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ABSTRACT 

Shoreline mapping and monitoring are crucial in heavily 
eroding coastal areas.  Frequently monitoring shoreline changes 
in eroding areas can help government agencies to understand 
the causes and formulate plans to protect the shoreline; how-
ever, the cost of data sources and human labor involved can  
be prohibitive.  To address this problem, this research proposes 
a cost-effective and semiautomatic shoreline delineation pro-
cedure that uses WorldView-2 satellite images as the data source.  
The advantages of the proposed procedure are the use of shadow 
and spectrum information, as well as the application of object- 
oriented classification.  The classification process incorporates 
new bands from WorldView-2 to perform spectrum analysis 
on multispectral images; subsequently, a new pan-transferring 
process for the classification result is proposed to maximize 
the resolution.  Finally, a classification adjustment process based 
on scenario analysis using shadows as information is applied.  
This procedure remedies the problems caused by shadow areas 
and converts them into elevation information to minimize errors 
in shoreline delineation.  The analysis results indicate that the 
proposed procedure can derive the location of an instantaneous 
shoreline with an accuracy of 1.8 m (root-mean-square error) 
in a test area of Painesville, Ohio, USA. 

I. INTRODUCTION 

Shoreline mapping has been a labor-intensive and time- and 
cost-consuming process since the ground survey era until the 
recent aerial photogrammetry era (Shalowitz, 1964; White, 
2007), and these obstacles have effectively prevented frequent 

shoreline mapping.  Significant shoreline erosion has occurred 
along the southern shore of Lake Erie, Ohio, and bluffline ero- 
sion has reached 1.8 m/yr in the region of Painesville (Srivastava, 
2005).  Shorelines must be frequently measured to derive the 
cause of the erosion and formulate plans to prevent further 
erosion.  Recently, researchers have proposed new shoreline map- 
ping procedures that entail adopting new equipment and data 
including satellite images (Di et al., 2003; Li et al., 2003; Scott 
et al., 2003; Liu and Jezek, 2004) and aerial laser scanning (ALS) 
systems (Li et al., 2002; Stockdon et al., 2002; Robertson et al., 
2004; Liu et al., 2009; White et al., 2011) to reduce the cost of 
data sources and human labor.  If cost is the main concern, 
satellite images could be the most cost-effective data source for 
shoreline mapping compared with ground survey, aerial pho-
togrammetry, and ALS systems, because the level of human 
labor required is significantly lower. 

Most studies on shoreline delineation from satellite imagery 
are based on supervised classification algorithms (Sekovski  
et al., 2014).  In such algorithms, indicators (features) are selected, 
such as the normalized difference vegetation index (NDVI) or 
normalized difference water index (NDWI), followed by the 
execution of the training and classification procedures.  After 
classification, accuracy assessment statistics are provided.  In 
this study, we executed shoreline delineation from a different 
prospective.  Two goals were established for developing a new 
shoreline delineation algorithm: First, we classified everything 
apart from water because of the noisiness of water surfaces on 
a satellite image.  Second, we developed an algorithm that, as far 
as possible, does not require a training process; that is, we de- 
veloped an algorithm with fully autonomous potential. 

Herein, we present a shoreline delineation procedure for ex- 
tracting instantaneous shorelines from WorldView-2 satellite 
images.  Because acquiring satellite imagery at an exact loca-
tion at an exact time is nearly impossible, the shoreline depicted 
in satellite images represents the shoreline at the time of imag-
ing, and it does not correspond to any tide-coordinated water 
levels; therefore, shorelines delineated from satellite images 
can only be treated as instantaneous shorelines (Li et al., 2002; 
Boak and Turner, 2005).  The proposed shoreline delineation 
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procedure incorporates shadow analysis, a pan-transferring clas- 
sification process for achieving a higher degree of automation, 
relatively low costs for data source acquisition, and improved 
accuracy of delineated shorelines. 

II. BACKGROUND 

1. Shoreline Detection within Shadow Areas 

The existence of shadows in aerial photographs and satellite 
images is an inevitable inconvenience during feature classi-
fications and localizations.  Shadows may exist at any location 
that has an elevation difference, and shadow directions vary  
by the time of the day and seasons; these phenomena not only 
increase the difficulty for computer algorithms to delineate 
shorelines but also complicate determining shoreline locations 
manually.  Most shoreline extraction research has largely ignored 
shadow areas, and even when addressed, the method applied 
entailed manual delineation (Di et al., 2003). 

In the current study, we selected Painesville, Ohio, located 
on the southern shore of Lake Erie, approximately 41N, as the 
study area.  Because the sun angle is lower at higher latitudes 
even at noon, obstacles along the southern shore (e.g., trees, 
buildings, and coastal man-made structures) project a shadow 
onto the water surface.  The worst-case scenario is the bound-
ary between land and the water surface being in the shade, 
masking the shoreline.  Even if some areas of the shoreline can 
be slightly delineated, the result is not reliable.  Because many 
shadow areas are likely caused by man-made structures, these 
clues can be incorporated into the satellite image classification 
process to help determine the class of the shadow and surround-
ing areas.  Shadows have previously been treated as an ob-
stacle in remote sensing classification (Yamazaki et al., 2009); 
however, in this research, we treated them as a source of infor-
mation providing elevation differences to minimize the impact 
caused by shadow areas in shoreline delineation. 

