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ABSTRACT 

Owing to the high demand for energy supply, the use of off- 
shore wind turbines as a renewable and environment-friendly 
energy source has been remarkably increased.  After installation 
in the ocean, the offshore structure foundations and soil that sup- 
port them are subjected to cyclic loading from wind and waves.  
In this study, laboratory experiments were conducted to evalu- 
ate the shear behavior characteristics of the marine soil subjected 
to cyclic loading.  Utilizing a cyclic direct simple shear (CDSS) 
test apparatus, the undrained shear failure behavior of marine silty 
sand was investigated.  The results show that the cyclic behav-
ior and permanent shear strain were different depending on the 
average shear stress ratio.  Failure criteria were proposed by 
analyzing the failure behaviors corresponding to various cyclic 
loadings.  The proposed failure criteria may be used for the pre- 
liminary design of offshore structure foundations. 

I. INTRODUCTION 

The development of environmentally friendly energy such as 
solar power and wind turbines, and not of thermal power and 
nuclear power, has been an important topic over the past few 
decades owing to environmental problems, such as global warm- 
ing and fine dust.  Wind turbines have been mostly installed on 
land, but their installation sites have been moving to the sea 
because of environmental problems such as installation space and 
noise.  In Korea, offshore wind farms are being built around the 
coast of Jeju Island and the south-western coast of Korea.  A struc- 
ture installed in the ocean has a complex vibration transmission 
mechanism owing to the combined action of external dynamic 
loading, such as wind and waves, and internal dynamic loading, 
such as mechanical vibrations.  The long- and short-term dynamic  
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Fig. 1. Simplified stress conditions along a potential failure surface in the 

soil beneath a gravity structure under cyclic loading (Andersen, 
2009). 

 
 

characteristics and resistance evaluation of offshore structures 
are among the significant factors in foundation design, construc- 
tion, and structure maintenance. 

Andersen and Berre (1999) investigated the behavior of soil 
supporting foundations subjected to cyclic loading by perform- 
ing a laboratory dynamic test.  It was found that the average and 
cyclic shear stress, drainage conditions, and stress path affect 
the number of cyclic loadings and failure behavior.  Andersen 
(2009) presented a design graph with the behavior of clay, silt, 
and sand soils subjected to dynamic shear strength and cyclic 
loading.  Ryu and Kim (2015) and Ko et al. (2017) presented a 
stress-based failure criterion for the undrained failure behavior 
of marine silty sand under cyclic loading with different relative 
density conditions.  Fig. 1 shows various stress conditions when 
a load is applied to the structure.  According to this figure, the 
failure surface varies depending on the location.  The results from 
the cyclic direct simple shear (CDSS) test in this study suggest 
a failure surface model in which the horizontal direction do- 
minates, as shown in the figure. 

The present work is a follow-up study of Ryu and Kim (2015) 
and Ko et al. (2017).  It evaluates the effects of the average and 
cyclic shear stresses on the dynamic shear behavior considering 
the soil relative density, and proposes 3-D failure criteria with 
regard to various relative densities of soil that can be used in the 
design procedure. 

Paper submitted 05/22/17; revised 12/05/17; accepted 12/13/17. Author for 
correspondence: Jin Man Kim (e-mail: jmkim@pusan.ac.kr). 
Department of Civil and Environment Engineering, Pusan National University, 
Busan, Korea. 
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cyclic loading (Andersen, 2009). 

 
 

II. CYCLIC SHEAR BEHAVIOR AND  
FAILURE BEHAVIOR OF SOIL 

1. Cyclic Shear Behavior 

In general, the undrained behavior of sand depends on its re- 
lative density.  In the case of loose sand, as the cyclic load acts, 
the sand is compressed and positive pore water pressure is ge- 
nerated, thereby reducing the effective stress.  In contrast, in the 
case of dense sand, as the cyclic load acts, the sand is dilated and 
negative pore water pressure is generated, thereby increasing the 
effective stress.  Therefore, loose sand shows lower shear strength, 
owing to positive pore water pressure, than dense sand. 

