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ABSTRACT 

In this paper, we propose a novel global sliding mode controller 
(SMC) for an uncertain linear time-varying second order system.  
The proposed controller was implemented on the underwater 
vehicle (UV) with uncertainty of bounded parameters and dis- 
turbances within limited control input.  By applying the proposed 
controller to the second-order UV system, the arrival time at the 
reference position and the maximum allowable acceleration are 
expressed in a closed-form equation if ranges of parametric un- 
certainties and reference inputs are specified.  The closed-form 
equation can be utilized in designing the capacity of vehicle sys- 
tems with the condition of the minimum arrival time to the tar- 
get position.  The superior performance of the proposed control 
scheme is validated through computer simulation.  The simula- 
tion results show that this proposed controller forces the UV to 
track the designed time optimal trajectory very well, even with 
uncertainties.  Its robustness can be guaranteed if bounds of the 
uncertainties are known. 

I. INTRODUCTION 

Nowadays, autonomous underwater vehicles (AUVs) have 
become a main tool for surveying the undersea for scientific, 
military, and commercial applications.  Despite of the consider- 
able improvement in AUV performance, AUV technologies are 
still an attractive challenging field to scientists and engineers.  
Multiple AUVs and underwater docking are recent challenging 

issues in the field of AUV technologies (Fiorelli et al., 2004; 
Stokey et al., 2001).  Deam and Given (1983) summarized the 
vast research on the ROV, and proposed five steps to develop 
ROV.  Stewart and Auster (1989) submitted a low-cost technol-
ogy for developing the ROV, which is helpful to designers in 
related fields.  Out of many issues, study on optimal time or op- 
timal energy one is important due to the existing problem of li- 
mitation of battery loading in the UV.  However, only a number 
of studies on the topics of time-optimal and energy-efficient 
maneuvers for the AUVs have been studied.  Recently, Chyba 
et al. (2008a, b) presented a numerical method for designing 
the time-optimal trajectory (Chyba et al., 2008a) or the weighted 
consumption and time-optimal trajectory (Chyba et al., 2008b).  
However, they are the results of a numerical solver which is dif- 
ficult to use.  An analytical solution for this issue is expected, 
and is a new challenge. 

Moreover, studying on motion control of UVs has attracted 
attention of many researchers in recent years.  In particular, depth 
control is one of the important issues, indispensable to any AUV.  
The controllers based on PID techniques have advantages such 
as: simple, easy to design and to apply (Prestero, 2001).  However, 
they have poor robustness in face of uncertainties, particularly 
in model uncertainty.  To meet the requirements to improve the 
performance of AUVs, especially in robust control area, advanced 
control theories have been studied such as: LQG/LTR, H (Moreira 
and Guedes Soares, 2008); adaptive nonlinear controller to take 
free pitch motion (Li and Lee, 2005); and diverse approaches 
towards the sliding mode control (SMC) such as typical SMC 
(Healey and Lienard, 1993), adaptive SMC using linear vehicle 
model (Cristi et al., 1990), SMC using simplified nonlinear model 
(Rodrigues et al., 1996), high order SMC (Salgado-Jimenez et al., 
2004), and optimal SMC (Josserand, 2006).  The simple control- 
lers designed on the basis of such a model without considering 
the effect of uncertainties may face the problems of stability and 
bad performance in actual operation.  The global sliding mode 
method allows designers not only to overcome these issues but 
also to be able to keep the controller’s performance within de- 
sired boundaries in face of input and output disturbance (such 
as an underwater current), sensor noises, etc.  Furthermore, for  
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Fig. 1.  Body-fixed and inertial coordinate systems. 

 
 

underwater vehicle robustness, the energy issue is important.  
By applying proposed SMC, the robustness along with efficient 
energy trajectories (EETs) of UV would be achieved. 