2. Features of WorldView-2 

WorldView-2 is one of the latest remote sensing satellites 
operated by DigitalGlobe.  The difference between WorldView-2 
and the previous Quickbird satellite is not only the improvement 
in spatial resolution but also the increase in the spectral reso-
lution to cover additional multispectral bands.  WorldView-2 has 
one panchromatic band and eight multispectral bands (Coastal 
Blue, Blue, Green, Yellow, Red, Red Edge, N-IR 1, and N-IR 2); 
the spatial resolution is 2.0 m in the multispectral bands and has 
been improved from 0.7 m (Quickbird) to 0.5 m (WorldView-2) 
in the panchromatic band.  The point positioning accuracy with-
out ground control points has also been improved from 23 m 
(Quickbird) to 6.5 m (WorldView-2) (DigitalGlobe, 2013).  In 
this research, we incorporated the new bands into the classi-
fication and demonstrated the use of their advanced features. 

3. Definition of Shoreline 

From a typical aerial photograph, multiple linear features 
can be observed along a coastline (Fig. 1) that are caused by  

 
Fig. 1. Linear features along the land-water interaction zone.  (Credit: 

Bing Map). 

 

 
man-made structures, water lines, wave fronts, breaking waves, 
and other objects.  Although delineating instantaneous shore-
lines was the primary objective of this study, we must also deter- 
mine which linear features to examine and map. 

In the United States, the legal shorelines are tide-coordinated 
shorelines defined by the National Oceanic and Atmospheric 
Administration (NOAA) and recognized by the US Federal 
Geographic Data Committee.  The mean high water (MHW) line 
in tidal areas and the mean water level line in nontidal areas 
are examples of these legally recognized shorelines (Hicks and 
Schureman, 2000).  The National Geodetic Survey (NGS) at 
NOAA is the agency responsible for mapping and managing 
the US legal shoreline, and its guidelines form the definition 
used in this research to determine shoreline location.  The NGS 
roughly classifies shorelines into four types: (1) engineered 
shoreline, (2) lines for which the water does not intersect with 
dry ground (e.g., marshes or glaciers), (3) lines in nontidal areas, 
and (4) lines in tidal areas (Leigh, 2012).  Because of the pro- 
perties of the shoreline in the study area, this study considered 
only the definitions for engineered shorelines and nontidal areas.  
The extracted shoreline is an instantaneous shoreline, instead 
of a tide-coordinated shoreline. 

Legal shorelines in the United States are delineated mainly 
from the stereoscopic environment of aerial photogrammetric 
procedures described by the NGS (White, 2007).  The identifi-
cation of the MHW line on an aerial photograph involves using 
closely correlated physical evidence such as berms and debris 
lines, wet-dry sand abutments (tone and texture), or wave action, 
and is subject to human interpretation (White, 2007; Leigh, 
2012).  Because satellite imagery was the only data source in 
this research, detecting the elevation difference of berms was 
impractical; hence, the tone and texture differences of the wet- 
dry sand abutment created by the last run-up wave (the instan-
taneous water line indicated in Fig. 1) were used to identify the 
shorelines in sediment bank and sloped structure areas. 

III. METHODOLOGY 

The concept of the proposed instantaneous shoreline extrac-
tion procedure is to classify a satellite image and then trace the 
boundary of the classes belonging to a land class (Fig. 2).  In  
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Fig. 2.  General procedure of instantaneous shoreline delineation from a WorldView-2 image. 

 
 

the classification stage, knowledge-based classification methods 
are used to classify multispectral satellite image pixels into four 
categories: shadow, water surface, vegetation, and sediment bank/ 
man-made structure.  The proposed classification process mo- 
difies well-known and proven algorithms and indices, the NDVI 
and spectrum matching, to preliminarily classify images into 
one of the four categories. 

The proposed methods emphasize shadow area analysis and 
determining the water-land separation within unclassified areas.  
First, areas within a shadow could either be the water surface 
or land class.  After the analysis of the on-site topology of how 
the shadow areas are created within the coastal area, rules can 
be established to minimize the shoreline delineation error created 
by shadow areas.  Next, through the use of image resampling, 
image segmentation, and classification stacking processes, the 
classification result of the multispectral bands are assigned to 
the panchromatic image to fully utilize the higher resolution 
provided by WorldView-2.  Unclassified areas in the prelimi-

nary classification result must be assigned to the land or water 
surface class by analyzing the possible terrain by using the sur- 
rounding classifications.  After the classification process, the 
separation between the water and land classes is extracted to 
determine the location of the shorelines. 

1. Shadow Areas, Water Surfaces, and Vegetation Areas 

The water surface class is the key class for extracting the 
shorelines, but other classes are necessary for fine-tuning the 
separation between water and land.  Detecting water surfaces 
from multispectral satellite imagery has been widely studied in 
the remote sensing field.  Indices such as the NDWI, modified 
NDWI, and normalized difference pond index are basically 
modifications of the NDVI.  These indices were modified to ac- 
commodate different data sources and different applications 
(Ji et al., 2009).  In this research, each of these indices was tested, 
and the results showed no significant advantage compared with 
the NDVI for the data sources used; hence, the NDVI was  
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Fig. 3. Spectral plot of the four major objects in the study area (Modi-

fied from USGS spectral library). 

 
 

adopted to classify water surfaces and vegetation areas. 
The exact threshold for the water surface and vegetation 

classes was determined through a trial-and-error process.  An em- 
pirical threshold was given as an initial value, the classification 
result manually studied, and the threshold adjusted until all sig- 
nificant features were classified correctly.  Thus, vegetation was 
defined as areas with NDVI values higher than the threshold of 
0.55 and water surfaces as areas with NDVI values lower than 
the threshold of -0.1. 

