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ABSTRACT 

Opaque masses (e.g., cloud and haze) are the main obstacles 
interrupting remote observations of ocean color using optical 
sensors.  We performed a statistical analysis for 1 year of ocean 
color data derived from the Geostationary Ocean Color Imager 
(GOCI), which performs eight observations per day.  We dis-
covered that the valid ranges of the data vary depending on the 
local times and the seasonal characteristics and are related to 
the pattern of solar altitudes to a certain degree.  Here, it is shown 
that multiple ocean color scenes observed on a given day can 
be merged to recover the contaminated areas.  However, merging 
multiple ocean color scenes from heterogeneous sensors (e.g., 
MODIS, SeaWiFS, and MERIS) for a given day takes con-
siderable effort.  In contrast, multiple scenes from a single sensor 
such as GOCI can be merged with a relatively simple approach 
such as averaging.  Here, we focus on how much unavailable 
data can be recovered quantitatively in a given day by merging 
multiple scenes from GOCI.  To this end, a large data set com- 
posed of GOCI scenes from January 2012 to December 2012 
was used.  The results demonstrate that ocean color availability 
in a composite scene merged from eight multiple GOCI scenes 
could be expanded by about 2.54 times relative to a single scene. 

I. INTRODUCTION 

In optical and thermal remote sensing, one of the main obsta-
cles in the ocean color observation is opaque masses in the at-
mosphere such as cloud, haze, and sea fog (Cihlar and Howarth, 
1994; Wang and Shi, 2006).  The loss of the remote sensing 
data due to the opaque masses make it difficult to analyze the 
features of ocean color such as patterns of continuous oceanic 

patches or eddies.  To facilitate data analysis, the missing data 
should be accounted for.  One way to compensate for missing 
data is to merge multiple scenes (Campbell and Hooker, 1995).  
In the case of ocean color remote sensing, research aimed at 
investigating and improving the amount of available data has 
also been conducted.  Traditionally, such research can be clas- 
sified into two categories: (1) the use of numeric models or 
optimal interpolations (He et al., 2003; Alvera-Azcarate et al., 
2007) and (2) the merging of multiple scenes (Pottier et al., 
2006; Roy et al., 2006; Maritorena et al., 2010). 

The optimal interpolation scheme based upon the correla-
tion model was developed by He et al. (2003) to improve the 
availability of sea surface temperature data derived from Ad-
vanced Very High Resolution Radiometer (AVHRR) scenes.  
The empirical scheme based upon the Data Interpolating 
Empirical Orthogonal Functions (DINEOF) was proposed by 
Alvera-Azcarate et al. (2007) to recover the lost ocean color 
data in the area covered with clouds.  Using this scheme, they 
reconstructed the lost parts in the scenes which contain the sea 
surface temperature derived from AVHRR and the chlorophyll 
concentration derived from Moderate Resolution Imaging Spec- 
troradiometer (MODIS). 

The schemes using the numeric models tend to exploit only 
one satellite scene.  These schemes enable that the results can 
be more distorted but the satellite scenes can be simply collected.  
The merging methods, on the other hand, exploit the multiple 
scenes.  These methods tend to be that the results can be more 
accurate while it takes effort to collect and combine the multiple 
satellite scenes.  Pottier et al. (2006) evaluated and compared two 
methods of ocean color data merging (i.e., the weighted averaging 
and the objective analysis) with dataset which involves chloro- 
phyll concentration from the Sea-viewing Wide Field-of-view 
Sensor (SeaWiFS), and MODIS.  They concluded that the 
weighted averaging method is more straightforward but the ob- 
jective analysis method is more accurate.  Roy et al. (2006) stud-
ied and analyzed the data set which contains the cloud occur-
rence probabilities produced by MODIS in order to examine the 
global impact of cloud.  They also composed the MODIS scenes 
within a few days for the purpose of gaining the more available 
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data.  Maritorena et al. (2010) used a semi-analytical model and 
the observations of normalized water-leaving radiance in order 
to merge the multiple scenes from the SeaWiFS, MODIS, and 
Medium Resolution Imaging Spectrometer (MERIS). 