In this paper, new approach is proposed in finding the EETs, 
together with a robust tracking controller.  An analytical me- 
thod, not a numerical method, is used to find the optimal trajec- 
tory for the depth control of the UV.  The result of the control 
action is given in closed-form expressions.  The use of such func- 
tions increases the controller’s automatic ability, and helps to 
avoid the weaknesses of the numerical method.  For the depth 
controller for the UV, sliding mode control method is applied 
and its desired trajectory is designed as optimal time or energy 
efficiency as long as its references (inputs) are the time-optimal 
or EETs.  The simulation results show that this proposed control- 
ler forces the UV to track the designed time optimal trajectory 
very well, even with uncertainties. 

II. EQUATIONS OF UV MOTION 

1. Assumptions 

The dynamic equations of UV are used in the design process 
of the optimal trajectories and EETs.  These dynamic equations 
are given with the following assumptions: 

 
(1) The vehicle is deeply submerged in a homogeneous, un-

bounded fluid (the vehicle is located far from free surface- 
no surface effects). 

(2) The effects of the vehicle passing through its own wake are 
ignored. 

(3) The vehicle propeller is a source of constant thrust and its 
torque is small, thus ignored. 

(4) Only the depth motion is considered in this paper. 

2. Depth Motion of UV 

To derive the dynamic equations for an UV, the two coordi- 
nate systems are defined as indicated in Fig. 1.  The coordinate 
EXYZ represents the Earth-fixed coordinate system and the co- 
ordinate Bxyz, which is attached the center of buoyancy of an UV, 
represents the body-fixed coordinate system.  In the body-fixed 
coordinate system, the positive x-direction is the longitudinal 
axis directed from the stern to the bow, the positive y-direction 

is the transverse axis directed to the starboard, and the positive 
z-direction is the normal axis directed from the top to the bottom.  
The six Degrees of Freedom (DOF) nonlinear equations of mo- 
tion for an UV are described in Fossen (1994). 
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  (1) 

where, m denotes the mass of a vehicle and Iij are the moments 
of inertia for each axis of subscripts; xG, yG, and zG denote the 
vehicle’s mass center; X, Y, Z, K, M, and N denote the external 
forces and moments acting on the vehicle represented in the body- 
fixed coordinate system.  These equations that are including the 
hydrodynamic forces and moments can be expressed in a more 
compact form as Eqs. (2)-(4). 

 ( ) ( ) ( )v v v v vM v C v v D v v G       (2) 

 v RB AM M M   (3) 

 ( ) ( ) ( )v RB AC v C v C v   (4) 

where  is the body-fixed linear and angular velocity vector; 
M is the inertia matrix of the underwater vehicle; C is the 
Coriolis and centripetal terms of the underwater vehicle; D is 
the hydrodynamic lift and damping matrix; G represents the 
restoring forces and moments;  is a generalized vector of ex- 
ternal forces and moments. 

Full equations of motion of an underwater vehicle can be found 
as shown in Eq. (1).  However, in this paper, we just focus on 
depth control.  So, the nonlinear second order differential equa- 
tion representing pure depth-plane motion of the vehicle is ex- 
pressed as: 

 | |( ) | | ( )w w w zpropm Z w Z w w W B T       (5) 

where m, Zẇ, w, Zw|w|,W, B, Tzprop are mass of UV, added mass 
coefficient, the instantaneous velocity, cross-flow drag coeffi- 
cient, the weight of UV, the buoyancy force and thrust force, 
respectively. 
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Eq. (5) can be rearranged as: 

 | |( ) | | ( )w w w zpropm Z z Z z z W B T         (6) 

where z w  
By-setting wA m Z   , | |w wC Z  , N B W   and U = 

Tzprop, Eq. (6) becomes: 

 | |Az Cz z N U      (7) 

where A is the combined mass coefficient, C > 0 cross-flow 
drag coefficient, N net buoyancy, U thrust force, and z depth. 

III. DESIGN ENERGY EFFICIENT 
TRAJECTORIES 

In Loc et al. (2014), the vehicle is propelled at a high velocity, 
and comes very close to the destination before entering the de- 
celeration period.  This way helps the vehicle move quickly to 
the destination; however, it obliges the vehicle to use a high re- 
verse force (U1) to brake the velocity quickly in the decelera-
tion period, in order to stop right at the destination at the end of 
this period.  This method brings the benefit of saving time, but 
wastes energy.  It could not utilize the accumulated kinetic en- 
ergy, but also spend more energy to eliminate it - a double waste. 