2. Failure Behavior 

Andersen et al. (1988) reported that the design graph expresses 
the cyclic stress ratio (CSR) and the average stress ratio (ASR) 
to the shear strain and number of cyclic loadings at the time of 
reaching the failure criterion.  The cyclic shear stress ratio and 
the average stress ratio are defined by Eq. (1). 
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Fig. 2(a) shows a change in the cyclic and average shear stress, 
pore water pressure, and shear strain owing to cyclic loading.  As 
cyclic loading is applied to the specimen under the undrained 
condition, pore water pressure is generated, and an increase in 
pore water pressure causes permanent shear strain ( p ) and cy- 

clic shear strain ( cy ) (Andersen, 2009).  Fig. 2(b) shows the 

behavior of the stress-strain curve caused by cyclic loading.  
The cyclic shear stress ( cy ) generates cyclic shear strain ( cy ), 

and the average shear stress ( a ) generates permanent shear 

strain ( p ).  Accordingly, the behavior of the stress-strain 

relationship is different.  The average and cyclic shear stresses 
are additional loadings, such as the stresses in the in-situ soil 

condition and the weight of the structure.  Cyclic shear strain is 
the strain amplitude that occurs during one vibration, and the per- 
manent shear strain is the strain that increases from the initial 
time during repeated vibration of N times. 

Ishihara (1985) discovered that initial liquefaction takes place 
in the strain range of 2.5-3.5%, and suggested that initial lique- 
faction occurs in a single amplitude strain of 3%.  Using labo- 
ratory experiments, Nielsen et al. (2012) defined 15% of double 
amplitude strain as the failure criterion.  Randolph and Gourvenec 
(2011) proposed a strain contour using a cyclic simple shear test, 
and defined that the number of failures is the number of times 
the permanent shear strain or the double amplitude shear strain 
is equal to 15%, obtained from the cyclic simple shear test results 
with asymmetric cyclic loading on normally consolidated Dram- 
men clay.  In this study, the permanent shear strain or double am- 
plitude shear strain of 15% was defined as the failure criterion 
considering the conditions of offshore structures. 

The general design graph proposed by Andersen and Berre 
(1999) was normalized to the effective stress, while the modi- 
fied design graph was normalized to the undrained shear strength 
considering the initial pore water pressure.  After comparing the 
design graphs before and after implementation of the modifica- 
tion, it was found out that considering the vertical stress as the 
normalization parameter in drainage design condition is more 
effective than other options.  However, concerning the undrained 
conditions, because of the importance of initial pore water pres- 
sure, the undrained shear strength is employed as the normali-
zation parameter.  In the present study, the vertical effective stress 
was used as the normalization parameter for cyclic and average 
stresses, because of the noncohesive soil under undrained con- 
dition.  Hence, the values normalized with the vertical effective 
stress were defined as the cyclic shear stress ratio and average 
shear stress ratio.  This is possible because of the system cha- 
racteristics of the cyclic simple shear test used in this study.  A 
description of the system characteristics is provided in Section 3. 

III. CYCLIC DIRECT SIMPLE SHEAR  
(CDSS) TEST 

1. Principle of the CDSS Test 

In this study, the test was performed using a CDSS test, as 
shown in Fig. 3(a).  The cyclic direct simple shear test repro- 
duce the behavior of the specimen more precisely than the direct 
shear test, and can accurately measure the dynamic character-
istics with cyclic loading during an earthquake.  Soil deforma- 
tion in the ground is mainly affected by horizontal seismic shear 
waves transmitted from the lower strata.  When the ground sur- 
face is horizontal, the shear stress does not act on the horizontal 
plane of the ground surface before the occurrence of an earth- 
quake.  However, when an earthquake occurs, cyclic shear stress 
appears during vibration, in a state where the vertical stress act- 
ing on the horizontal surface remains constant.  The CDSS test 
was performed considering a specimen under the earth pressure 
at rest (K0) condition and constraining it with a wire reinforced  
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Table 1.  Properties of west coast marine silty sand. 

Min. voids ratio Max. voids ratio Uniformity coefficient Coefficient of curvature USCS Specific gravity 

0.74 1.18 1.80 0.15 SP-SM 2.62 
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Fig. 3.  Simple shear condition. 

 

 
membrane manufactured according to the ASTM standard 
D6528-07.  While the shear stress is applied, the height of speci- 
men is controlled to keep constant volume, and it is defined that 
the change in vertical stress is the same as the change of pore pres- 
sure under an undrained condition.  Fig. 3(b) shows the principle 
of the direct simple shear test.  The shear strain is measured when 
the vertical and shear stress are applied to the top part of the spe- 
cimen. 

