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ABSTRACT 

Seaweed and seagrass beds are an important ecosystem in 
coastal zones.  However, they are degrading because of various 
causes, such as the anthropogenic impacts of coastal develop- 
ment, aquaculture, overharvesting, and climate change.  To con- 
tribute to the research related to coastal blue carbon and marine 
biodiversity as well as conservation and sustainable manage- 
ment of natural resources in coastal regions, the spatial dis-
tribution of benthic cover derived from satellite images can be 
the most practical tool for monitoring seaweed and seagrass beds.  
This study aimed at mapping the latest distribution of seaweed 
and seagrass in Thailand using Landsat 8 images.  Thus, we de- 
veloped a classification method that includes regional segmen- 
tation by ISODATA clustering, analysis of optical and textural 
properties, and classification using a decision tree.  First, a subset 
of images, including those of the Sirinat National Park in Phuket, 
Southern Thailand, was extracted from the Landsat 8 full-scene 
images as a training site for the development of a classification 
method.  Then, the developed method was evaluated by com- 
paring the classification result to a visual interpretation result.  
The classification and visual interpretation results were found 
to be consistent to each other with a 98% total accuracy.  Next, 
the method was applied to the Landsat 8 full-scene image, and 
quality assessment was conducted at two different water-type 
areas: Patong Beach and Tang Ken Bay.  At Patong Beach, which 
has clear seawater, the classification result was consistent with 
the result of the training site.  However, in the Tang Ken Bay, 
where the seawater is turbid, misclassification of the result evi- 
dently occurred.  It is believed that the segmentation sizes were 
not appropriate for benthic cover distributed over small areas, 

and that the thresholds utilized in the decision tree were not 
suitable for turbid water. 

I. INTRODUCTION 

Seaweed and seagrass beds are well known as an important 
ecosystem in coastal zones through variety of functions, such 
as nurseries, shelters, and foods (Prathep, 2005; Adulyanukosol 
and Poovachiranon, 2006; Prathep et al., 2010; Petsut et al., 
2012).  However, they are degrading because of various causes, 
such as the anthropogenic impacts of coastal development, aqua- 
culture, overharvesting, and climate change (Prathep et al., 2010; 
Petsut et al., 2012).  The spatial distribution of benthic cover 
derived from satellite images can contribute to the research re- 
lated to coastal blue carbon (Prathep, 2012) and marine bio-
diversity as well as conservation and sustainable management 
of natural resources in coastal regions.  Therefore, this study 
aims to map the latest distributions of seaweed and seagrass in 
Thailand using Landsat 8 images. 

In recent similar studies, Tamondong et al. (2013) showed that 
benthic cover can be accurately classified into dense and less 
dense seagrass, sand/rubbles, and corals/seaweed using high- 
resolution multispectral data.  Water column correction using 
bathymetric data was necessary for accurate classification.  
Yahya et al. (2010), Komatsu et al. (2012), and Noiraksar et al. 
(2014) introduced the depth invariant index (DII) proposed by 
Lyzenga (1981) to benthic cover classification, such as for the 
identification of seaweed and seagrass.  DII suitably corrects water 
column effects without requiring bathymetric data.  However, 
there is a limitation to the accurate classification of benthic 
cover because the data used for classification (DII) is only one 
dimensional.  Roelfsema et al. (2013) showed that benthic cover 
can be classified into seven categories, including seagrass species 
and density, by object-based classification using high-resolution 
multispectral data without water column correction.  Although 
Lyons et al. (2010) also applied object-based classification to 
middle resolution multispectral data, benthic cover was classi- 
fied into only three categories of seagrass density.  It has not been 
proven that object-based classification is appropriate to middle 
resolution data for benthic cover classification.  In addition, 
object-based techniques are not generalized for wide use because 
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they rely somewhat on the functions of the specific application 
software. 

The mapping method being developed in this study can be 
applied to middle resolution data, accurately classifying benthic 
types such as seagrass, seaweed, and coral reefs.  By applying 
water column correction without utilizing bathymetric data for 
considering limited information, the method can map sustain- 
ably using common rules based on an understanding of the op- 
tical and textural properties of seagrass and seaweed. 

We propose a classification method that includes ISODATA 
clustering, analysis of optical and textural properties, and clas- 
sification using a decision tree.  In this paper, we show investi- 
gative results by applying the method to study sites in Phuket, 
Southern Thailand. 

II. METHODOLOGY 

1. Study Site and Data 

The study site was selected in the coastal region, including 
Sirinat National Park in Phuket, Southern Thailand.  The seawater 
is clear because sediment does not run off, and seagrass habitats 
are widely distributed.  The satellite data utilized for this study 
were Landsat 8 OLI, Level 1T products (geometrically corrected 
using DEM and GCPs), which were acquired on December 23, 
2013 and downloaded from the U.S. Geological Survey.  The data 
were selected under the conditions of least cloud cover and 
lowest effect of sun glare among all scenes in the past year. 