In this study, we just discuss EETs applied for driving the ve- 
hicle in mode of moving down.  Because the vehicle buoyancy 
is usually made slightly greater than the vehicle weight (the po- 
sitive net buoyancy, N = B  W > 0, allows the vehicle to float 
to the surface in the event of a failure), in mode of moving up, 
the best energy-saving control way is to turn off all the thrusters 
and let the vehicle float slowly to the desired position.  For 
EETs, our control strategy is to use the thrust force at which the 
efficiency of thruster(s) is maximum, named the highest effi-
cient thrust force U2 (the corresponding net force F2), in the 
constant velocity and acceleration periods; and not to use any 
reverse thrust force, i.e., the thrust force U1 is zero (net force 
F1), to brake the vehicle velocity in the deceleration period.  
We will let the vehicle drift to the destination without propulsion 
in the latter period.  We have F1 = U1  N = -N, F2 = U2  N.  
With this strategy, the travel time is longer; in return, the energy 
consumption is minimized. 

We will design EETs for the vehicle when it moves from the 
beginning depth z0 at time t0 (z0, t0 = 0) to the ending depth ze  
at time te (ze > 0).  At both these depth levels, the vehicle is  
at rest ( 0 0( ) 0, ( ) 0e ez t v z t v     ).  Depending on the value 

ze, there are two plans for the course of the velocity z .  Plan I: 
if ze is large, ż will increase from zero to the critical value vm 
(acceleration period), and it will stay at this value for a certain 
period of time (constant velocity period), and then decrease to 
zero right at the ending time te (deceleration period).  Plan II:  
if ze is small, z  will increase from zero to a certain value, not 
greater than vm, (acceleration period), and then decrease to zero 
right at the ending time te (deceleration period).  Plan II does 

not have the constant velocity period.  In both plans mentioned 
above, the vehicle velocity is always non-negative.  So, we can 
rewrite Eq. (5) as follows: 

 2Az Cz N U     (8) 

Setting net force: 

 F U N   (9) 

Eq. (8) becomes: 

 2Az Cz F    (10) 

Assuming that U1  U  U2, we have F1  F  F2 (U1, F1 < 0 

designed reverse forces, U2, F2 < 0 designed forward forces).  
EETs can be obtained by solving Eq. (10) either with F = F1 

(corresponding to U = U2) for the constant velocity and accelera- 
tion periods or with F = F1 (U = U1) for the deceleration period. 

1. EFTs with the Constant Velocity and Acceleration  
Periods 

Eq. (10) is rewritten as follows: 

 2
2d dAz Cz F    (11) 

The constraints for these periods are: A, C, F2 > 0; and dz , 

dz   0.  At the beginning time t0, the initial conditions are: dz  

(t = t0 = 0) = v0 = 0, and zd (t = t0 = 0) = z0 = 0.  Here, t denotes 
the variable of time. 

Setting 

 ( ) 0dz u t   (12) 

we have: 

 
( )

d

du t
z

dt
  (13) 

Substituting Eqs. (12) and (13) into Eq. (11) yields: 

 2
2

du
A F Cu

dt
   (14) 

If 2
2 0F Cu  , from Eq. (14), we have 

 
2

2

du
A dt

F Cu



 (15) 

or 

 
2

2 /

A du
dt

C u F C





 (16) 
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Finding the antiderivative of each function at both sides of 
Eq. (16), we obtain: 

 2
1

2 2

2 /
ln 1

2 /

F CA
t c

CF u F C


  


 (17) 

From Eq. (11), we have 2
2 2  Fd dCz F Az    .  So, u = 

2  / .dz F C  Therefore, Eq. (17) can be deduced as follows: 

 2
1

2 2

2 /
ln 1

2 /

F CA
t c

CF u F C

 
   
