7) 

 22 0.684 0.606 0.006 0.008Su ID NS Se   

WD

0.237 0.851 0.428T SS Du WD

 (8) 

  

Du

 (10) 

M

(3) Two principal components, denoted as T21 and T22, were 
derived from the following three original variables: start 
season SS, duration Du, and work difficulty WD.  The 
following two components explained 70.174% of the 
variance: 

  (9) 21 0.763 0.064 0.593T SS Du  

 22 

(4) Other variables include recent revenue RR, capital Ca, 
number of design changes NC, and location Lo. 

 
C. Small-scale construction project: One set of principal 

components was selected. 
(1) Two principal components, denoted as T31 and T32, were 

derived from the following four original variables: start 
season SS, price index PI, work difficulty WD, and  
duration Du.  The following two components explained 
88.869% of the variance. 

 31 0.005 0.024 0.98 0.36T SS PI WD      (11) 

 32 1.000 0.001 0.001T SS PI Du 

j

 (12) 

(2) Other variables include recent revenue RR, and number of 
stuffs NS. 

 
The results obtained from PCA (Table 4) indicated that 

several groups of variable sets can be classified according 
project scale (i.e., large, medium, and small) and factor type 
(i.e., participant, case type, time, and location), 

  (13) 1( ) ( ( ))
1

*
i

n
max var x max var x cos θ

i
 



find the j  for max variance of *
1x ; where j  is the angle 

rotate of axis. 
Then, the maximal variance for one of these variables is 

able to be refined as the so-called Principal Component after 
trials as PCA1.  The others will be replaced as PCA2.  Repeat 
the process to screen out all Principal Components proposed in 
the manuscript, which are close to independent to each other.  
In case of those failed to be chosen, if there is no appropriate 
substitute, they will be abandoned. 

4. Back-Propagation Neural Network (BP-NN) 

Fig. 4 illustrates the calibration of the BP-NN model from 
using the obtained principal components as input data.  The 
calibrated BP-NN model was used to predict the construction 
duration in units of construction cost per day (NT$/day).  
NeuroSolutions is used for the BP-NN model development.  
The structure of the ANN model features a single hidden layer 
based on the back-propagation approach, which is a supervised 
learning network.  In the input layer, the number of neurons 
was equal to the number of principal components.  The 
activity function adopted a summation function, which was a 
weighted summation of the neuron output from the preceding 
layer.  For the model training, the input data were the principal 
components and the construction duration from the database.  
The steepest descent method was used to determine the 
optimal solution, which is an optimal weighting matrix.  The 
hyper tangent was selected as the transfer function. 
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Table 4.  Classification of principal components for BPNN model training. 

Principal component 
Scale of the construction 

participant case type time location 

Large scale 
50 million plus dollars  
(duration is larger than 3.5 
years) 

(1) M11 and M12: 
[Consist of Su, Se, NS, CL, RR]

 

(1) WT (1) T11 and T12: 
[Consist of SS, Du, and CN]

(2) PI 
(3) WD 

(1) Lo 
 

Medium scale 
Between 10 million and 50 
million dollars (duration is 
between 1 and 3.5 years) 

(1) M21 and M22: 
[Consist of NS, Se, Su, ID] 

(2) RR 
(3) Ca 

(1) O11 and O12: 
[Consist of WT, CT, PI]

 

(1) T21 and T22: 
[Consist of SS, Du, WD] 

(2) CN 

(1) Lo 
 

Small scale 
Less than 10 million dollars 
(duration is between 0.5 and 
1.5 years) 

(1) NS 
(2) RR 

 (1) T31 and T32: 
[Consist of SS, Du, WD, PI]

 

Notes: 
Some factors have underline as NS, RR that not produced from PCA process but include in the BP-NN model.  For the reason have two: 

(1) the purpose of PCA process is reduce the number of variables, but the NS and RR in the same attribute field just two variables, no need to do 
the process. 