2. Pan-Sharpening and Masking 

Fig. 1 shows a flowchart of the data analysis.  Before start-
ing this analysis, the geometric accuracy of the Landsat data 
was examined by comparing them with SWBD (SRTM Water 
Body Data).  Then, pan-sharpening was performed in order to 
extract the benthic texture properties.  For this process, band 2 
(450-515 nm), band 3 (525-600 nm), and band 4 (630-680 nm) 
were utilized along with band 8 (500-680 nm).  These bands 
were selected for conditions in which both the multispectral and 
panchromatic bands could detect reflectance from seafloors, 
and the spectral wavelength range of the panchromatic band 
fully covered the total range of multispectral bands because con- 
sistency in the ranges of these bands is necessary for avoiding 
spectral distortion.  Likewise, band 1 (433-453 nm) was excluded 
because its spectral wavelength range was beyond of the range 
of band 8.  Principal Component Analysis was adopted as a 
pan-sharpening technique that retains the original spectral 
characteristics (Kakuta et al., 2014).  Meanwhile, mask data for 
land and deeper water were created from the multispectral data 
in order to extract shallow water.  At first, a gray-level image 
was created by computing an equation (band 5-band 3) / (band 
5  band 3) that enhances the contrast between water and other 
features.  Then, image-thresholding was applied to the gray-level 
image to create a binary image (land mask).  A deeper water mask 
was created using a 3-km buffer toward the ocean from the 
coastlines of the land mask. 
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Fig. 1.  Flowchart of the data analysis. 

 

3. Water Column Correction 

After extracting the shallow water, water column correction 
was performed on pan-sharpened data by computing the Bottom 
Index (BI) (Matsunaga et al., 2000), which is an algorithm 
developed based on the Lyzenga equation (1978) to minimize 
the water depth effect on the satellite data.  BI is given by the 
following equation: 

 ln( ) *ln( )ij i i ij j jBI L L k L L      (1) 

where i and j are band numbers.  BIij is BI computed from a 
combination of bands i and j.  Li and Lj are pixel values of bands i 
and j.  L i  and L j are constant values of bands i and j to remove 
both the path radiance and electronic offsets.  kij is an extinc-
tion coefficient ratio of bands i to j.  kij is determined as a gra- 
dient given by a regression analysis between two bands.  Li 
and Lj, the pixel values used for the regression analysis, were 
sampled at the sand bottom at various depths, and natural 
logarithms were applied after removing any offsets.  The sand 
bottom was sampled by transecting the coasts in the study area 
through visual interpretation.  L i and L j, the constant values 
used to remove both the path radiance and electronic offsets, 
were determined as values of the left ends of the histograms  
of bands i and j for the whole masked-out land image.  In this 
study, all combinations of bands 2, 3, and 4, to which pan- 
sharpening was already applied, were utilized (bands i and j as 
are indicated as BIij). 

4. Regional Segmentation by ISODATA Clustering 

Regional segmentation in shallow water was performed by 
the ISODATA clustering technique using BI23, BI24, and BI34.  
The ISODATA clustering technique was adopted because it is 
one of classic and practical methods for regional segmentation 
that groups similar colored pixels into a cluster.  Before processing 
the clusters, BI23, BI24, and BI34 were treated with a smoothing 
filter in order to remove noise and reduce small clusters.  The 
smoothing filter was implemented by computing the median 
values of local moving windows (7  7) in a full image.  The win- 
dow size was the largest size for the condition in which segments, 
including seagrass areas, could be separated from sand or rocks 
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by ISODATA clustering.  Seagrass and seaweed were sometimes 
classified into the same category by applying ISODATA clus- 
tering because they indicate similar optical properties.  How- 
ever, there was a possibility that seagrass and seaweed could 
be distinguished from each other based on the different con-
ditions of those habitats.  Therefore, non-neighboring clusters 
classified into a same category were separated from each other 
and classified based on textural properties. 

In the next step, BI23, BI24, and BI34 not treated with a 
smoothing filter were treated with a standard deviation (SD) 
filter in order to extract the benthic textural properties.  The SD 
filter was implemented by computing the SD values of local 
moving windows (3  3) in a full image.  The SD value in each 
local window represented the non-uniformity of brightness, 
which equally indicated a spatial heterogeneous distribution of 
benthic types.  The window size was the smallest size to mini- 
mize image blurring.  After that, statistics for all clusters were 
computed using BI23, BI24, and BI34 not treated with the 
smoothing filter and those BIs treated with the SD filter. 