  

 (18) 

Solving for u in Eq. (18), we have the expression of velocity 
as follows: 

 2
2

2 1

2 /
/

1 exp 2( . / )( )
d

F C
z u F C

C F A t c
  

    
  (19) 

From Eq. (19), we can easily deduce: 
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  (20) 

If 2
2 0,F Cu   we have: 

 2
2 /u F C  (21) 

or 

 2( ) / constantdz t u F C    (22) 

2 /dz F C  in Eq. (22) is accepted if the initial time is de- 

noted by t1 instead of t0, t1  t0, and the following initial condi- 

tions are satisfied: dz (t1) = v1= 2 /F C = vm (critical velocity), 

and zd (t1) = z1.  In fact, this is a particular case in which the ve- 
locity has reached the critical value.  At this time, the net force is 

balanced with the drag force 2
dCz , the vehicle velocity no longer 

changes and stays at the critical velocity 2 /F C .  So, the vehi-

cle acceleration is zero and the vehicle depth increases linearly 
with time. 

 
2

2 3

3 1 2 1

( ) 0

( ) /

( ) /

/

d

d

d

z t

z t u F C

z t F Ct c

c z F Ct




 


 
  




 (23) 

2. EETs with the Deceleration Period 

Eq. (10) is similarly rewritten as follows: 

 2
1d dAz Cz F    (24) 

The constraints for this period are: A, C > 0; F1 < 0; dz   0; 

and dz   0.  Assuming that t2 is the initial time of this period, the 

corresponding initial conditions are: dz (t2) = v2 > 0, and zd(t2) = 

z2.  Solving Eq. (24), we have the expressions of ,dz  dz  and dz  

as follows: 

 

   

1 4 5

1 1 4

2
1 1 4

4 1 2 1 2

5 2 1 2 4

( ) ( / ) ln cos ( / )( )

(t) / tan ( / )( )

(t) ( / ) cos ( / )( )

arctan /

( / ) ln cos ( / )( )

d

d

d

z t A C CF A t c c

z F C CF A t c

z F A CF A t c

c A CF v F C t

c z A C CF A t c
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        
       

     

       



  (25) 

The profiles of the EETs for Plan I and Plan II are described 
in Loc et al. (2014).  The ending depth ze of vehicles in Plan I has 
large value (long travel distance) and satisfies the inequality: 

* * *
1 3e ez z z z    .  Otherwise, the ending depth ze of vehicles 

in Plan II has small value (short travel distance) and satisfies the 

inequality: *
e ez z .  Where, *

1z  is the distance travelled during 

the period from the initial time t0 to the time *
1t  when the vehicle 

velocity just reaches the maximum value *
1v  (or vm), and *

3z  is 

the distance travelled during the period from the time when the 
vehicle velocity starts decreasing from the maximum value vm 
to the ending time te when it just falls to zero. 

If *
e ez z  (long range), Plan I trajectories can be divided into 

four segments in a sequence and the optimal times, velocities, and 
depths of each segment are expressed as follows: 

 

1 1

2

*
*

2 1

3 4

1
ln

12

( )e e

m

e

A
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CF

z z
t t

v

t t c




       
   

   



 (26) 
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The value of  is verified by experiments by selecting the op- 
timal value so that the time when the velocity, in the mathe-
matical model, reaches .  vm is equal to the time when the 
velocity, in reality, reaches vm.  That time is *

1t . 
In the short range case, Plan II trajectories are used and they 

can be divided into three segments in a sequence.  Similar to the 
Plan I trajectories, the expressions of the optimal times, veloci-
ties, and depths of each segment are calculated as: 

 

1 2 1

2

1
3 1

1 1

ln
2

arctan  
/

e

A
t t X c

CF

vA
t t t

CF F C

   



          

 (29) 

 

2
1 1

2
1 1

2
( )

1 2 2 2
( )

3

1
=v = /   

1

0

CF
t c

A

CF
t c

A

e

e
v F C

e

v v






  




  

 (30) 

 
1 1 1

3

( )

