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ABSTRACT 

This paper describes a cascaded dynamic trajectory tracking 
control approach based on model predictive control (MPC) 
and sliding mode control for unmanned underwater vehicles 
(UUVs).  The proposed method combines kinematic and dyna- 
mic controllers to achieve robust control.  First, MPC is employed 
to realize tracking control kinematically.  The MPC algorithm 
is proposed as a solution to the speed jump problem.  Consid-
ering the computational burden for nonlinear UUV dynamic 
models, the MPC method is used in conjunction with sliding 
mode control to achieve dynamic tracking control, which solves 
problems of modeling uncertainty and external disturbances.  
Experimental results showed that the proposed method could 
solve the speed jump and thruster saturation problems more ef- 
fectively than other methods could. 

I. INTRODUCTION 

Unmanned underwater vehicles (UUVs) are increasing in use 
in fields of marine science, search and rescue, submarine pipe- 
line tracking, submarine cable maintenance, and national de- 
fense (Li, 2015; Xiang, 2017).  Trajectory tracking control is  
a critical aspect of UUV research.  Trajectory tracking control 
refers to the UUV’s ability to track a reference trajectory in an 
inertial coordinate system.  From an initial state given by the 
designed control laws, it achieves global uniform asymptotic 
stability through position error tracking.  Because of strong 
coupling, the nonlinear characteristics of underwater vehicles, 
and the complex underwater environment, UUV trajectory track- 

ing control is a challenging area of research.  The prevailing me- 
thods of UUV trajectory tracking control include proportional- 
integral-derivative (PID) control (Wang, 2009; De Paula, 2012), 
sliding mode control (SMC; Wallace, 2008; Khadija, 2012; Xu, 
2015), backstepping control, fuzzy logic (Wai, 2007; Sun, 2017), 
and neural network control (Luo, 2008; Bagheri, 2010; Zhu, 2017). 

This paper proposes a model predictive control (MPC) method 
and focuses on solving the speed jump problem encountered in 
UUV tracking.  MPC is a model-based closed-loop control opti- 
mization control strategy, and the core of the algorithm is a dy- 
namic model that can predict future outputs with repeated online 
optimization calculations and implement corrections based on 
feedback regarding model error. 

MPC is effective and robust.  The proposed tracking control 
algorithm can overcome the uncertainties of the UUV model 
(nonlinear and parallel resistance) and can readily manage va- 
rious constraints placed on process control variables and mani- 
pulated variables.  Speed constraints are specified in the control 
design to solve speed jump issues. 

Some papers have addressed the speed jump problem of UUV 
tracking control.  The most successful of these has been bioin- 
spired algorithms (Fossen, 2011; Pan, 2015; Cao, 2016).  Bioin- 
spired neurodynamic models can reduce the speed jump problem 
caused by tracking error because of their bounded smooth cha- 
racteristics.  However, these models only have a smoothing ef- 
fect, and are unable to keep the speed within the constraints as 
the MPC algorithm does. 

Although the MPC method alleviates the tracking control 
problem, the issues of computation burden and complexity must 
be accounted for, especially when for the nonlinear UUV dy- 
namic model.  To solve this problem, we propose a cascaded 
control design, including kinematic dynamic control.  The MPC 
algorithm is used to generate a bounded velocity control signal.  
In the dynamic part, the sliding mode method is selected for 
dynamic tracking control because of its insensitivity to parameter 
variations and ability to reject disturbances. 

In section 2, the background formulation of UUV tracking 
control is given.  In section 3, a cascaded MPC-SMC dynamic 
controller is presented.  The results of simulation experiments 
for various situations are presented in section 4.  Finally, our 
conclusions are stated in section 5. 

Paper submitted 06/14/17; revised 08/22/17; accepted 12/13/17.  Author for 
correspondence: Daqi Zhu (e-mail: zdq367@aliyun.com). 
1 Laboratory of Underwater Vehicles and Intelligent Systems, Shanghai Maritime
University, Haigang Avenue 1550, Shanghai, 201306, China. 
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Fig. 1.  Coordinate system. 