2. Test Conditions and Setup 

Specimens with diameter of 63.5 mm and height from 21.5 to 
23.4 mm were used in the CDSS test.  The initial relative den- 
sity before consolidation was 50-85%.  A height change in the 
specimen finishing consolidation was confirmed, and the rela- 
tive density at this time was used.  Cyclic loading with constant 
amplitude and period was applied to the specimen, either con- 
tinuously or discontinuously.  In the design of offshore wind tur- 
bine structures, it is necessary to consider the cyclic loading 
caused by waves and wind, and the wave loading has a period of 
10 to 20 s (Andersen, 2009).  In this study, the applied frequency 
was set at 0.1 Hz, with regard to the period of wave loading in 
the offshore structure.  However, there is no standardized fre- 
quency for the wind, and 0.1 Hz was generally used as the fre- 
quency for the experiment.  The failure criterion was applied to 
double amplitude shear strain and permanent shear strain of 15%.  
Furthermore, it was judged that liquefaction occurred at the time 
when the effective stress became zero, and an additional failure 
criterion was applied.  The K0 state was exerted by constrain- 
ing the lateral displacement with a reinforced membrane, and 
the actual soil condition was implemented by applying the ver- 
tical consolidation stress before applying the shear stress.  The 
vertical-consolidation stress was set at 200 kPa, within the ex- 
pected stress range, on the foundation of the offshore wind turbine 
generator, and the CDSS test was performed after consolidating  
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Fig.4.  Grain size distribution curve (Ko et al., 2017). 

 
 

the specimen so that the height of specimen did not change during 
the shearing process. 

This study used relatively uniform fine silty sand soils col-
lected from the Saemangeum area near the west coast, where the 
construction of an offshore wind farm is planned.  To analyze the 
soil properties, specific gravity and grain-size analyses were per- 
formed.  The maximum void ratio (emax) and the minimum void 
ratio (emin) were obtained using BS1377, JSF T161-1990.  Table 1 
lists the soil properties of the specimens.  Fig. 4 shows the grain- 
size distribution curve of the specimen. 

Sample preparation affects the behavior of a sandy soil.  The 
most commonly used sample preparation methods are air plu- 
viation, water pluviation, slurry deposition, dry deposition, and 
moist tamping.  In this study, the samples were prepared by the 
air pluviation method with dry tamping method.  The major fac- 
tors that affect the relative density of air pluviated sands are the 
height of particle drop (Vaid and Negussey, 1988) and rate of 
deposition (Miura and Toki, 1982).  In the air pluviation me- 
thod used in this study, the sample was dropped into the mold 
through the funnel and reached the membrane.  Each sample was 
divided into five layers to obtain the same density.  Saturated un- 
drained tests can be performed on dry samples because the change 
in vertical stress to maintain a constant volume is the same as the 
change in pore water pressure under an undrained condition 
(Budhu and Britto, 1987).  The results obtained in this way are si- 
milar to those of actual drainage shear tests (Dyvik et al., 1987).  
In the CDSS test, shearing is adjusted by deformation and stress 
control.  In the strain control technique, the shear is controlled at 
a constant displacement rate that differs from the actual cyclic 
behavior.  In the stress control technique, the shear is controlled 
at a constant stress rate, so that the actual condition is simulated.  
In this study, the test was performed by the stress control me- 
thod because of the limitation of the test apparatus. 
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Table 2.  Summary of the CDSS tests (Ryu, 2016). 

Test ID Relative Density, Dr (%) Confining pressure (kPa) Rate (/min) 

CDSS_1 18.01 121.71 0.3 

CDSS_2 28.78 177.21 0.3 

CDSS_3 40 258 0.3 

CDSS_4 52 375.64 0.3 
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Fig. 5.  Effective internal friction angle. 

 

IV. TEST RESULTS AND ANALYSIS 

Static and dynamic tests were performed under various stress 
conditions, and the stress behavior, shear stress, shear strain, 
and pore water pressure on dense and loose soil were analyzed.  
Finally, the 3-D stress-based failure criterion was plotted by 
analyzing the number of cycle loadings at failure under various 
stress conditions, and the equation of the stress-based failure 
criterion considering relative density was proposed. 

1. Monotonic Test and Specimen Condition 

Static tests were performed on the west coast silty sand with 
different confining pressures and by preparing specimens with 
the relative densities of loose and dense soils.  Shearing was ap- 
plied with a rate of 0.3 mm/min, which is similar to that of the 
direct simple shear test.  The failure criterion was employed to  
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Fig. 6.  Critical state line (CSL). 