( )

d

e

z z t

z z given





 (31) 

In order to solve the above equations, the expressions of the 

values such as: *
3z , X, n, , and l can be calculated sequentially 

as: 

  * 2
3 2 1( / ) ln 1 1 /( / )e mz z z A C v F C        (32) 

 2 1X n n    (33) 
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Fig. 2.  Depth motion control system block diagram of UV. 
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Moreover, to find t1, we must solve 1 1 1( )dz t v .  However, 

mathematically, 1( )dz t  converges exponentially to the maximum 

value vm as t tends to infinity.  So, we cannot set v1 = vm to find t1.  

Instead, we will set v1 nearly equal to vm as 1 2 / mv F C v  , 

with  < 1 and   1. 

IV. TRACKING CONTROLLER 

1. Control Algorithm 

In this section, we present designing a tracking controller us- 
ing sliding mode method.  The depth trajectory tracking control 
can be described by the control system block diagram shown 
in Fig. 2.  The model of thruster(s) (actuator) is ignored.  The 
block “UUV” contains the depth motion model of the vehicle.  
The inputs of the block “Trajectory Generator” are the begin-
ning and ending velocities and depths.  This block calculates the 
optimal trajectories and sends them to the block “Tracking Con- 
troller”.  This block contains our controller which determines 
the control force U required to drive the vehicle for tracking the 
desired trajectories.  Under this control strategy, the UUV will be 
driven to the desired depth effectively. 

The depth motion model of the UV with uncertainties is as 
follows: 

 | |Az Cz z N U D       (37) 

In Eq. (37), A, C, N are parametric uncertainties, estimated 

as ˆ ˆ ˆ,  ,  A C N , respectively.  Assuming that min maxA A A  , we 

have max min
ˆ ( ) / 2A A A  , and A = (Amax  Amin)/2, Likewise 

for ˆ ˆ,  , C C N , and N.  D is disturbance, estimated as D̂ .  As- 

suming that d D d   , we have ˆ 0D  , and 0D d   . 

2. Sliding Mode Control Law 

The sliding mode method is based on the idea of keeping 
the scalar quantity s, which is a weighted sum of the position 
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error ( )dz z , the velocity error ( )dz z  , and (not required) 

the acceleration error ( )dz z  , at zero (Slotine and Li, 1991).  

Here, the expression of s is chosen as in Eq. (38): 

 ( ) ( )d ds z z z z      (38) 

where  > 0 is the weight parameter and it must be chosen to 
be “small” with respect to high-frequency un-modeled dyna- 
mics (such as un-modeled structural modes or neglected time- 
delays).  The value of  is selected based on the frequency range 
of un-modeled dynamics. 

Therefore, the task of the controller is to take s to zero.  When 
s approaches zero, position error (and velocity error, also) ap- 
proaches zero too, and thus, trajectory tracking is performed.  
Once s is zero, to keep it at this value, the derivative of s is 
expected to be zero.  From Eq. (38), the expression of s  can be 
easily deduced as follows: 

 ( ) ( )d ds z z z z         (39) 

Substituting the expression of z  deduced from Eq. (37) into 
Eq. (39): 

 
1

( | | ) ( )d ds Cz z N U D z z z
A

              (40) 

To achieve 0s  , we choose control law as: 

 | | ( )d dU Cz z N Az A z z D           (41) 

Because the parameters C, N, A, and D are unknown and re- 

placed by their estimation Ĉ , N̂ , Â  and D̂ , respectively, the 
control is chosen as: 

 ˆ ˆ ˆˆ ˆ| | ( )d dU Cz z N Az A z z          (42) 

Û  can be seen as our best estimate of the equivalent control.  
In order to stratify the sliding condition, despite the uncertainty 

on the dynamics, we add to Û  a term discontinuous across the 
surface s = 0.  And, the actual control law which can be robust 
to uncertainties is the function chosen as follows: 

 ˆ sgn( )U U K s   (43) 

Substituting Eq.(42) into Eq. (43) yields: 

 ˆ ˆ ˆˆ| | ( ) sgn( )d dU Cz z N Az A z z K s           (44) 

where, sgn(.) is the signnum function, defined as: 
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Fig. 3.  Simulation program for designing EETs of UV. 