After this process, the water surface and vegetation classes 
were classified; however, water surface areas are easily mixed 
with shadow areas, especially calm water surfaces, because of 
the similarity in the reflectance of water surface and shadow 
areas on the red and NIR bands and similarity in the NDVI 
values of these areas (water surface is near zero to slightly ne- 
gative, and shadow areas are around zero).  Because accurately 
segmenting the water surface region is the only means of ob- 
taining an accurate shoreline, an algorithm that can separate 
these regions effectively must be developed; thus, an additional 
procedure is required to separate the water surface class from 
shadow areas. 

Shadows are caused by natural and man-made objects close 
to the shoreline; hence their intensity values across all multis-
pectral bands are uniformly lower.  By contrast, water surface 
intensity values can be relatively high in some electromagnetic 
bands but low in others; this is because water absorbs sunlight, 
and the absorption rate differs across different electromagnetic 
bands.  The water surface reflectance was higher, between 500 
and 600 nm (Fig. 3), a bandwidth of electromagnetic wave that 
corresponds to the green and yellow bands in WorldView-2.  
An inspection of the water surface intensity values in the sat-
ellite image areas indicated that they were significantly higher 
in the green and yellow bandsapproximately 100 intensity 
units higher than that of the shadows on both bands. 

On the basis of the previous observation, a solution was de- 

2.5
2.0
1.5
1.0
0.5
0.0

-0.5
-1.0
-1.5
-2.0
-2.5

Coastal
Blue

Blue Green Yellow
Bands

In
te

ns
ity

Red Red-Edge N-IR1 N-IR2

 
Fig. 4. Plots of normalized intensities of manually selected sandy beach 
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veloped to sum the green and yellow bands and determine the 
intensity value threshold manually by selecting a relatively large 
shadow area and finding the maximum intensity value within 
the shadow area.  The intensity value of the shadow pixels must 
not be mixed with the intensity value of the water surface.  Sum- 
ming the intensity values of the green and yellow bands by using 
current data sources revealed that the manually determined in- 
tensity threshold was 350 intensity units. 

2. Sediment Bank/Man-Made Structures 

Although the WorldView-2 satellite is equipped with an 
eight-band multispectral sensor, the spectral resolution is insuf- 
ficient for classifying every object in an image.  During the design 
phase of this research, we assumed that the sediment bank and 
man-made structures could be separated into two classes; how- 
ever, after performing separability tests, we realized that they 
could not be separated with the data source used.  Regarding 
material composition, silicon is the major compound in both the 
sediment bank and man-made structures; hence, the fact that 
these two objects cannot be separated by physical properties is 
reasonable.  The spectral reflectance curve (Fig. 3) shows that 
the sediment bank and man-made structures are significantly 
different from other classes and should be easily separated; 
hence, a procedure similar to the spectrum-matching approach 
used in hyperspectral image classification was implemented to 
classify sediment bank/man-made structure areas. 

For classifying the sediment bank/man-made structures, we 
first manually selected a set of sandy beach pixels and retrieved 
the intensity value for each band.  We then calculated the mean 
and standard deviation of the intensities from all bands and used 
them as shifting and scaling parameters to analyze the signifi-
cant relationships of intensity between each band (Fig. 4).  The 
blue line in Fig. 4 represents the created criteria, which denote 
the average normalized intensity of each band.  The description 
of the criteria is listed: 

 
 IYellow > IGreen 
 IGreen > IBlue; IGreen > ICoastal-Blue 
 IYellow > IRed-Edge > INIR-1 > INIR-2 
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 INIR-1 > IRed 
 IRed-Edge > ICoastal-Blue 

 
I represents the intensity of the band in subscript.  Any pixels in 
the image satisfying these criteria would be classified as sand. 

After the spectrum matching, several types of objects were 
selected, including sediment banks, concrete surfaces, sand 
piles, and partial concrete blocks (riprap revetments). 

3. Refinement of Classification Results  

After the completion of the previous classification processes, 
four multispectral image classes were identified.  Because the 

resolution of the multispectral imagery is 2 m and that of pan- 
chromatic imagery is 0.5 m, the land–water separation must  
be delineated using the panchromatic image to maximize the 
accuracy of the extracted shoreline.  Hence, the objective of 
this process is to assign the classification result derived from 
the multispectral image to the panchromatic image.  The tradi-
tional pan-sharpening process creates a high-resolution color 
image (the same resolution as the panchromatic image) by com-
bining the higher-resolution panchromatic and lower-resolution 
multispectral image (Padwick et al., 2010), a process mainly 
targeted at producing visually pleasing color images.  Because 
the goal of the current study was to produce a multispectral 
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image to perform classification, having a spectrally accurate 
pan-sharpened multispectral image is a major concern.  After 
several trial runs with the WorldView-2 pan-sharpened image, 
we determined that we must develop a procedure specific to this 
research that can transfer the classification result onto the pan- 
chromatic band.  We named such a procedure the pan-transferring 
process. 