 
 

the shear strain of 15%, equal to that of the dynamic test in three 
static tests.  The effective internal friction angle of each soil sam- 
ple was determined using the slope angle of the fitted line from 
shear-normal stress curves.  The obtained internal friction an- 
gles were 29.9 in loose soil and 38.8 in dense soil.  The static 

stress ratios (
`




) were 0.574 and 0.804 for soil densities of 

50% and 85%, respectively (Fig. 5).  Note that the mentioned 
stress ratios were obtained when the cyclic shear stress ratio was 
zero, and this was considered as the initial point of the stress- 
based failure criterion.  However, this value is approximate be- 
cause the ratio of shear stress to vertical effective stress is a ratio of 
stresses on the horizontal plane, which is not the failure plane. 

Fig. 6 shows the critical state line (CSL), which corresponds 
to the effective stress path of west coast sand from the results of 
the static test.  The test was performed using the CDSS test ap- 
paratus on the effective stress-shear stress surface and connect-
ing the points leading to failure.  Table 2 summarizes the results 
from the static tests.  The confining pressure and the relative den- 
sity of each static test were obtained by a normal consolidation 
technique.  The CSL in the undrained condition shows that the 
void ratio does not change and the effective stress decreases 
with respect to the normal consolidation line.  In the P`-e space, 
the CSL has a shape similar to the normal consolidation line. 

When analyzing the characteristics of a soil, it is generally easy 
to understand its compactness by using the internal friction 
angle, but it can be more accurately analyzed by using the CSL.  
In Fig. 6, the soil is divided into a loose state at the upper part 
of the CSL and a dense state at the lower part of it.  Using the 
CSL, it was confirmed that the soil condition corresponding to  
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Fig. 8.  Stress behavior (Dr = 85%, ASR = 0, CSR = 0.3, cycles = 386). 

 
 

85% of relative density is in the dense area; the soil condition 
corresponding to 50% of relative density is in the loose area. 

2. Stress Behavior 

CDSS tests were performed under various average shear stress 
ratios (0.1-0.5) and cyclic shear stress ratios (0.1-0.5). 

Fig. 7 and Fig. 8 show the changes in shear stress, shear strain, 
and pore water pressure when the average shear stress ratio is 0 
and the cyclic shear stress ratio is 0.3 at the relative densities of 
50% and 85%, respectively.  In these cases, the average shear stress  
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Fig. 9.  Stress behavior (Dr = 50%, ASR = 0.3, CSR = 0.3, cycle = 10). 
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ratio was taken as zero, on the assumption that there is no shear 
stress from the self-weight of the in-situ structure.  In Fig. 7 and 
Fig. 8, when the average shear stress ratio is zero, the results of 
cyclic shear deformation and permanent deformation are as fol- 
lows: even though the relative density was changed, the main de- 
formation mode remained symmetrical and a slight permanent 
shear deformation appeared.  This shows that only the shear strain 
increases with an increasing number of cycles.  The reason is 
that cyclic shear strain occurs by cyclic shear stress, while per- 
manent shear strain does not occur when the average shear stress 
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is under zero condition.  In Fig. 7 the results for the soil relative 
density of 50% are illustrated.  The failure criterion was reached 
at 12 cycles, once the shear strain (permanent or average) was 
15%.  As can be seen, the pore water pressure increased before 
shear strain (permanent or average) reached the failure criterion 
of 15%, and failure occurred once the effective stress reached zero 
at 386 cycles.  From the obtained results, it can be perceived that 
the pore water pressure in loose sand increased more rapidly than 
in dense sand as the cyclic loading continued.  Consequently, the 
effective stress sharply decreased and the number of cycles at the 
failure state was reduced (Figs. 7(b), (d), Figs. 8(b), (d)). 

Fig. 9 and Fig. 10 show changes in shear stress, shear strain, 
and pore water pressure when the average shear stress ratio is 
0.3 and the cyclic shear stress ratio is 0.3 at the relative density 
of 50% and 85%, respectively.  According to Fig. 9(c) and Fig. 
10(c), when the average shear stress ratio is larger than 0, the 
permanent shear strain increases as the number of cycles increase, 
but the cyclic shear strain remains constant without shear strain 
corresponding to the applied loading.  Fig. 9(a) and Fig. 10(a) 
show an increase in permanent shear strain under one direction, 
and the main deformation mode has a similar shape, even though 
the relative density changes. 

Fig. 9 shows the results for the soil with 50% relative density 
under the same conditions of average shear stress ratio (0.3) and 
cyclic shear stress ratio (0.3).  The failure criterion was reached 
at 10 cycles, when the shear strain (permanent or average) was 
15% or more. 