5. Decision Tree Classification 

A training site that included Sirinat National Park in Phuket 
was separated from the full scene in order to build a decision 
tree.  Clusters of seagrass, coral reefs, sand, and ocean (water 
surface without reflection from sea floors) were identified and 
extracted from the subset image by referencing ground survey 
data in 2014 (called “teacher clusters”).  A decision tree for ben-
thic type classifications was built from teacher cluster statistics 
by understanding the optical and textural properties. 

By using the decision tree and cluster statistics, benthic types 
at the training site were classified into the four categories of sea- 
grass, coral reefs, sand, and ocean.  Thresholds in the decision tree 
were derived objectively in order to be generally applied to 
other areas.  The benthic type classification result was qualitatively 
compared with a visual interpretation result of ISODATA clusters.  
A quantitative comparison was also performed using a confu-
sion matrix with a pixel base. 

After examining the validity of the decision tree by accu-
racy assessment, a benthic type map was obtained by applying 
the decision tree to the full scene. 

III. RESULTS AND DISCUSSION 

1. Optical and Textural Properties of Benthic Types 

Fig. 2 shows (a) a pan-sharpened false color composite image, 
(b) BI color composite image and approximate locations of ben- 
thic types, and (c) BI color composite image treated with an 
SD filter.  Differences between the benthic types can be easily 
recognized by the different color tones in (b), whereas the dif- 
ferences can hardly be recognized in (a).  Differences between 
the seagrass and coral ridge can be recognized in (c).  These fea- 
tures were examined using the teacher cluster statistics. 

Fig. 3 shows normalized mean value of teacher clusters in 
(a) BI and (b) BI treated with an SD filter.  The mean values of 
BI and BI treated with an SD filter were normalized for (a) and  
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Fig. 2. Training site: (a) pan-sharpened false color composite image, (b) 

BI color composite image, (c) BI color composite image treated 
with SD filter. 
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Fig. 3. Normalized mean values of teacher clusters in (a) BIs and (b) 

BIs treated with SD filter. 

 
 

(b) in order to standardize the dynamic range in each BI by com- 
puting (  0) / 0, where μ is the mean value of a cluster, μ0 is 
the mean value of all clusters, and 0 is the standard deviation 
of all clusters. 

In Fig. 3(a), there is a tendency for the mean values of ocean 
to be the highest in BI23 (B) and the lowest in BI34 (R) among 
all benthic types.  By contrast, there is a tendency for the mean 
values of sand, coral reef, and seagrass to show opposite pat-
terns to those of ocean in BI23 (B) and BI34 (R).  These ten-
dencies are consistent with Fig. 2(b). 

In Fig. 3(b), there is a tendency for the mean values of sea- 
grass to be the highest in BI23 (B) and BI24 (G) and lower in 
BI34 (R) among all benthic types.  By contrast, there is a ten-
dency for the mean values of coral reef to show opposite pat-
terns to those of seagrass in BI23 (B), BI24 (G), and BI34 (R).  
These tendencies are consistent with Fig. 2(c). 

2. Classification Results Using Decision Tree 

The decision tree shown in Fig. 4 was built based on the  
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Fig. 4.  Decision tree for benthic type classification. 
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Fig. 5. (a) A benthic type classification result using decision tree and  

(b) a visual interpretation result of ISODATA clusters. 

 
 

properties of the teacher clusters.  BI23 and BI24 indicated in the 
decision tree are the mean values of each cluster in BI23 and 
BI34, respectively.  SD-BI34 is the mean value of each cluster in 
BI34 treated with an SD filter.  All thresholds were computed 
using the Otsu method (Otsu, 1979).  Fig. 5 shows (a) a benthic type  
classification result using the decision tree and (b) a visual inter- 
pretation result of ISODATA clusters based on the properties of 
teacher clusters.  The interpretation result was used for accuracy 
assessment. 

3. Accuracy Assessment of Training Site 

According to Fig. 5, seagrass in deeper water is classified in 
the classification result.  However, it is not classified in the in- 
terpretation result.  Except for the partial differences, the distri- 
butions of all benthic types are nearly identical. 

Table 1 shows a confusion matrix for quantitative compa- 
rison of the benthic type classification result with the visual inter- 
pretation result.  Producer’s accuracy (PA) is a percentage of 
the number of correctly classified pixels to the number of all 
interpreted pixels in a benthic type.  User’s accuracy (UA) is a 
percentage of the number of interpreted pixels to the number 
of all classified pixels in a benthic type.  The value in the bottom 
right cell of the table is the total accuracy, which is a percen- 
tage of the total number of correctly classified pixels to the total 
number of pixels.  As a result, the UA of seagrass has a lower 
accuracy (77%) than the others because the classified seagrass  

Table 1. A comparison of the benthic type classification 
result with the visual interpretation result. 