In existing approaches, where the goal is to improve the avai- 
lability of ocean color information on a given day by merging 
multiple ocean color scenes (Pottier et al., 2006; Maritorena et al., 
2010), most have exploited scenes merged from heterogeneous 
sensors (e.g., MODIS (Esaias et al., 1998), SeaWiFS (McClain 
et al., 2004), MERIS (Rast et al., 1999) etc.  These sensors, which 
operate in polar orbits, can obtain just one or two scenes.  For 
polar orbit platforms, ocean color scenes derived from hetero-
geneous sensors are therefore merged to improve the availability 
on a given day.  In this environment, several differences in key 
parameters (e.g., the intensity of radiation, the ground sampling 
distance, and the polar orbit path) that originate from the hetero-
geneous sensors make it difficult to merge the scenes (Maritorena 
and Siegel, 2005). 

In this study, in contrast, we exploited multiple ocean color 
scenes derived from a single sensor, the Geostationary Ocean 
Color Imager (GOCI) (Han et al., 2010; Ryu et al., 2012).  
GOCI is the world’s first satellite remote sensor operating in a 
geostationary orbit that captures ocean color (Kang et al., 2004; 
Cho et al., 2010).  It produces ocean color scenes in the North- 
east Asian region at a high temporal resolution of 1 hour, eight 
times a day, and thus can provide observations of sensitive 
changes in the oceanic environment (Choi et al., 2012, Yang  
et al., 2014, and Yang et al., 2016).  In particular, the available 
coverage on a given day can be expanded by merging the eight 
hourly scenes produced by GOCI.  The composition of GOCI 
scenes can be obtained through averaging (Yang et al., 2012).  
In this paper, we focus on the quantitative improvement of data 
availability using eight GOCI observations.  Additionally, the 
changes in the amount of available data with local time and month 
series were investigated.  Finally, we were able to obtain a wider 
range of available ocean color data (i.e., chlorophyll concen-
tration) by merging eight GOCI observations. 

The rest of this paper is organized as follows.  Section 2 de- 
scribes the dataset used in our evaluations and experiments.  A 
method to calculate the available area and the results of our 
experiments are presented in Section 3.  In Section 4, we offer 
conclusions and suggestions for further studies. 

II. DATA 

GOCI is one of the three payloads on the Communication, 
Ocean and Meteorological Satellite (COMS), which was suc- 
cessfully launched at the Kourou Space Center in French Guiana 
by the Ariane 5 Launch Vehicle on 27 June 2010.  GOCI was 
jointly developed by the EADS Astrium in France and the Korea 
Aerospace Research Institute (KARI), and follows user require- 
ments from the Korea Institute of Ocean Science and Tech-
nology (KIOST). 

GOCI is equipped with six visible bands and two near- 
infrared bands.  The centers of the bandwidths are 412, 443, 490,  
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Fig. 1. GOCI raw data is composed of 16 (4 × 4) slots of which size is equa- 

valent to the GOCI IFOV (Ryu et al., 2012). 
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Fig. 2. Colored image and geographical components of the geometrically 

corrected GOCI level 1 scene. Korea, China, Japan, Russia, and 
Taiwan are covered in a GOCI level 1 scene. The geographical 
composition of the GOCI level 1 scene is divided into land (a), 
ocean (b), and the edge frame (c).  The location A indicates a sea 
area where oceanic eddies are formed frequently, B is a region 
that has a semidiurnal tide, C indicates a region that has ex-
tremely turbid water, and D is a relatively clear sea area. 

 
 

555, 660, and 680 nanometers for the visible band and 745 and 
865 nanometers for the near-infrared band.  The observation 
coverage and the ground sampling distance (GSD) of GOCI 
are a 2,500  2,500 km2 centered at 36N and 130E and 0.5 
km, respectively.  GOCI was designed to capture and transmit 
scenes every hour, eight times a day between 9:30 and 16:30 
local time (Han et al., 2010; Ryu et al., 2012). 