To develop this pan-transferring procedure, the original mul- 
tispectral imagery was used to perform the classification.  The 
identified classes were then resampled from the lower-resolution 
multispectral imagery to the higher-resolution panchromatic 
imagery.  The four classes identified in the previous processes 
were used to perform the following process iteratively (Fig. 5): 
(1) The classification result was resampled to the same reso-
lution as the panchromatic image.  (2) The boundary of the water 
surface class in the resampled classification image was traced 
to outline a buffer zone representing the coastal area because 
only the classification within the coastal area was needed.  The 
boundary points on the edge of the satellite image were ex-
cluded because they do not belong to the approximate shore-
line.  (3) A patch of the panchromatic image was cropped out 
by a search window with a predefined size.  (4) Mean-shift seg- 
mentation was then applied to this patch.  (5) Each class was 
overlapped onto every segment in the search window to calcu-
late the percentage of overlapping area.  (6) A temporary occur-
rence map that was the size of the panchromatic image was 
created, with zero being assigned to all elements.  For every 
element of a segment with a percentage of overlap higher than 
the threshold (the parameter segment overlap percentage, SOP), 
its corresponding elements on the temporary occurrence map 
were increased by one.  (7) After all segments in the search 
window were processed, the next water surface boundary point 
and its corresponding search window were examined until every 
boundary point was processed and segmented.  (8) After all 
boundary points were processed, the value of each element in 
the temporary occurrence map represented the number of times 
that pixel was assigned to a certain class, with higher values 
representing a more robust assignment of classes.  To overcome 
the noise in each segmentation result, elements with a value < 10 
in the temporary occurrence map were reset to zero.  In other 
words, all indices > 10 are the pixels assigned to the class cur- 
rently being processed.  (9) The next class was then processed 
until all four classes were transferred onto the panchromatic band. 

The memory usage and computation time for segmenting the 
entire satellite image of the study area were not practical for our 
currently available computer.  The described pan-transferring 
procedure (Fig. 5) was designed to prevent the problem of 
insufficient computer memory while maintaining a practical 
computation time.  Mean-shift theory is based on a density- 
driven concept (Fukunaga and Hostetler, 1975); therefore, divid-
ing the image into several sections would conflict with this concept.  
If the image is divided, the density estimate of the edges of the 
divided image would not be continuous; hence, the summed 
occurrences act as a smoothing filter to overcome this drawback.  
The proposed procedure maintains a manageable memory usage 

and computation time by reducing the area to be processed and 
segments the panchromatic image patch by patch while main- 
taining the density-driven concept of the mean-shift algorithm. 

In this study, we incorporated EDISON, an implementation 
of the mean-shift image segmentation algorithm introduced  
by Comaniciu and Meer (2002), to perform the image segmen- 
tation for each image patch.  Each of the four classes had three 
parameters in the pan-transferring process: one, namely the SOP, 
from the previously described sequence (item 6); and two, 
namely the spatial bandwidth and color bandwidth, from the 
mean-shift image segmentation algorithm.  These parameters 
were determined by following a supervised training process.  
First, we selected a small training area with multiple terrain types.  
Second, we manually delineated the ground truth shoreline by 
following previously described shoreline identification guide- 
lines.  Third, we systematically evaluated the shoreline accuracy 
while adjusting the parameters. 

Because the image segmentation was performed separately, 
discrepancies were observed between classes; such discrep-
ancies involved classes overlapping with one another, and they 
were caused by the use of different pan-transferring parameters 
for each class.  The goal of the proposed classification and pan- 
transferring procedure was to delineate an accurate shoreline 
rather than identify an accurate classification; therefore, a buffer 
zone was allowed for some of the classes, whereas accuracy 
was preferred for others.  Consequently, how to evaluate and 
finalize the classifications is highly correlated with the phy- 
sical properties of each class, identification of shoreline location, 
and the pan-transferring parameters. 

The first issue addressed was the physical and imaging pro- 
perties of the water surface and sediment classes.  From the 
shoreline definition, we chose the most recent wet-dry line of 
the wave run-up as the shoreline location; hence, some intensity 
variations must be tolerated to prevent other earlier watermarks 
from being segmented.  If the most recent watermark is not clear, 
the sediment bank segment may confuse some of the water 
surfaces or vegetation areas as sediment banks.  However, water 
surfaces are most often incorrectly segmented because of break- 
ing waves and sun glints.  Sun glint areas usually occur on calm 
water surfaces and are usually not concurrent with waves.  Re- 
gardless of how calm the water is, some wave activity is always 
present; hence, sun glint areas do not directly contact the shore- 
line.  By contrast, wave fronts are higher in intensity but are sur- 
rounded by lower-intensity water surfaces. 

The worst-case scenario for this classification is a breaking 
wave front occurring directly on the shoreline.  In this case, the 
intensity difference is too high for the corresponding areas to 
be classified in the water surface class, and no parameter ad-
justment is required; these areas remain unclassified and the 
correction is made in the classification adjustment section.  
Therefore, the intensities are relatively uniform for the water 
surface class, consequently resulting in a robust classification 
compared with those of the sediment bank class; therefore, the 
water surface class is overlaid on the sediment bank class.  
However, vegetation, shadow, and water surface areas are low- 
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intensity features on the panchromatic band.  Although vegeta-
tion and water surface areas are clearly on opposite sides of  
the shoreline, the location of shadow areas can be uncertain.  
The intensity variations of water surface areas are still greater 
than those of shadow areas, and thus, the segmentation could 
be relatively robust and accurate in identifying shadow areas.  
Although the water surface class may occasionally contain seg- 
ments of vegetation areas because of the parameter settings, 
the vegetation class would not contain segments of water sur-
face areas.  Hence, the vegetation area overlaid with the shadow 
area to minimize the uncertain areas, and then overlays water 
surface areas to maintain the most favorable classification 
results.  The stacking sequence is (1) vegetation areas, (2) shadow 
areas, (3) water surface areas, and (4) sediment banks/man-made 
structure areas. 