 
 

 

  1     if  s > 0

sgn( )   0     if  s = 0

1     if  s < 0

s




 



 (45) 

K is the design parameter chosen to satisfy the sliding condition 
0ss s   , with  is a strictly positive constant.  Here, we 

found: 

 2
maxK ( )d dCz A z z z N d A               (46) 

Generally, the sliding mode controller applied to our system 
is designed as given in Eq. (44) with K chosen by Eq. (46).  To 
avoid chattering situation by the use of the sgn(.) function, we 
can replace the sgn(.) function with the saturating function as 
follows: 

 
 sgn( / )     if  | / |  > 1

sat( / )
 /              otherwise

s s
s

s

 




 


 (47) 

where,  > 0 is the boundary layer thickness. 

V. SIMULATION AND DISCUSSION 

In this section, we analyze the tracking control performance 
of the UV by using the global optimal sliding mode control, 
and implement a simulator using a model of the UV.  For the 
simulation, we use a Matlab-Simulink model.  The model uses the 
Matlab-Simulink including three subsystems for the design tra- 
jectory and parameters, the global sliding mode controller, and 
the depth motion dynamic of the vehicle as shown in Fig. 3. 

1. System Description 

The following simulation is given in order to illustrate the ap- 
plication of the concepts and equations.  In this section, we ana- 
lyze the depth motion behavior of an UV under the influence of 
the uncertainties, and implement a simulator using the Matlab- 
Simulink.  In the present study, we adopt a commercial UV as 
the numerical model for calculations.  The UV has a length of  
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Table 1.  The estimated values and bounds of the uncertainties. 

Â  (kg) Ĉ  (kg/m) N̂  (N) D̂  (N) A (kg) C (kg/m) N (N) d (N) 

89 52 6 0 17.8 10.4 0 5 

 
 

Table 2.  Controller parameters and designed thrust forces. 

 (s-1)  (m.s-1)  (m.s-2)  U1 (N) U2 (N) 

5 0.1 0.001 0.996 0 46 
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Fig. 4.  EETs design of Plan I without uncertainties. 
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Fig. 5.  EETs design of Plan I with uncertainties. 

 
 

1.5 m and a maximum diameter of 0.18 m as shown in Fig. 1.  It 
is composed of a pressure hull, propulsion system, rudder, ele- 
vator, sensors, power supply, communication and navigation sys- 
tems, etc.  The vehicle has buoyancy of 23.8 kgf that is slightly 

greater than its weight, 23.4 kgf, which allows it to float to the 
surface in the event of a failure.  Its center of buoyancy lies on the 
vehicle centerline and is higher than its center of gravity; this lo- 
cation promotes stabilization.  To further enhance the stability 
of the vehicle, three fixed planes are installed 120 apart on the 
aft.  To simulate the depth control of the UV using the proposed 
depth control strategy, all the hydrodynamic coefficients related 
to the maneuvering characteristics and the variables of the UV 
set in Vu et al. (2017) were adapted to the model of the UV. 

The estimated parameters of the UV model which refer to Chen 
et al. (2007) and parameters for simulation are shown in Table 1.  
The parameters a and b are assumed to have 20% uncertainty.  
The net buoyancy is fixed (no uncertainty).  The disturbance d 
is assumed to be not greater than 5 N in absolute value.  In this 
study, thruster(s) are assumed to have an instantaneous response 
to the controller’s commands of force.  The designed thrust forces 
and the parameters of the controller are listed in Table 2. 