A raw scene observed by GOCI is composed of 16 (4  4) 
slots (Fig. 1).  The instantaneous field of view (IFOV) of GOCI  
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(a) AR0 = 0.22 (b) AR1 = 0.25 (c) AR2 = 0.30

(d) AR3 = 0.30 (e) AR4 = 0.31 (f) AR5 = 0.29

(g) AR6 = 0.21 (h) AR7 = 0.12  
Fig. 3. Changes in the available coverage and available rate, ARi, i = (0, 1, …, 7), at 9:30 (a), 10:30 (b), 11:30 (c), 12:30 (d), 13:30 (e), 14:30 (f), 15:30 (g), 

and 16:30 (h) local time on 30 August 2012.  In these scenes, the blue/white parts are ocean areas with available/unavailable data.  The average 
from AR1 to AR7 is about 0.27. 

 
 

corresponds to the field of view (FOV) of the slot area due to 
GOCIʼs two-dimensional complementary metal-oxide semicon-
ductor (CMOS) and 1,413  1,430 effective-pixel arrays (Cho 
et al., 2010).  All scenes geometrically corrected from the raw 
scenes consist of 31,648,395 pixels (5,567 width and 5,685 
height; Ryu et al., 2012).  We refer to the geometrically corrected 
scene as a GOCI level 1 scene. 

A GOCI level 1 scene can be divided into three components: 
the edge frame, the land, and the ocean area (Fig. 2).  The edge- 
frame areas refer to invalid data produced in the process of 
geometrical correction, and the land areas denote the territories 
related to Korea, China, Japan, Russia, and Taiwan.  This paper 

is concerned only with the ocean area.  The average percentages 
of the edge-frame, land, and ocean areas are about 13%, 34%, 
and 53%, and the standard deviations of these values are 0.03%, 
0.05%, and 0.08% in the GOCI level 1 scenes from January 
2012 to December 2012.  There was little change in those per- 
centages because the GOCI always captures scenes of the geo- 
graphically equivalent area due to its geostationary orbit. 

The GOCI level 2 scenes such as the cloud mask, the chlo- 
rophyll concentration, the colored dissolved organic matter 
(CDOM), and the total suspended solid (TSS) can be derived 
from the GOCI level 1 scene by the GOCI Data Processing 
System (GDPS; Ryu et al., 2012).  To achieve our goals, the  
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(a) CAR0 = 0.22 (b) CAR1 = 0.32 (c) CAR2 = 0.43

(d) CAR3 = 0.49 (e) CAR4 = 0.53 (f) CAR5 = 0.55

(g) CAR6 = 0.57 (h) CAR7 = 0.58  
Fig. 4. Changes in the cumulative available rate, CARj, j = (0, 1, …, 7) at 9:30 (a), 9:30-10:30 (b), 9:30-11:30 (c), 9:30-12:30 (d), 9:30-13:30 (e), 

9:30-14:30 (f), 9:30-15:30 (g), and 9:30-16:30 (h) local time on 30 August 2012.  In these scenes, the blue/white parts are ocean areas with 
available/unavailable data.  For example, CAR3 (d) represents the cumulative available rate for the composite scene derived from four scenes 
between 9:30 and 12:30. 

 
 

mass data are supported by the Korea Ocean Satellite Center 
(KOSC), which is the main operating agency of GOCI (http:// 
kosc.kiost.ac).  The data sizes of GOCI level 1 and 2 scenes 
are 966 megabytes (31,648,395 pixels per scene  4 bytes per 
pixel  8 bands) and 120 megabytes (31,648,395 pixels per 
scene  4 bytes per pixel), respectively.  In total, we used 3.2 tera- 
bytes of data from 1 January 2012 to 31 December 2012: (966  
120 megabytes per scene) × 8 observation per day  365 days. 