4. Classification Adjustment 

The best-case scenario of classification for shoreline delinea-
tion would be the sediment bank/man-made object class or vege- 

tation class being in immediate proximity to the water surface 
class (Fig. 6).  In this case, the shoreline could be clearly iden-
tified as the boundary line of the land; however, this was not 
always the case after classification.  Specifically, unclassified 
areas would be presented at the edge or next to the water surface, 
and, because of insufficient information, further identification 
could only be accomplished using information from other data 
sources.  However, unclassified areas must only be assigned to 
the land or water surface class.  Despite sediment bank/man-made 
object areas and vegetation areas being clearly classified as land, 
shadow areas and unclassified areas caused most of the identi-
fication problems.  All unclassified and shadow areas along the 
shore must be identified to determine whether they belong to 
the water surface or the land class. 

A rule-based procedure consisting of five rules in three 
stages (Fig. 7) was developed according to five scenarios that 
were designed to provide the most accurate shoreline.  One 
rule in the first stage and two rules in the third stage were 
applied to classify the unclassified areas, and two rules in the 
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Fig. 7.  Flowchart of the classification adjustment process. 
 
 

second stage were used to classify the shadow areas. 
The first rule in the first stage determines if an unclassified 

class belongs to the land class.  Shadows are created in areas in 
which elevation differences exist between two objects.  Because 
the sun angle within an entire satellite image is uniform, the 
location of an object with a higher elevation can be determined 
by the edge of its shadow.  Moreover, because the sun angle is 
due south in the satellite images used in this research, unclas-
sified areas directly in contact with a shadow area to the north 
represent an object with an elevation higher than that of the 
shadow area and therefore cannot belong to the water surface 
class (Fig. 8).  Therefore, these unclassified areas are assigned 
to the sediment bank/man-made object class. 

The second stage is to classify the shadow area.  Because ob-
jects in shadow areas within the study area may be caused by man- 
made structures, bluff tops, or trees, two rules were applied.  The 
first scenario is that the shadows are created by man-made struc- 
tures (Fig. 9(a)), and the second scenario is that shadows are 
created by bluff tops or trees (Fig. 9(b)).  If a shadow area cre-
ated by man-made objects is between the water surface class 
and sediment bank/man-made object class, and if the southern 
side (corresponding with the sun angle) belongs to the sediment 
bank/man-made objects class, this sediment bank/man-made 
object area can only be a vertical structure or a building.  On 
the basis of the shoreline identification guidelines described 
previously, this shadow area would be classified as a water surface  
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(a)

(b)

(c)  
Fig. 9. Three types of terrain creating shadow areas.  Shadow created 

by (a) man-made structures, (b) forest (or tree clusters), and (c) 
trees that can be distinguished individually.  (Credit: Bing Map). 

 
 

area.  If the shadows are created by trees or bluff tops, there are 
three possible scenarios: edge of shadows lying on the land, 
exactly on the shoreline, or on the water surface (Fig. 10). 

If a shadow lies on the land, there should be a sediment 
bank/man-made object or unclassified class between the shadow 
and the water surface classes, and no adjustment is required.  If 
the shadow lies exactly on the shoreline or on the water surface, 
the shadow and the water surface classes are adjacent.  The lo- 
cation at which the shadow class and the water surface class 
meet can be detected, and the location of the shoreline is thus 
within this shadow area; however, no approach is available for 
determining whether the boundary is the location of shoreline.  
Under this circumstance, finding the exact location of the shore- 
line is impossible; instead, the goal is to find a line that mini- 

 
Fig. 10.  Possible conditions for a shadow-shoreline relation. 

 
 

Water
Surface

Land

Land

Water
Surface

Classified as
Water Surface
Sediment Bank
Vegetation
Shadow

 
Fig. 11. Shadow area divided into the water surface class and land class 

based on the surrounding classes. 

 

 
mizes the shoreline extraction error. 

For long stretches of forest along the shore or bluff (Fig. 
9(b)), the shadows created on the water surface are usually 
spiked or cloud-shaped areas, depending on the shape of the 
trees forming such shadows.  The optimal choice of shoreline 
estimate would be the polyline connecting the most inward 
water points within the shadow area.  For a single or small cluster 
of trees (Fig. 9(c)), this could reveal the true classification of 
this shadow area by the surrounding classes.  Therefore, for each 
shadow area surrounded by water surface and/or other classes, 
a separation line could be drawn within the shadow area by 
using the classified neighboring pixels to divide the shadow 
area into water surface and land classes (Fig. 11).  These two 
shadow scenarios differ in logic but actually share the same 
processing procedure; both scenarios entail dividing shadow 
areas by creating a polyline from the surrounding water pixels. 