 

II. BACKGROUND FORMULATION  
OF UUV TRACKING CONTROL 

To study the kinematic and dynamic characteristics of UUVs, 
a UUV coordinate system is established first.  This consists of 
two parts: an inertial coordinate system and a vehicle coordinate 
system.  The inertial coordinate system (also called the earth 
coordinate system) E   has its origin at a certain point on 
the earth.  The vehicle coordinate system (also called the motion 
coordinate system) O xyz  is fixed on the UUV and moves with 
it as shown in Fig. 1. 

The posture vector of a UUV is given by  = [x y z   ]T in 
the inertial coordinate system, and the velocity vector is given 
by  = [u v w p q r]T in the vehicle coordinate system.  The 
transformation between the posture vector and velocity vector 
is represented by J(), which is called the Jacobi transform ma- 
trix.  The kinematic equation with six degrees of freedom (DOF) 
(Fossen, 2011) is 

 ( )  J  (1) 

The dynamic equation with six DOF in the body-fixed frame 
can be presented as 

 ( ) ( ) ( )         M C D g  (2) 

Under normal circumstances, all six DOF of motion are not 
fully considered.  The rolling and pitching motions are often over- 
looked (i.e., p = q = 0); therefore, the tracking control problem 
is commonly solved with four DOF: surge, sway, heave, and 
yaw (u, v, w, r).  Their relationships are as follows: 
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Fig. 2.  Three-dimensional tracking control formulation. 
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Fig. 3.  Proposed cascaded MPC-SMC dynamic controller. 

 
 
The simplified dynamic model in this paper is given as follows: 
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Trajectory tracking control of UUVs involves controlling 
the actual speed so that the UUV can track the desired trajec-
tory, and ultimately, the error between the actual trajectory and 
the desired trajectory converges to zero.  A detailed model of 
tracking control is shown in Fig. 2. 

III CASCADED MPC-SMC  
DYNAMIC CONTROLLER 

The basic control architecture of the tracking control system 
is illustrated in Fig. 3.  The cascaded control strategy consists 
of two parts: (1) an outer loop kinematic controller with MPC; 
(2) an inner loop dynamic controller with SMC.  If the kinematic  
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Fig. 4.  MPC algorithm flowchart. 

 

 
model is considered, the tracking control design is usually con- 
sidered complete.  However, kinematic control is assumed to have 
“perfect velocity tracking,” an assumption that is unrealistic in 
practice.  Therefore, dynamic control is also implemented.  The 
forces and moments driving a given reference vehicle are then 
derived from the velocity control input.  To address parametric 
uncertainties and unforeseen environmental disturbances, an 
adaptive SMC technique is proposed. 

1. Kinematic MPC Controller 

This section presents the kinematic controller based on MPC.  
MPC generally has three implementation components: a predic- 
tion model, rolling optimization, and feedback correction (Su, 
2013).  The MPC algorithm used in the tracking control process 
is shown in Fig. 4.  The design of the objective function considers 
both the efficiency and stability of tracking.  Yu (2015) proved 
the convergence of the MPC algorithm for nonlinear systems. 

1) UUV Error Model Building 

As the UUV kinematic model illustrates, the system can be 
understood as a control system with input  and state  where 
its general form is 

 ( , )f    

 

(5) 

For a given reference trajectory, each point satisfies the pre- 
ceding kinematic equation.  With the subscript d representing 
the reference, the general form is 

  ,d d df    (6) 

where 

 
T

d d d d dx y z      and 
T

d d d d du v w r    . 

Using Taylor series expansion and ignoring the higher order 

terms in formula (5) at the reference trajectory point, formula (5) 
can be written as 
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 (7) 

The UUV error model can be obtained by subtracting for- 
mula (6) from formula (7): 
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Formula (8) is the UUV linear error model.  To apply this mo- 
del to MPC controller design, formula (8) must be discretized.  
It can then be derived as 

 , ,( 1) ( ) ( )k t k tk k k      A B  (9) 

where 

 ,
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B , 

and T is sampling time. 

2) Optimization Problems of MPC Based on Quadratic  
Programming 

As stated previously, MPC is a model-based control algorithm.  
A prediction model provides a priori knowledge to predict con- 
trol optimization and to determine which control input sequence 
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should be adopted.  Output changes of the controlled object 
can be consistent with the intended target in the future.  The 
whole algorithm can be understood as the solution of an op-
timization problem that entails finding the optimal control law 
by minimizing the objective function in the control domain. 