(2) NS and RR are affect the duration indeed base on the domain knowledge, so we must be join these variables in the model to check the 
influence to the duration. 
We set the price index as a variable to avoid waste time of calculation in the future (different years). 
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Fig. 4.  Illustration of BP-NN model. 

 
 
The objective function is expressed in Eq. (14): 

  (14) 2[( ) ( )]
ni

i i
i

Min Y X   i

where Yi is the target value, which is the construction duration 
obtained from the database; i is the weight; and Xi is the 
output from the neuron output from the preceding layer. 

Two stopping criteria were the number of iterations (5,000 
runs) and MSE (<0.05), which is expressed in Eq. (15): 

 

2

0 0

( )
P N

ij ij
j i

d y

MSE
NP

 





 (15) 

where dij is the output which result from the model operation; 
yij denotes the known construction cost per day (depend var.); 
and N and P denote the number of independent variables. 

The model training was performed separately according  
to the project scale.  Table 5 shows the calibrated model 
parameters, which are the weights of the hidden layer.  The 
dimension of the weight matrix varies with the construction 
project scale.  The MSE of the large-, medium-, and small-scale 
projects are 0.02-0.05, 0.06-0.10, and 0.08-0.11 respectively, 
where lower MSE values indicate more accurate calibration of 
the BP-NN model.  

5. Results and Discussion 

Fig 5 shows a comparison output between the predicted  
(a dotted line) and real construction duration.  Although the 
calibrated model shows only an intangible statistical rela- 
tionship between the construction duration and principal com- 
ponents, this study attempted to reveal the physical meaning 
that may exist behind the black box model.  In addition to the 
project scale, the relationship between construction duration 
and (1) participant, (2) location, (3) time, and (4) case type are 
addressed.  
(1) Participant 

(a) Large-scale projects:  
The major factors of the principal components  

are number of stuffs NS and recent revenue RR for  
M11, and seniority Se and contractor level CL for M12.  
All of these factors indicated that the capability of  
the contractors has the strongest influence on the con- 
struction duration.  Moreover, M11 and M12 also have 
large weights in the BP-NN model, further indicating 
the importance of this variable.  Therefore, contractor 
capability must be considered as a constraint in large- 
scale construction projects. 
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Table 5  The calibrated weights for hidden layer (*10-1). 

 Number of neuron (#) 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Larger Case (dimension 8  5) 

LO -5.3 -1.1 -4.3 1.7 -2.0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

WD 8.9 4.7 -3.3 4.5 -1.3 -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

WT 2.6 -15.5 21.0 -6.0 0.9 -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

PI 4.1 -5.6 5.8 6.6 -4.1 -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

M11 -1.5 -15.8 -3.9 1.7 -2.0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

M12 -2.8 -7.1 9.7 -5.0 -3.1 -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

T11 1.0 9.0 -3.8 2.1 0.1 -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

T12 -3.9 8.8 8.0 1.9 0.3 -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

Medium Case (dimension 10  10) 