The failure criterion was reached at 6,420 cycles in the soil with 
85% relative density, as shown in Fig. 10.  This shows that al- 
though the average shear stress ratio is greater than zero, in dense 
sand the required number of cycles for reaching the failure cri- 
terion is far larger than in loose sand.  Additionally, the pore 
water pressure in the dense sand drastically increases at the be- 
ginning of the cyclic loading, and then, it gradually increases as 
loading continues, while in the loose sand it steadily increases 
until the failure criterion is reached (Fig. 9(d), Fig. 10(d)). 

3. 3-D Failure Criterion 

The failure criterion is a combination of the cyclic shear stress 
ratio and average shear stress ratio reaching failure at 1-10,000 
cycles.  This represents five failure curves corresponding to the 
number of cycles.  The initial point of each failure line was ob- 
tained from the static test results. 

As shown in Fig. 11, when the cyclic shear stress ratio is in 
constant state, or when the average shear stress ratio is in con- 
stant state, the number of cyclic loadings for reaching the fai- 
lure criterion decreases when the other shear stress ratio (ASR 
or CSR) increases.  In this case, the failure curve of the loose 
sand has cyclic and average shear stress ratios of 0.1 to 0.2 less 
than those of the dense sand, and it shows a downward trend.  
Furthermore, failure at the dense soil mainly occurs by cyclic 
shear strain (double amplitude shear strain of 15%) with the av-
erage shear stress ratio close to zero.  However, in the case where 
the average shear stress ratio increased, the failure of soil was 
determined by permanent shear strain rather than cyclic shear  
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Fig. 11. Criterion lines for marine silty sand at failure ( `vc  = 200 kPa) 

(Ko et al., 2017). 
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Fig. 12. Three-dimensional criterion lines for marine silty sand showing 

CSR, ASR, and Dr, and the corresponding cyclic and permanent 
shear strains at failure. 

 
 

strain.  Failure at the loose soil mainly occurs by the increase in 
pore water pressure, before the cyclic shear strain reaches 15%, 
with the average shear stress ratio close to zero.  However, in 
the case where the average shear stress ratio is increased, the 
failure of soil was determined by permanent shear deformation 
rather than cyclic shear deformation. 

The failure criterion for various relative densities is shown  
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Fig. 13.  Failure criterion according to relative density ( `vc  = 200 kPa). 

 
 

in Fig. 12 using the 3-D stress failure criterion.  The 2-D and 
3-D failure criterion presented in Fig. 12 and Fig. 13 can be used 
as a practical tool to determine the design parameters, such as 
cyclic shear stress ratio, average shear stress ratio, and number 
of cyclic loadings corresponding to the soil relative density.  Ac- 
cording to the proposed failure criterion, the failure cyclic load- 
ing is dependent on the sequence of the cyclic shear stress ratio, 
relative density, and average shear stress ratio. 

V. SUMMARY AND CONCLUSION 

To evaluate the effect of average shear stress and cyclic shear 
stress on the undrained shear failure behavior with regard to 
the relative density of silty sand, several CDSS tests were per- 
formed.  The following conclusions can be drawn. 

 
(1) Soil can be classified into loose state soil at the upper part 

of the CSL and dense state soil at the lower part of it. 
(2) When the average shear stress ratio was zero, despite chang- 

ing the relative density, the main deformation mode remained 
symmetrical and a slight permanent shear deformation oc- 
curred.  This shows that only the shear strain increases with 
an increasing number of cycles.  The reason is that cyclic shear 
strain occurs by cyclic shear stress, while permanent shear 
strain does not occur owing to the average shear stress. 

(3) Although the average shear stress ratio is greater than zero in 
dense sand, the required number of cycles for reaching the 

failure criterion is far larger than that in loose sand.  Addi-
tionally, the pore water pressure in the dense sand drastically 
increased at the beginning of cyclic loading, and then, it gra- 
dually increased as the loading continued, while in the loose 
sand it steadily increased until the failure criterion was 
reached. 

(4) The 2-D and 3-D failure criterion given in Fig. 12 and Fig. 13 
can be used as a practical tool to determine the design pa- 
rameters, such as the cyclic shear stress ratio, average shear 
stress ratio, and number of cyclic loadings corresponding to 
the soil relative density. 

(5) According to the proposed failure criterion, the failure cy- 
clic loading is dependent on the sequence of cyclic shear 
stress ratio, relative density, and average shear stress ratio. 

(6) Currently, research is being conducted to determine the fai- 
lure criterion considering various confining pressures and 
soil relative densities. 
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