After the completion of the previous stages, the unclassified  
and shadow classes can be adjusted or reassigned.  The third and 
final stage is to reevaluate the unclassified areas on the basis of 
the previous adjustments using two rules.  First, if unclassified 
areas are between water surface and sediment bank/man-made 
object areas, they are assigned as water surface areas because 
these areas are more likely wet sediment banks on a sandy 
beach caused by wave run-up (Fig. 12).  This condition can also 
be caused by other situations, such as wet man-made objects; 
however, if there is no other distinguishing information from 
the imagery itself, it is accepted as a type two error.  Second, if un- 
classified areas are between or contain sediment bank/man-made 
object areas, vegetation areas, and/or shadow areas, they are usu-
ally sloped structures, namely riprap revetment, and assigned as 
land (Fig. 13). 
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Fig. 12. Unclassified area between the water surface class and the sedi- 

ment bank.  This area usually involves wet sand and should be 
classified to the water surface class. 
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Fig. 13. Unclassified area between sediment banks, vegetation areas, and 

shadow areas. 

 
 

 
Fig. 14. WorldView-2 panchromatic band showing the study area: 

Painesville, Ohio. 

 
 
After the completion of the process, the classification is ad- 

justed and the critical unclassified areas are assigned.  The 
shoreline can then be delineated by tracing the boundary of the 
water surface class to create the shoreline extracted from the 
WorldView-2 satellite imagery. 

IV. RESULTS AND DISCUSSION 

Our study area, Painesville Township, Ohio, is located 25  

Table 1. Pan-transferring parameters chosen according to 
the parameter determination guidelines described 
in Section 3.3.  The parameters are color bandwidth 
(CB), spatial bandwidth (SB), and segment overlap 
percentage (SOP). 

Class
Water  

Surface 
Vegetation Shadow 

Sediment Bank/ 
Manmade Object

CB 4.5 4.5 5.5 4.5 

SB 5 5 5 5 

SOP 0.3 0.4 0.5 0.2 

 

 
miles east of Cleveland, along the southern shore of Lake Erie, 
in Lake County (Fig. 14).  An aerial orthophoto provided by the 
Ohio Geographically Referenced Information Program (OGRIP) 
was used to delineate shoreline ground truth.  The WorldView-2 
satellite image used for this research covered an area 8 km 
long and 4.5 km wide at UTM 17N and was acquired on Sep- 
tember 14, 2010 (16:45 UTC).  The package comprised two 
images: a 0.5-m resolution panchromatic image and a 2.0-m 
resolution multispectral image with eight bands. 

To evaluate the accuracy of the extracted shoreline, the 
ground truth shoreline was delineated manually according to 
the previously described guidelines based on the panchromatic 
WorldView-2 satellite imagery and served as a reference line.  An 
aerial orthophoto was used as a secondary data source, in the 
event that the ground truth shoreline in the grayscale satellite 
imagery was difficult to determine.  The total shoreline length 
was approximately 14 km, and the terrain types were manually 
determined while delineating the ground truth.  The extracted 
shoreline was compared against this ground-truthed shoreline 
by using the method described by Lee et al. (2009). 

A set of parameters were selected as presented in Table 1, 
and shoreline objects were then extracted.  The boundary of the 
water surface class was delineated as an instantaneous shore-
line.  A statistical analysis was performed (Table 2), revealing 
that the overall accuracy of the shoreline extracted with this 
classification result could reach 1.8 m (RMSE, which is less 
than a pixel of multispectral images).  According to the results 
derived from analyzing the accuracies of the shorelines asso-
ciated with individual terrain types, the accuracy of the sediment 
bank areas and groin areas was the highest among all terrain 
types (0.7 m, slightly larger than one pixel of panchromatic 
images).  Other shoreline objects were extracted with an average 
error ranging from approximately 1 to 3 m, except piers.  The 
errors were from 1 to 1.5 pixels of the multispectral images used.  
The average error for piers reached 4.8 m (over 2 pixels) because 
the anchored vessels were classified as man-made structures. 

By comparing the average error and RMSE of each terrain type, 
we discovered that the RMSE of vertical structures (1.477 m) 
was significantly higher than the average error (0.839 m).  In 
addition to the high value of the maximum error of the vertical 
structure areas, these numbers indicate that most components 
of the shoreline in the vertical structure areas were accurate,  
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Table 2. Accuracies of the extracted shorelines associated with individual terrain types. 

Terrain Type Length (m) Maximum Error (m) Average Error (m) RMSE (m) 
Sediment Bank 3099 7.555 0.665 0.782 

Sloped Structure 4822 10.019 1.667 1.673 
Vertical Structure 2839 14.540 0.839 1.477 

Bluff 1621 7.343 1.703 1.395 
Groin 69 1.651 0.660 0.468 

Breakwater 96 7.560 2.551 2.058 
Shadow 789 10.666 3.041 2.391 

Pier 311 11.726 4.766 3.758 
Total 13650 14.540 1.464 1.796 

 
 

(a)

(b)  
Fig. 15. Two examples revealing the amplification of the shoreline de-

lineation error by the error estimation method.  The red line 
represents the shoreline ground truth, blue line represents the 
delineated shoreline, and green line represents the amplified 
error distance created by the error estimation method. 

 
 

but some areas had a significant degree of error.  These errors 
were because the imperfect error estimation method amplified 
the inaccurate shoreline delineation results, particularly in areas 
with man-made structures.  Fig. 15 depicts two examples of shore- 
line error amplification engendered by the error estimation method.  

This error amplification problem occurred near the right angle 
corner of the ground truth shoreline.  Apart from manually editing 
the measurements, no effective solution was available for re-
moving this glitch; hence, we highlight the problem but retain 
the amplified measurements in our statistics. 