2. Simulation for Plan I 

The simulation results of the Plan I that explained in Section 
“EETs with the deceleration period” and Eqs. (26)-(28) are also 
shown in Figs. 4 and 5.  Fig. 4 shows the EETs design without 
uncertainties in both cases: using sign function and saturation 
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function, and Fig. 5 shows the EETs design with uncertainties.  
From these figures, we can observe that proposed SMC has good 
performance even with the uncertainties.  From Fig. 4(a), a chat- 
tering effect appears in the control and acceleration signals, which 
might excite unstable system dynamics, de-gradating the over- 
all controller performance in real-time implementations.  The 
chattering problem in sliding mode control is one of the most com- 
mon handicaps for applying to real applications.  Thus, chatter- 
ing must be eliminated for the controller to perform properly.  In 
order to overcome the chattering phenomenon, we choose the 
control signal in Eq. (44) and the results as shown in Fig. 4(b).  
In this control signal, the sign function is replaced with the satura- 
tion function. 

In Fig. 4(b), the ending depth is 12 m, which is greater than 
*
ez  = 5.88 m (Plan I).  The UV model has no uncertainties.  

For this case, the ending time is 19.1 s.  Segment I lasts from 0 s 
to 6.062 s, segment II from 6.062 s to 13.04 s, segment III from 
13.04 s to 19.1 s, and segment IV from 19.1 s onwards.  The 
control force is almost equal to the designed force (46 N for the 
constant velocity and acceleration periods, 0 N for the decel-
eration period) except for the short periods of time at the begin- 
ning of each segment.  Force deviation in these periods does not 
exceed 4 N because these are transitional periods of the control 
system.  At rest status (segment IV), the controller maintains a 
force of 6 N to balance the net buoyancy.  This helps the vehicle 
keep its depth constant.  From the simulation results, we can also 
observe that the acceleration, velocity, and depth of the vehicle 
track the designed trajectories very well.  Maximum absolute 
errors of the acceleration, velocity, depth are 24.3 mm/s2, 3.5 mm/s, 
and 0.58 mm, respectively.  The acceleration is about 0.517 m/s2 
at the beginning.  It decreases to zero during segment I, and re- 
mains at zero in segment II.  At the initial point of segment III, 
it decreases to the peak negative value of -0.517 m/s2.  And then, 
it increases to -0.067 m/s2 during segment III.  At the initial point 
of segment IV, it decreases to zero, and stays at this value after- 
wards.  In the case of the velocity, it increases from 0 to 0.877 m/s 
during segment I, and stays at this value in segment II.  And 
then, it decreases from 0.877 m/s to zero in segment III, and 
stays at this value of zero afterwards.  The controller helps the 
vehicle move smoothly to the ending depth as shown in Fig. 4.  
Although the travel time is longer but the energy consumption 
is minimal. 

The simulation results for the EETs design with uncertainties 
are shown in Fig. 5.  In this simulation, EETs of Plan I is used, 
the ending depth is 12 m.  But the controller is applied to the UV 
model with uncertainties as shown below: 

 ˆ sin(2 )A A A z t     (48) 

 ˆ sin(2 )C C C z t     (49) 

 ˆN N  (50) 

 sin(2 )D d t    (51) 

Our controller is designed based on the assumption that the 
parameters A and C have 20% uncertainty and the thrust range 
of the thruster(s) is [-100 100] (N).  If the uncertainty of these 
parameters is greater than 20% such as 75% uncertainty the per- 
formance of the controller is still good as shown in Fig. 5. 

The existence of the uncertainties forces the controller to give 
out the commands of force whose values could be greater or less 
than the designed force.  Because the uncertainties are sinusoidal, 
the control force is also sinusoidal to mitigate their effects as 
shown in Fig. 5.  So, the acceleration and velocity oscillate around 
the designed trajectories.  As shown in Fig. 5, the maximum and 
minimum control forces in both uncertainty cases are 60.52 N, 
-22.87 N (20% uncertainties) and 74.55 N, -26.2 N (75% un- 
certainties), respectively.  Similarly, the maximum absolute errors 
of acceleration, velocity, depth in both cases are 1287 mm/s2, 
89.1 mm/s, and 38.6 mm, respectively.  The depth error at steady 
state (segment IV) does not exceed 3.4 mm.  This error could be 
smaller if the parameter  was a higher value. 