System state deviation and control optimization must be ad- 
ded so that the objective function is able to ensure that the UUV 
can track the desired trajectory efficiently.  Kuhne (2004) used 
the following form of the objective function when designing a 
tracking controller:  

 
     

   
1

1 1
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j
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 

 

 

Q

R

 (10) 

where Q and R are weight matrices. 
This can be converted to a quadratic programming problem, 

which is a typical optimization problem.  In formula (10), con- 
trolling values can be seen as the state values in the objective 
function.  The structure is simple and easy to implement.  How- 
ever, it is impossible to restrain the control increment accurately, 
which means the speed jump phenomenon cannot be avoided.  
This affects the continuity of controlling values.  Therefore, the 
control increment is adopted as the state of the objective func- 
tion and takes the following form: 

 

     

 

2

1

1 2

1

p

c

N

ref
i

N

i

J k k i t k i t

k i t







   

  





 



Q

R

 (11) 

where Np is the predictive domain, and Nc is the control domain.  
Np reflects the systemʼs ability to follow the reference trajec-
tory, and Nc reflects the smooth change requirements of the con- 
trolling values.  This expression is designed so that the system 
tracks the desired trajectory smoothly and quickly.  Furthermore, 
in the actual control system, the system constraints must be sa- 
tisfied as follows: 

Control constraint: 

 
     min max ,
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t k t k t k
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Control increment constraint: 
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In the objective function, it is necessary to calculate the sys- 
tem output for some time in the future.  The following change 
is made to formula (9): 

  
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Then, a new state space can be expressed as 
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B , n is the state dimen- 

sion, and m is the control dimension. 
After derivation, the predicted system output can be obtained 

as follows: 

      t tt t t t   Y V  (17) 

For more detailed information, refer to Kuhne (2004). 
After inserting formula (17) into formula (11), the full ex-

pression of the objective function can be written as 

             , 1 ,
T T

t tJ t t t t t t        V V H V G V  (18) 

where 

 T
t t t

     0H Q R , and  2
T

t tt   0G E Q . 

Therefore, solving optimization problems under the constraints 
of MPC in every step is equivalent to solving quadratic pro-
gramming problems as follows: 
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After solving Eq. (19) for each control cycle, a series of 
control input increments can be obtained in the control domain: 

1 1c

T

t t t t
   

           NV .  According to the basic 

principles of MPC, the first element of the control sequence is 
selected as the actual control input increment that acts on the 

system, given by    1 tt t       .  The system uses this 

controlling value until the next time.  At the next time, the sys- 
tem predicts the output with the next time domain, again accord- 
ing to the state information, and obtains a new sequence control 
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increment through optimization.  This procedure repeats until 
the system completes the control process. 

In this paper, the speed control constraints are set according 
to the actual position of the UUV as follows: 

2. Adaptive Sliding Mode Dynamic Controller 

For an actual tracking control process ( ) ( ) ( ) 0dt t t   e , 

the dynamic model must be applied to calculate the actual speed 
control and torque values to track the desired speed values 

c  .  Because of modeling uncertainty and external distur- 

bance factors, it is difficult to ensure stable speed tracking in the 
initial phase.  Therefore, a robust sliding mode dynamic controller 
was designed for speed control.  The control signal generated by 
speed error acts on the UUV to regulate the surge, sway, heave, 
and yaw in order to achieve stable speed tracking.  The control 
system is illustrated in detail in Fig. 3. 

After the velocity controller generates the auxiliary UUV ve- 
locity, a sliding mode controller is used to generate the control 
forces and moments .  The auxiliary velocity error is defined as 

 c c  e  (20) 

Then, the sliding manifold is defined as 

 22c c c     s e e e  (21) 

Considering that the UUV dynamic model is not fully known, 
the UUV dynamic equation can be substituted with an estimated 
dynamics term and an unknown dynamics term: 

 ˆ      (22) 

Derive formula (21) and let it equal zero.  Then, the equiva- 
lent control law can be expressed as 

 ˆˆ ˆ ˆ( )
2 2

c
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
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e
M e Cq Dq g  (23) 

To eliminate the chattering problem caused by the disconti- 
nuous term, an adaptive term is added in the control law to re- 
place the switching term based on previous work (Sun, 2014): 

 
ˆ

( )
2ad est K  


  C
s  (24) 

where est  is an adaptive term that estimates the lumped uncer- 

tainty vector   defined in formula (22).  The estimation of the 
lumped uncertainty vector is proposed as follows: 

 est   s  (25) 

When the discontinuous term is replaced by an adaptive term,  
the problem becomes a robust control problem.  This adaptive 
term relates the error metric to the dynamic uncertainties, and 
acts on the controller such that the estimated dynamics more 
closely reflect the actual dynamics. 
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w heave

v sway

 
Fig. 5.  Structure of FALCON UUV. 
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Fig. 6.  Thruster distribution. 