III. METHODS AND RESULTS 

In the GOCI level 2 scenes, the mask scene was exploited to 

investigate the rate of available data over the ocean area in the 
Northeast Asian region.  As mentioned, the scenes were ob-
served by GOCI at hourly intervals up to eight times every day; 
hence, the data array of a mask scene, Mi at index time i, for a 
given day is represented by  
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where n is the number of pixels corresponding to the ocean areas 
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in the mask scene, and i is the time index indicating when each 
scene is observed (Yang et al., 2012).  Here, the time indices  
(0, 1, , 7) indicate the local times (9:30, 10:30, , 16:30).  
The values of mi

x corresponding to the available and unavail-
able pixel data are 0 or 1.  The availability of pixel data is de- 
termined by a cloud detection method of KOSC standard 
atmospheric correction algorithm, which regards data as unavail-
able when the value of reflectance at 865 nanometers (the near 
infrared band) [i.e., rho_s(865)] after Rayleigh correction is 
higher than 0.028 (Moon et al., 2012; Ahn et al., 2012).  The 
available rate (AR) can be also determined by this algorithm.  
The ARi in the scene observed at i index time for a given day 
can be defined by 

 0

n
i
k

i k

m

AR
n




 (2). 

Fig. 3 shows the changes in the available coverage and the 
ARi, i = (0, 1, , 7), at each hour on 30 August 2012.  The distri- 
butions of the available coverage differ from scene to scene, and 
hence, the distributions vary with time.  It is possible to improve 
the available area for a given day by composing multiple scenes. 

We calculated the cumulative available rate (CAR), that is, 
the available rate of the composite scene from 0 to j index time 
on a given day, in order to validate improvement in the amount 
of available data using the eight GOCI observations.  The CARj 
can be defined by 
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where j is the time index when each scene is observed.  The time 
indices (0, 1, , 7) indicate the local times (9:30, 10:30, , 16:30).  
The changes in CARj, j = (0, 1, , 7) on 30 August 2012 are 
shown in Fig. 4. 

The AR for the single scene at 9:30 is about 0.22.  This 
available rate is improved by 2.23 times for CAR3 = 0.49, 
which is the CAR for the composite scene derived from four 
scenes between 9:30 and 12:30 local time; it is improved by 
2.64 times for CAR7 = 0.58, which is the CAR for the composite 
scene derived from eight scenes between 9:30 and 16:30 local 
time.  It is particularly interesting to note that the range of holes 
caused by unavailable data (white area) narrows, and the con- 
tinuously available range (blue area) widens as the cumulative 
number of composite scenes is increased. 

We also investigated how the coverage of composite scenes 
improved statistically.  The results are shown in Fig. 5.  The 
yearly averages of the CAR for GOCI data during 2012 increased 
continuously as the number of merged scenes increased.  The  
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Fig. 5.  Yearly CAR averages for GOCI data during 2012. 

 
 

yearly average CAR7 (= 0.293) for the composite scene derived 
from eight scenes from 9:30 to 16:30 was improved by about 
2.54 times relative to the CAR0 (= 0.115) for Similar to these 
results, Fig. 6 shows how the amount of available data improves 
with multiple GOCI observations.  Here, the daily availability 
of GOCI data refers to the percentage of available observations 
of the eight observations during a day.  It shows that the available 
coverage expands continuously as the number of merged obser- 
vations is increased.  From the figure, we can also see that certain 
areas are consistently available, whereas other areas are always 
unavailable.  The consistently unavailable areas around coastal 
regions are closely related to our masking algorithm (i.e., the 
KOSC standard atmospheric correction algorithm) because ex- 
tremely high turbidities on coastal regions obstruct the ocean color 
remote sensing (Ruddick et al., 2000).  For consistently avai- 
lable areas, however, we propose that the results are caused by 
the seasonal characteristics for a given data set (i.e., GOCI 
data during August 2012). 