LO 4.4 -3.2 -3.9 -0.9 2.6 0.0 4.7 1.5 -3.2 -0.5 -- -- -- -- -- -- -- -- -- 

NC -4.6 4.2 -3.8 0.1 -3.1 0.5 3.1 3.8 -3.6 3.7 -- -- -- -- -- -- -- -- -- 

RR -2.5 1.3 -0.8 -3.7 2.9 1.8 1.1 -3.3 1.3 1.2 -- -- -- -- -- -- -- -- -- 

CA 4.5 -1.2 1.2 -3.0 -4.3 -4.2 -4.2 0.8 -1.7 -0.9 -- -- -- -- -- -- -- -- -- 

O11 4.3 -0.1 2.3 4.6 3.2 2.8 2.2 -2.3 4.7 4.5 -- -- -- -- -- -- -- -- -- 

O12 -4.3 -0.6 1.5 4.7 0.5 0.5 -3.1 2.3 -0.2 -4.9 -- -- -- -- -- -- -- -- -- 

M21 4.2 -0.9 1.6 2.8 2.0 -0.6 0.9 -1.5 -3.3 -3.1 -- -- -- -- -- -- -- -- -- 

M22 0.2 2.0 -0.2 -4.4 -4.7 0.4 1.5 -2.9 0.5 -4.6 -- -- -- -- -- -- -- -- -- 

T21 -4.8 3.5 0.2 2.9 -4.4 1.0 -3.7 4.1 -0.1 -0.5 -- -- -- -- -- -- -- -- -- 

T22 4.5 4.1 -3.0 -3.3 -0.2 4.7 4.4 -3.0 2.6 -0.4 -- -- -- -- -- -- -- -- -- 

Small Case (dimension 4×19) 

NS 3.1 -1.4 0.7 0.6 3.7 -0.2 -3.2 1.1 -2.6 1.4 -4.4 -4.2 4.2 2.7 3.8 1.4 -4.2 -0.1 -1.4

RR -2.3 0.9 -2.6 3.4 -4.9 -0.6 -1.8 1.5 -5.1 -2.0 -1.4 4.1 -1.1 -4.3 2.9 1.3 1.3 -0.8 -0.1

T31 4.4 -1.0 4.0 -0.4 1.6 1.5 -4.4 -0.6 -1.4 2.7 4.4 0.7 0.9 -2.6 -0.1 1.5 -3.7 1.5 2.4

T32 3.1 3.2 1.7 3.5 -5.5 2.1 -0.2 2.3 0.1 1.7 0.3 0.9 -2.6 0.8 3.1 0.8 -1.7 0.3 -2.3

Note:  
1. The number should times 0.1 for real value. 
2. The weights are case dependent which may not be directly applied to other cases. 

 

 
(b) Medium-scale projects: 

M21 shows that contractor capability is a major in- 
fluence in the number of stuffs NS and seniority Se.  In 
addition to contractors level CL, the supervisor Su 
and inspector ID play crucial roles in medium-scale 
projects. 

(c) Small-scale projects: 
Although no principal factors are generated, the 

number of stuffs NS and recent revenue RR were 
critical factors. 

(2) Time: 
Starting season SS was the major factor for all large-, 

medium-, and small-scale projects.  According to additional 
analysis for SS, the projects starting in summer have a 
negative impact on construction duration.  This might be 
attributed to the typhoon season, which can prolong the 
construction period.  In addition to SS, the number of 
design changes NC may be crucial for larger cases; 
however NC was non-significant for medium- and small- 
scale projects.  

(3) Location: 
The location Lo had a marked influence on large- and 

medium-scale projects.  For construction projects in Taipei 
City, the cost per unit of time tends to be higher than in 
other areas because of restrictive regulations, higher risk 
of damaging the areas surrounding a construction site, and 
higher costs for labor.  For projects located in suburban 
areas, such as in reclaimed land areas, the cost per unit of 
time is relatively lower, which could be attributed to less 
stringent regulations and easier mobility of construction 
equipment. 

(4) Case type: 
Regarding the work type WT and work difficulty WD 

variables, the WT has significant impact on large- and 
medium-scale projects.  The WT may imply the complexity 
of a project.  Ranked in descending order, the construction 
costs per unit of time are harbor engineering, steel works, 
normal constructions, and structural engineering.  The WD 
variable had a marked impact for all project scales, indi- 
cating that the work difficulty directly influences the con- 
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Fig. 5.  The verification results of selected 10 cases. 

 
 

struction cost per unit of time. 

IV. CONCLUSION 

This study used a history database containing 50 years of 
industrial building construction cases in the petrochemical 
industry in Taiwan.  Because of the variety of cases, they were 
classified into three categories: large-, medium-, and small- 
scale projects, and three ANN models were independently 
trained for each category to improve the prediction results.  To 
facilitate comparison, the prediction duration was represented 
as the construction cost per unit of time.  The results de- 
monstrate the considerable applicability of the proposed 

methodology.  Although this study focused on industrial building 
construction, the proposed methodology may be applicable for 
other types of buildings. 
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