3. Simulation for Plan II 

The simulation results of the Plan II that explained in Section 
“EETs with the deceleration period” and Eqs. (29)-(31) are also 
shown in Figs. 6 and 7.  While Fig. 6 shows the performance 
with switching control law and smooth control law, Fig. 7 shows 
the EETs design with uncertainties.  We can see there is seriously 
high frequency chattering in the control and acceleration signals 
in Fig. 6(a) due to the discontinuous control signal of sign func- 
tion in control input.  Since the sign function is replaced by the sa- 
turation function in the control signal, it is shown that the chattering 
phenomenon has been reduced effectively in Fig. 6(b). 

In this simulation, the ending depth is just 2 m, which is less 

than *
ez  = 5.88 m (Plan II).  The UUV model has no uncer-

tainties.  For this case, the ending time is 7.35 s.  Segment I lasts 
from 0 s to 1.86 s, segment II from 1.86 s to 7.35 s, and segment 
III from 7.35 s onwards.  The results show that the vehicle ac- 
celeration is 0.517 m/s2 at the beginning, and that it decreases 
to 0.2 m/s2 during segment I.  At the initial point of segment II, 
it decreases to the peak negative value of -0.32m/s2.  And then, 
it increases to -0.067 m/s2 during segment II.  At the initial 
point of segment III, it decreases to zero, and stays at this value 
afterwards.  The results also reveal that the velocity increases 
from 0 m/s to 0.65 m/s during segment I, and then, decreases to 
zero in segment II, and maintains this value of zero in segment 
III.  In addition, the control force and the depth track the designed 
trajectories very well as shown in Fig. 6. 

The simulation results for the EETs design of Plan II with un- 
certainties are shown in Fig. 7.  In this simulation, the ending 
depth is 2 m.  In this case, simulation parameters such as initial 
conditions, system parameters, uncertainty term and controller 
parameters are selected same as the previous case.  Parameter 
 in the saturation function is selected as  = 0.1 (see Table 2).  
Our controller is designed based on the assumption that the pa- 
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Fig. 6.  EETs design of Plan II without uncertainties. 
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Fig. 7.  EETs design of Plan II with uncertainties. 

 
 

rameters A and C have 20% uncertainty and the thrust range of 
the thruster(s) is [-100 100] (N).  From Fig. 7, we can observe 
that proposed SMC still has good performance even with 75% 
uncertainties.  Through simulation results, we see that the depth 
in case of 75% uncertainty can still track the designed depth al- 
though the depth error increases to 3.64 cm, and the control force 
is required to 73.15 N or -9.68 N.  Generally, computer simu- 
lations show that the novel proposed sliding mode controller 
not only is effective and feasible to stabilize the chaotic system, 
but also chattering phenomenon is reduced effectively. 

VI. CONCLUSION 

In this paper, we propose new EETs design, together with a 
robust tracking controller.  We propose a novel GSMC for an un- 

certain linear time-varying second order system.  The proposed 
controller was implemented on depth motion control of the UV 
with uncertainty of bounded parameters and disturbances within 
limited control input.  A good point of the proposed controller 
is that, as a result of the control action, the arrival time at the re- 
ference position and the maximum allowable acceleration are 
expressed in a closed-form equation if ranges of parametric un- 
certainties and reference inputs are specified.  Furthermore, the 
capacity of vehicle systems with the condition of the minimum 
arrival time and energy to the target position can be designed 
by using this closed-form equation. 

To support the validity of the proposed EETs, new GSMC con- 
troller, we performed the computer simulation.  The effective- 
ness of the combination of the EETs and the proposed trajectory 
tracking controller was demonstrated via simulation results.  The 
simulation results show that if there are not the influences of the 
uncertainties, the control forces of the controller will be nearly 
equal to the designed constant forces, on the contrary, they could 
be different.  Therefore, the thruster(s) should be chosen so that 
it can meet the requirements of control force of the controller.  
In addition, the robustness of the approach can be guaranteed 
even with uncertainties if bounds of the uncertainties are known. 
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