IV. DISCUSSIONS AND CONCLUSIONS 

In this paper, we focused on how the amount of available 
data can be increased by using eight GOCI observations.  The 
experimental evaluation demonstrated that the availability of 
data was expanded by about 2.54 times in a composite scene 
derived by merging eight observations relative to a single scene.  
We also discovered that the availability in ocean color scenes 
around the Northeast Asian region is affected by changes in 
the local time and seasonal characteristics. 

Unlike the case of merging ocean color scenes from het-
erogeneous sensors such as MODIS, SeaWiFS, and MERIS, 
multiple ocean color scenes from a single sensor (i.e., GOCI) 
can be merged by averaging (Yang et al., 2012).  Analysis of 
variance (ANOVA) was performed to validate the use of daily 
averaged values for the temporal composit of the GOCI chlo-
rophyll concentration data.  The goal is to statistically verify the 
existence of excess diurnal variations in the long-term GOCI- 
derived data which may invalidate the composit data.  We col- 
lected chlorophyll concentration data from four locations (A, 
B, C, and D) for the time period of Jan-Dec, 2012, to observe  



1166 Journal of Marine Science and Technology, Vol. 24, No. 6 (2016 ) 

 

Table 1. ANOVAs for the GOCI chlorophyll concentration data from Jan. to Dec. 2012 in terms of hourly variations for 
the location points, A, B, C, and D in the Fig. 2. 

Source groups Sum of squres Degree of freedom Mean square F value Prob > F 

A 0.449 7 0.064 0.607 0.750 

B 4.331 7 0.619 0.393 0.907 

C 12.147 7 1.735 1.068 0.384 

D 0.371 7 0.053 1.143 0.336 

 
 

(a) (b) (c)

(d) (e) (f)

(g) (h)

100%

50

0

 
Fig. 6. Daily cumulative available rates, CARj, j = (0, 1, …, 7) every 9:30 (a), 9:30-10:30 (b), 9:30-11:30 (c), 9:30-12:30 (d), 9:30-13:30 (e), 9:30-14:30 (f), 

9:30-15:30 (g), and 9:30-16:30 (h) local time during August 2012.  The daily availability of GOCI data refers to the percentage of available 
observations of the eight observations during a day.  For example, 50% implies that there is one available pixel for half a day. 

 
 

the magnitude of diurnal variability (locations displayed in Fig. 
2).  The ocean chlorophyll 2-band (OC2) algorithm (OReilly 
et al., 1998; Moon et al., 2012) was applied to estimate chlo-
rophyll concentration data after the GOCI standard atmospheric 
correction (Ahn et al., 2012).  The region A indicates a sea area 
where oceanic eddies are formed frequently, B is a region that 

has a semidiurnal tide, C indicates a region that has extremely 
turbid water, and D is a relatively clear sea area. 

The results are shown in Fig. 7 and Table 1.  The results show 
that the null hypothesis that all the mean values from different 
hours are the same is not rejected (significance level, alpha = 
0.05) for every location, suggesting that there is no significant  
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Fig. 7. Hourly variations of the GOCI chlorophyll concentration data from Jan. to Dec. 2012 for locations A-D((a)-(d)) in Fig. 2.  On each graph, the 

central red line is the median, the edges of the blue box are the 25th and 75th percentiles, the black whiskers are max-min values, and red crosses 
are outliers on outside of three sigma in the normal distribution. 
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Fig. 8. Comparison between individual scenes at 10:30 (a), 11:30 (b), 12:30 (c), and 13:30 (d) and composite scenes merged by averaging at 10:30-10:30 

(e), 10:30-11:30 (f), 10:30-12:30 (g), and 10:30-13:30 (h), for chlorophyll concentrations derived from GOCI on 3 April, 2013. 