After statistical analysis, we analyzed the cause of the inac-
curacy of the delineated shoreline by inspecting the in situ data 
by terrain type.  Although the shoreline could be accurately ex- 
tracted in most of the sediment bank areas (Fig. 16(a)), areas 
where tone and texture differences were not significant or in 
proximity to breaking waves could not be extracted as accurately.  
Significant shoreline delineation errors in areas with sloped 
structures were engendered by the different materials of riprap 
revetments (Fig. 16(b)) and by the similarity in panchromatic 
intensity levels between water surfaces and wet riprap revet-
ments.  In the areas with vertical structures, the extracted shore- 
line was relatively accurate, particularly in areas in which the 
waves did not lap onto the shore.  However, in areas with wet 
concrete, issues similar to those for riprap revetments occurred 
(upper corner of Fig. 16(c)); some wet concrete surfaces were 
identified as water surfaces because of the similarity in panchro-
matic intensity between these surfaces.  Occasionally, an entire 
section of the vertical structure area was missing (upper corner 
of Fig. 16(c)), resulting in extensive shoreline delineation errors.  
Breaking waves along the areas with vertical structures may also 
create shoreline delineation errors (lower corner of Fig. 16(c)).  
Examination of the bluff areas (center of Fig. 16(d)) indicated a 
significantly higher delineation error than that of sloped struc- 
ture areas; this high error was induced by the inaccurate classifi-
cation of the water surface and the sediment bank below the bluff.  
Specifically, the sediment bank below the bluff in this area is 
typically piled with building materials and rocks that fall from 
the bluff top under the influence of heavy bluff erosion, thus re- 
sulting in the inaccurate classification.  Most of the shadow pro- 
blems created by individual trees were resolved, but tree clusters 
or forests could only be partially corrected (center of Fig. 
16(e)).  The delineated shoreline along the pier areas exhibited 
a high degree of error because anchored vessels were classified 
as man-made objects (Fig. 16(f)). 

V. CONCLUSION 

We developed a new shoreline delineation approach from an  
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(a)

(d)

(e)

(f)

(b)

(c)  
Fig. 16. Example of the shoreline delineated (blue line, ground truth shoreline in red) along (a) sediment bank areas, (b) sloped structure areas (riprap 

revetment areas), (c) vertical structure areas, (d) bluff areas, (e) shadow areas, and (f) pier areas. 
 
 

object-oriented perspective that incorporates relatively low-cost 
data sources and reduces human labor while maintaining rea-
sonable shoreline accuracy levels.  The proposed approach 

extracts shorelines solely from WorldView-2 satellite imagery 
by applying spectral and shadow analysis to classify objects 
and terrain types.  The use of shadow effects to analyze terrain 
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topography for image classification in order to delineate the 
shoreline from classification results is a new concept.  The de- 
lineation results reveal that the extracted shoreline could reach 
an accuracy of 1.8 m (RMSE). 

This shoreline delineation approach performed favorably 
with sediment banks, vertical structures, and groin areas.  The 
accuracy level for piers was lowest because the anchored vessels 
were classified as man-made structures.  Moreover, the accu-
racy corresponding to breakwaters was relatively low in this ex- 
periment because breakwaters beaten by waves are usually wet 
concrete blocks and identifying them correctly as man-made 
structures in a satellite image is difficult. 

The proposed procedure can be immediately applied to ap-
plications for which the accuracy requirement is above 2 m; 
however, for applications with accuracy concerns, this procedure 
requires further improvement.  One of the goals of this research 
was to develop an autonomous procedure for delineating shore-
lines; however, it has not been realized to date.  The pan-transferring 
of the classification results required a supervised classification 
procedure to determine the segmentation parameters.  An auto-
matic process for determining pan-transferring parameters would 
be a useful addition to the current procedure that would improve 
the level of autonomy.  Moreover, the proposed procedure utilizes 
most of the information a WorldView-2 satellite image provides; 
hence, additional information is required for more accurate clas-
sification of satellite imagery—either spatially or spectrally—to 
improve the shoreline delineation accuracy.  Therefore, incorpo-
rating ALS point cloud or hyperspectral images as data sources 
would useful for future shoreline extraction research. 

The advantage of the proposed procedure is the use of object- 
oriented concepts for object classification and shoreline delinea-
tion.  The classes determined through this procedure can be inte- 
grated with other data sources for more accurate classification.  
For example, LiDAR point clouds can be used to further de-
termine man-made objects from the sediment bank/man-made 
object class.  Traditional supervised classification algorithms 
cannot easily incorporate vector or point cloud data along with 
a raster image.  In this research, we provide a framework that 
is based on WorldView-2 satellite imagery for determining the 
boundary between water and land.  This framework can easily 
incorporate other forms of data source to improve the classifi-
cation results. 

ACKNOWLEDGEMENTS 

This research was for the most part completed during the 
author’s Ph.D study at Ohio State University under the super-
vision of Dr. Rongxing Li, and it was funded by the Ohio Sea 
Grant College Program (R/CE-010).  Special gratitude is extended 
to Dr. Fuan Tsai at National Central University for providing 
valuable perspectives and suggestions to improve this paper. 

REFERENCES 

Boak, E. H. and I. L. Turner (2005). Shoreline definition and detection: a 
review. Journal of Coastal Research, 688-703. 

Comaniciu, D. and P. Meer (2002). Mean shift: A robust approach toward 

feature space analysis. Pattern Analysis and Machine Intelligence. IEEE 
Transactions on 24(5), 603-619. 