 
 
The total control law can be defined as follows: 

 
ˆ

( )
2eq ad eq est K     


     C
s  (26) 

IV. SIMULATION RESULTS AND ANALYSIS 

To test the proposed algorithm, simulation study was con-
ducted on a specific UUV model (Seaeye FALCON UUV, from 
the Laboratory of Underwater Vehicles and Intelligent Systems, 
Shanghai Maritime University).  The FALCON UUV has four 
horizontal thrusters, denoted as ( 1, 2, 3, 4)iHT i   and one ver- 
tical thruster 1VT  (Fig. 6).  The thruster configuration of the 
FALCON enables direct control of four DOF: surge, sway, heave, 
and yaw (Fig. 5).  The four thrusters are arranged symmetrically, 
each with the same performance.  A comparison study with the  
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Table 1.  Velocity limits. 

Velocity Vmax Vmin Velocity Change Vmax Vmin

u (m/s) 3 -3 u (m/s) 0.5 -0.5 

v (m/s) 2 -2 v (m/s) 0.25 -0.25

w (m/s) 2 -2 w (m/s) 0.25 -0.25

r (rad/s) 2 -2 r (rad/s) 0.25 -0.25
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Fig. 7.  Spiral line tracking results. 

 
 

PID and backstepping methods was conducted to study the per- 
formance of the proposed control method. 

1. Three-Dimensional Spiral Line Tracking Control 

The three-dimensional spiral line trajectory was defined as fol- 
lows: ( ) sin(0.5 )dx t t , ( ) cos(0.5 )dy t t  , and ( ) 0.1dz t t , 

( ) 0.5d t t  .  The initial UUV state was (1, 0, 0, 0) while the 

desired initial state was given as (0, -1, 0, 0).  The control pa- 
rameters for the PID method were set as 100Pk  , 5Ik  , and 

1Dk  , and the parameters  for the backstepping method were 

given as 1 2 3 12k k k   .  Time varied from 0 to 30 s. 

Fig. 7 shows the results of spiral line trajectory tracking for 
the proposed MPC-SMC method, the PID method, and the 
backstepping method.  Fig. 8 illustrates the tracking error re- 
sults of the three controllers.  The blue dashed line represents 
MPC, the red solid line represents backstepping control, and 
the green dash-dot line represents PID control.  PID control could 
not achieve a satisfactory tracking result even after 30 s, as track- 
ing error existed with oscillation.  Therefore PID was disregarded, 
leaving only a comparison between the proposed MPC-SMC 
and backstepping methods.  The simulation results show that 
the tracking performance of both the backstepping control al- 
gorithm and MPC algorithm was nearly ideal, with errors con- 
verging to zero. 

A speed curve comparison for spiral line trajectory tracking 
control is shown in Fig. 9; a comparison of the speed change 
curve is shown in Fig. 10.  Because the spiral line trajectory was 
continuous and differentiable at every point, the main compli- 
cation of trajectory tracking was the speed jump problem caused  
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Fig. 8.  Tracking errors. 
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Fig. 9.  Output speed values. 
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Fig. 10.  Speed change values (first 5 s). 
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Table 2.  Maximum thrust values. 

Method 1T  2T  3T  4T  5T  

Backstepping -3.921 0.599 -2.367 -0.954 0.069

MPC-SMC method -0.809 -0.267 -0.970 0.202 0.041
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Fig. 11.  Normalized thrust values (first 5 s). 

 
 

by initial position error.  After 5 s, both methods achieved stable 
tracking; therefore, the intercept simulation curve was analyzed 
only for the first 5 s (Fig. 10). 