1168 Journal of Marine Science and Technology, Vol. 24, No. 6 (2016 ) 

 

10

1

0.1

C
hl

or
op

hy
ll 

co
nc

en
tra

tio
n 

(m
g/

m
3 )

Days on 2012

0 50
Winter

(d) Effects of
suspended
sediments

(a) Spring
chlorophyll

blooms

(c) Effects of
Changjiang river discharge

(b) Fall
chlorophyll

blooms

Spring Summer Winter
100 150 200 250 300 350

Location A Location DLocation B Location C

 
Fig. 9. Variations of daily composite scenes merged by averaging for 

chlorophyll concentrations derived from GOCI during 2012.  (a) 
Spring chlorophyll blooms.  (b) Fall chlorophyll blooms.  (c) 
Effects of Changjiang river discharge from the East China.  (d) 
Effects of the high suspended sediments around coastal areas 
during the winter season. 

 
 

diurnal differences in those ocean areas from the long-term per- 
spective.  The result of the test supports the primary objective 
of the temporal composit which is to monitor long-term vari-
ability with maximum data availability. 

Fig. 8 shows the availability improvements for composite 
scenes merged by averaging for chlorophyll concentrations 
derived from GOCI.  It shows that visibility improves as the 
number of merged scenes increases.  We expect that GOCI can 
be more efficiently utilized than the polar orbit remote sensors 
for monitoring a long-term (e.g., seasonal or annual) variabil-
ity of ocen colors. 

As shown in Fig. 9, we also performed an investigation to 
analyze variations of daily composite data of chlorophyll 
concentrations for four locations (Figs. 2(a)-(d)) during 2012.  
The result shows the various variability of chlorophyll con-
centrations.  First, we could show well-known spring and fall 
chlorophyll blooms (Figs. 9(a) and (b)) (Yamada et al., 2004; 
Kim et al., 2007; Yoo and Park, 2009).  In this sea area, spring 
and fall chlorophyll blooms begin few days after wind stress 
weakened (Kim et al., 2007).  Also, we could find out that high 
chlorophyll blooms occur due to the Changjiang summer fresh- 
water discharge (Fig. 9(c)) (Siswanto et al., 2008; Kim et al., 
2009).  As shown in Fig. 9(d), meanwhile, we could show that 
chlorophyll concentrations are over-estimated because of resus- 
pension of sediments around the coastal areas during the winter 
season (Kiyomoto et al., 2001; Min et al., 2012; Yamaguchi  
et al., 2012). 

Another important consideration is how the solar elevation 
angle (Bretagnon and Francou, 1988) impacts our masking al- 
gorithm (i.e., the KOSC standard atmospheric correction algo-
rithm).  The solar elevation angle means the altitude of the sun, 
the angle between the horizon and the center of the sunʼs disc.   

Surface

The range of unavailable data 
due to clouds

θ
θ

: Solar Elevation Angleθ  
Fig. 10. A diagram for illustrating the variation of unavailable data range 

due to clouds as solar elevation angle 
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Fig. 11. Changes of (a) the solar elevation angles and (b) the available rate 

(AR) for 2012 in terms of monthly and hourly averages. 

 
 

Traditionally, it is well known that the unavailable data in the 
ocean color scene derived from the satellite should increase as 
the solar elevation angle decreases as shown in Fig. 10 (Minnis, 
1989; Zhao and Di Girolamo, 2004; Ackerman et al., 2008). 

The KOSC standard atmospheric correction algorithm is 
also affected by the solar elevation angle.  The solar elevation 
angles and the ARs for 2012 are shown in Fig. 11, along with 
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monthly and hourly averages on the GOCI area.  The varia-
tions in the AR and the solar elevation angle are similar to each 
other in terms of the changes in the local time.  They tend to be 
high at mid-day (from 11:30 to 13:30 local time) and low in 
the morning (from 9:30 to 10:30 local time) and evening (from 
14:30 to 16:30 local time).  In terms of the monthly series, 
however, there are several differences between the variations 
in the ARs and the solar elevation angle, although the overall 
patterns of variation are similar.  First, the AR tends to be high 
in autumn (from August to September), and the solar elevation 
angle tends to be high in summer (from June to August).  
Second, the AR in early summer (i.e., June) decreases due to the 
rainy season.  These observations indicate that the available 
data in scenes of the ocean area in the Northeast Asian region 
are mainly affected by changes in the local time and the seasonal 
characteristics. 
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