Di, K., J. Wang, R. Ma and R. Li (2003). Automatic shoreline extraction from 
high-resolution Ikonos satellite imagery. Proceedings of the ASPRS 2003 
Annual Conference, 5-9 May 2003, Anchorage, Alaska, unpaginated CD-ROM. 

DigitalGlobe (2013). WorldView-2 Datasheet, URL: http://www.digitalglobe.com/ 
downloads/WorldView2-DS-WV2-Web.pdf, (last date accessed: 25 December 
2013). 

Fukunaga, K. and L. Hostetler (1975). The estimation of the gradient of a density 
function, with applications in pattern recognition. Information Theory, IEEE 
Transactions on 21(1), 32-40. 

Hicks, S. D. and P. Schureman (2000). Tide and current glossary, US Depart- 
ment of Commerce, National Oceanic and Atmospheric Administration, 
National Ocean Service, Silver Spring, Maryland, 33. 

Ji, L., L. Zhang and B. Wylie (2009). Analysis of dynamic thresholds for the nor- 
malized difference water index. Journal of Photogrammetric Engineering 
and Remote Sensing 75(11), 1307-1317. 

Lee, I.-C., B. Wu and R. Li (2009). Shoreline extraction from the integration 
of lidar point cloud data and aerial orthophotos using mean shift seg- 
mentation, Proceedings of the ASPRS 2009 Annual Conference, 9-13 
March 2009, Baltimore, Maryland, unpaginated CD-ROM. 

Leigh, G. E. (2012). Scope of work for shoreline mapping under the noaa coastal 
mapping program, US Department of Commerce, National Oceanic and 
Atmospheric Administration, National Ocean Service, National Geodetic 
Survey, Remote Sensing Division, Silver Spring, Maryland, 583. 

Li, R., R. Ma and K. Di (2002). Digital tide-coordinated shoreline. Marine 
Geodesy 25(1-2), 27-36. 

Li, R., K. Di and R. Ma (2003). 3-D shoreline extraction from IKONOS 
satellite imagery. Marine Geodesy 26(1-2), 107-115. 

Liu, H. and K. Jezek (2004). Automated extraction of coastline from satellite 
imagery by integrating Canny edge detection and locally adaptive thres- 
holding methods. International Journal of Remote Sensing 25(5), 937-958. 

Liu, J.-K., R. Li, S. Deshpande, X. Niu and T.-Y. Shih (2009). Estimation of 
blufflines using topographic Lidar data and orthoimages. Journal of Photo- 
grammetric Engineering and Remote Sensing 75(1), 69-79. 

Padwick, C., M. Deskevich, F. Pacifici and S. Smallwood (2010). WorldView-2 
pan-sharpening, Proceedings of the ASPRS 2010 Annual Conference, 
26-30 April 2010, San Diego, California, unpaginated CD-ROM. 

Robertson, W., D. Whitman, K. Zhang and S.P. Leatherman (2004). Mapping 
shoreline position using airborne laser altimetry. Journal of Coastal Re- 
search, 884-892. 

Scott, J. W., L. R. Moore, W. Harris and M. D. Reed (2003). Using Landsat 7 
Enhanced Thematic Mapper Tasseled Cap Transformation to extract 
shoreline. US Geological Survey Open-File Report OF 03, 272. 

Sekovski, I., F. Stecchi, F. Mancini and L. Del Rio (2014). Image classi- 
fication methods applied to shoreline extraction on very high-resolution 
multispectral imagery. International Journal of Remote Sensing 35(10), 
3556-3578. 

Shalowitz, A. (1964). Shore and Sea Boundaries; Vol. 2; Interpretation and 
use of Coast and Geodetic Survey data, US Dept. of Commerce, Coast 
and Geodetic Survey, 749. 

Srivastava, A. (2005). A least-squares approach to improved shoreline mo- 
deling, Master thesis, The Ohio State University, Columbus, Ohio, 85. 

Stockdon, H. F., A. H. Sallenger Jr., J. H. List and R. A. Holman (2002). 
Estimation of shoreline position and change using airborne topographic 
lidar data. Journal of Coastal Research, 502-513. 

White, S. (2007). Utilization of LIDAR and NOAA's vertical datum trans- 
formation tool (VDatum) for shoreline delineation, Proceedings of the 
OCEANS 2007, 29 September-4 October 2007, Vancouver, BC, 1-6. 

White, S. A., C. E. Parrish, B. R. Calder, S. Pe'eri and Y. Rzhanov (2011). Lidar- 
derived national shoreline: empirical and stochastic uncertainty analyses. 
Journal of Coastal Research, 62-74. 

Yamazaki, F., W. Liu and M. Takasaki (2009). Characteristics of shadow and 
removal of its effects for remote sensing imagery. Proceedings of the 
Geoscience and Remote Sensing Symposium, 2009 IEEE International, 
IGARSS 2009, 2009, IV-426-IV-429. 


	INSTANTANEOUS SHORELINE MAPPING FROM WORLDVIEW-2 SATELLITE IMAGES BY USING SHADOW ANALYSIS AND SPECTRUM MATCHING TECHNIQUES
	Recommended Citation

	INSTANTANEOUS SHORELINE MAPPING FROM WORLDVIEW-2 SATELLITE IMAGES BY USING SHADOW ANALYSIS AND SPECTRUM MATCHING TECHNIQUES
	Acknowledgements

	Microsoft Word - 9-JMST-2015-ISRS12-color.doc