Table 2 lists the normalized thruster control variables in the 
initial state.  The speed change values for the two methods were 
noticeably different at the initial time, despite being within a 
reasonable range.  In the initial state, sharp speed jump phenom-
ena occurred in the backstepping method due to position error.  
For example, the maximum surge speed reached nearly 5 m/s, 
which is faster than the vehicle’s maximum speed.  Therefore, 
the backstepping method would be impossible to implement in 
practice.  Fig. 11 and Table 2 show that multiple maximum thrust 
values of the backstepping control algorithm are more than 1, while 
all maximum thrust values are within the permitted scope for the 
MPC algorithm since it was restricted by its own constraints. 

2. Polyline Tracking 

Next, polyline tracking control was conducted to evaluate 
the control performance.  Here, the polyline trajectory equa-
tion is a piecewise function that is defined as follows: 
when 
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Fig.  12. Polyline tracking result. 
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Under normal conditions, the UUV initially is not exactly on 
the desired trajectory.  The initial desired state was set as (3, 0, 
0,  /4), while the real initial state was (2, 0, 0,  /4).  The sam- 
pling time was 0.1 s, and time varied from 0 to 30 s.  The con- 
trol parameters for backstepping control were set as k1 = k2 =  
k3 = 12. 

The results of the two tracking controllers for three-dimensional 
polyline tracking are shown in Fig. 12; the tracking error curves 
are illustrated in Fig. 13.  Figs. 12 and 13 demonstrate that both 
the backstepping and MPC-SMC methods followed the desired 
trajectory closely.  For the reason described previously in sec- 
tion 1, the UUV control constraint is not considered in the back- 
stepping control method.  In the simulation study, the control law 
calculated using the backstepping method was assumed to be 
satisfied, while in practice it could not be satisfied.  The given 
control signal was beyond the physical limit of the UUV, and the 
tracking performance could not match the calculated results.  
This is reflected on the graph in the responses of the velocity 
curve and the normalized thrust forces. 

Because of a large initial posture error between the desired  
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Fig. 13.  Tracking errors. 
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Fig. 14.  Output speed values. 
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Fig. 15.  Speed change values. 

 
 

state and the actual state, large speed and speed change values 
were produced, as shown in Figs. 14-16.  For example, the yaw 
velocity at 10 s and 20 s reached 4 rad/s, and the heave speed 
change value even exceeded 20 m/s , which was beyond the pre- 
set range.  To generate such high speed values, the correspond- 

Table 3.  Maximum thrust values. 

method 1T  2T  3T  4T  5T  

Backstepping -1.774 1.868 1.868 1.774 0.715

MPC-SMC 0.647 0.885 0.371 0.968 0.664
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Fig. 16.  Enlarged view of speed change values. 
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Fig. 17.  Normalized thrust values. 

 
 

ing thrusters generated large thrust forces, which are shown in 
Fig. 17, and the normalized maximum thrust values are listed 
in Table 3. 

As shown in Fig. 17 and Table 3, the first four thruster val- 
ues of the backstepping control algorithm were substantially 
beyond the maximum thrust of the propeller.  Although the tra- 
jectory tracking control results of the backstepping method are 
promising, obtaining these results is not possible in practice. 

Because of the MPC algorithm’s constraint conditions, the 
speed, speed change, and normalized thrust values were all con- 
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trolled within the maximum range that can be achieved by un- 
derwater vehicles while still meeting the thrust saturation limit.  
At the first turning point, sudden change of the yaw angle ge- 
nerated a speed jump in the yaw velocity r.  The angular velo- 
city of the backstepping control method jumped directly from 
0 to 4 rad/s, which required the thrusters to produce large mo- 
ments to achieve the desired angular velocity.  Fig. 17 shows that 
the normalized thrust value of thruster 1 exceeded 1.  By con- 
trast, angular velocity was lower than the corresponding base- 
line value with the MPC algorithm, and the speed jump problem 
caused by state changes was effectively suppressed, with all thrust 
values less than 1. 

V. CONCLUSION 

To solve the speed jump problem encountered in UUV track- 
ing control, a cascaded algorithm with a combination of MPC 
and SMC is proposed.  The simulation results showed that the 
MPC algorithm not only realized the expected trajectory but 
also solved the speed jump problem while maintaining thruster 
forces within the thrust saturation limit.  Therefore, the MPC- 
SMC method is a feasible and effective method of UUV trajec-
tory tracking control. 
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