DT-Classification 
Accuracy 

Seagrass Coral reef Sand Ocean
Total (pix) PA

Seagrass 3,582 235 9 0 3,826 94%
Coral reef 802 6,082 53 3 6,940 88%

Sand 2 388 9,815 0 10,205 96%

In
te

rp
re

- 
ta

ti
on

 

Ocean 292 231 36 92,251 92,810 99%
Total (pix) 4,678 6,936 9,913 92,254 113,781  

UA 77% 88% 99% 100%  98%
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Fig. 6. Patong Beach: (a) pan-sharpened false color composite image,  

(b) BI color composite image, (c) BI color composite image 
treated with SD filter. 

 
 

0     2 km

(R = BI34, 
G = BI24, B = BI23)

(a) (b) (c)

(R = BI34,
G = BI24, B = BI23)

(R = Band 4,
G = Band 3, B = Band 2) 

 
Fig. 7. Tang Ken Bay: (a) pan-sharpened false color composite image, 

(b) BI color composite image, (c) BI color composite image treated 
with SD filter. 

 
 

included interpreted coral reef.  However, the total accuracy 
(98%), PA of all benthic types (more than 88%), and UA except 
seagrass (more than 88%) have very high accuracy; therefore, 
it was confirmed that the classification result is valid. 

4. Benthic Type Map for Other Areas: Patong Beach and 
Tang Ken Bay 

After examining the validity of the decision tree, a benthic 
type map was obtained by applying the decision tree to the full 
scene.  The thresholds were not recomputed for the full scene. 

Figs. 6 and 7 show (a) a pan-sharpened false color composite  
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Fig. 8. Benthic type classification result from (a) Patong Beach and  

(b) Tang Ken Bay. 

 
 

image, (b) BI color composite image, and (c) BI color composite 
image treated with an SD filter at Patong Beach and Tang Ken 
Bay, respectively.  There are significant differences in color tones 
between Figs. 6(b) and 7(b), whereas no great differences in 
the tendencies of color tone or texture are found in pairs 6(a), 
7(a) and 6(c), 7(c), except that the color tone in 7(a) is brighter 
than in 6(a). 

Fig. 8 shows the benthic type classification results for (a) 
Patong Beach and (b) Tang Ken Bay.  The benthic type dis-
tribution in Fig. 8(a) is consistent with the classification result 
for the training site, whereas 8(b) is evidently misclassified.  It 
is believed that there are two reasons why seagrass and coral 
reef were misclassified despite the fact that those distributions 
could be visually recognized in Figs. 7(b) and 7(c).  The first 
reason is that the seagrass distribution areas were very small.  
Seagrass areas were merged with other neighboring benthic cover 
clusters, such as sand, after smoothing filtering and ISODATA 
clustering.  The statistics for clusters including seagrass indicated 
different values from those of the seagrass teacher clusters.  Con- 
sequently, those clusters were misclassified.  The second reason 
why coral reef caused misclassification is that the statistics for 
those clusters indicated different values from those of the teacher 
clusters after being affected by turbid water, even though coral 
reef areas were successfully clustered.  Accordingly, improve- 
ment in the developed method is needed so that it can apply 
not only to clear water but also to turbid water.  For improve- 
ment of the misclassified area, a different set of extinction co- 
efficient ratio kij and thresholds is needed in the decision tree 
for turbid water (Fig. 4).  Moreover, prior to classification, the 
entire image needs to be separated into two or more parts, where 
the value of kij is assumed homogeneous.  For future work, a pre- 
computed database for the determination of kij and decision 
tree thresholds needs to be developed for several types of 
water in Thailand. 

IV. CONCLUSIONS 

A method for benthic type classification was developed for 
seaweed and seagrass mapping at the study site under suitable 
conditions in Phuket, Southern Thailand.  The validity of the me- 
thod was confirmed by comparing the classification result with 
a visual interpretation result from ISODATA clusters.  The ac- 

curacy assessment indicates that the classification result is valid 
with a total accuracy of 98%.  After examining the validity of 
the decision tree, a benthic type map was obtained by applying 
the decision tree to the full scene.  The classification results were 
examined in other areas: Patong Beach and Tang Ken Bay.  At 
Patong Beach, where the seawater is clear, the site was clas-
sified as it was for the training site.  However, the other site was 
evidently misclassified.  It is believed that regional segmen-
tation by ISODATA clustering after treatment with a smooth-
ing filter was not appropriate for benthic cover distributed over 
small areas.  In addition, the thresholds utilized in the decision 
tree were not appropriate for turbid water.  For future work, there 
is a possibility that benthic cover such as seagrass distributed 
with small areas can be correctly classified when those areas 
are classified using optical information after extraction using 
textural information.  Moreover, a pre-computed database for 
the determination of kij and the decision tree thresholds needs 
to be developed for several types of water in Thailand. 
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