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ABSTRACT 

The offshore container crane (OCC), as a novel maritime 
container transfer system, can handle container from a large 
container-ship anchored in open sea to address the congestion 
and limited water-depth of port.  However, for the wave- and 
wind-induced movements of the ship, the crane’s control sys- 
tem should be redesigned to ensure the load transfer on the sea.  
In this paper, we derive the nonlinear dynamic equations of OCC 
system subjected to the ship motions based on dynamic analysis.  
Then a double-layer sliding manifold is constructed to realize 
the position tracking and sway control simultaneously, irrespec- 
tive of ship motions and parameters perturbation.  The Lyapunov 
method is utilized to prove the stability of the proposed control 
law.  Next, virtual prototype of the OCC is established, includ- 
ing the multi-body dynamics model of OCC with flexible rope 
and the proposed control scheme.  Sufficient simulations are pro- 
vided to illustrate its improved performance versus conventional 
controller.  Experiments are also implemented to evaluate its prac- 
tical control performance of trajectory following and sway angle 
suppression. 

I. INTRODUCTION 

With the integration of the global economy, rapid develop- 
ment has been made in container logistics industry.  Meanwhile, 
the harbor congestion and modern large container-ship unable 
to dock at shallow waters harbor have become urgent problems 
(Oscar, 2015; Jin, 2016).  Compared with the expansion of har- 
bor scale, mobile harbors have become the most flexible, eco- 
nomical and environmental-friendly solution (Jonghoe, 2012; 
Baird, 2013).  As illustrated in Fig. 1, this concept is to install  

 
Fig. 1.  The offshore container crane on mobile harbor. 

 
 

ing the container crane on an offshore platform, which is called 
“offshore container crane” (OCC), to load and unload containers 
(payloads) for large container-ship anchoring in open sea and 
transport them to destination harbor (Jang, 2014). 

Due to the effects of waves and trolley motion trajectory, the 
transferred payloads will generate a complex nonlinear dynamic 
response.  Especially, the residual sway of payload decreases 
operation efficiency sharply, which can lead to serious damages.  
In fact, the trolley trajectory planning and payload anti-swing 
of land-based cranes are widely used in transportation and con- 
struction industries.  There have also been a lot of research work 
focused on this area in the past two decades.  The researchers in 
crane dynamics and control fields are interested in fast, no re- 
sidual swing and high efficient anti-swing solutions.  Existing 
work can be divided into open-loop control and closed-loop con- 
trol.  The open-loop control method with representative of input 
shaping (Garrido, 2008) and optimal control (Terashima, 2007) 
has a strong dependence on the accuracy of system mathema- 
tical model.  The closed-loop control methods are usually com- 
bined with intelligent control, such as H-2/H-infinity Control 
(Hilhorst, 2015), fuzzy control (Chang, 2007; Li, 2015; Wu, 
2016), neural networks control (Saeidi, 2013), sliding mode con- 
trol (Almutairi, 2009), etc.  Moreover, the dynamics and control 
strategies of ship-mounted cranes, which are divided into boom 
crane (Chin, 2001; Skaare, 2006; Sanfilippo, 2016) and container 
crane (Park, 2012; Le, 2015), also have been studied.  Henry et al. 
(2001) proposed a delayed feedback control law to suppress the 
oscillations of the load of boom cranes.  Cha et al. (2010) and 
Ham et al. (2015) studied the multi-body dynamics of floating 
cranes.  Ngo et al. (2012) developed a sliding model controller 
based on Lyapunov method to reduce the sway angle of the con- 
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tainer crane.  Sun et al. (2015) presented a self-adaptive PID 
controller based on GA to control the floating crane.  Ismail  
et al. (2015) constructed a LQR-based sliding surface to track 
the craneʼs desired trajectory in the presence of waves and winds.  
Although the dynamics analysis and control of cranes have made 
great progress, there are still few researches on the OCC.  It is 
necessary to improve the nonlinear dynamic equations of the 
offshore crane under the coupling influence of ship motions and 
trolley motions during lifting on the sea.  Moreover, the present 
control approaches generally linearize the nonlinear dynamic 
model at the equilibrium point or neglect some nonlinear term 
in the equations to design the controller.  It is feasible for land 
cranes since the external disturbance is little and the system is 
hardly far away from the equilibrium point.  While for the off- 
shore crane, there are permanent external disturbances from the 
sea environment.  The system is easy to be far away from the 
equilibrium point by the effect of the disturbances, thus the per- 
formances of controllers based on the linear control theory will 
decrease greatly and even cause accidents.  Therefore, it is ur- 
gent to design a nonlinear controller according to the nonlinear 
dynamic model of the crane under the ocean environment, with- 
out any linear approximation to ensure the control performance 
under permanent external disturbances. 

The ship of mobile harbor, on which the container crane is in- 
stalled, is easy to be disturbed away from the designated position 
horizontally and vertically.  A lot of dynamic positioning sys- 
tems have been proposed based on the nonlinear control theories 
to control the horizontal movement of the ship (Do, 2002; Serrano, 
2014).  On the other hand, the heave compensation system is de- 
signed to deal with the vertical shifting of the ship (Kuchler, 
2011; Woodacre, 2015).  However not enough attention has been 
paid to the rolling motion of the ship.  For container transfer 
operations, the rolling motion of the ship holds great signifi-
cance for the trolley position tracking and payload anti-sway. 

Thus, in this paper, we construct dynamics equations of OCC 
system, which reveals the influence of ship motion and trolley 
movement on payload dynamic behavior, considering the trol- 
ley motion, heave motion and roll motion of the ship.  An anti- 
sway tracking control strategy of SOSM (second order sliding 
mode) is presented for sway suppression and trajectory tracking 
despite the ship motion disturbances.  We not only prove the sta- 
bility of the sliding surface at all layers theoretically, but also im- 
plement the simulations and experiments to evaluate its excellent 
control performance. 

II. DYNAMICS DEVELOPMENT AND ANALYSIS 

For OCC system, due to the pitch motion of the ship, the lat-
eral swing will be generated.  But thanks to the immobilization 
of trolley at the lateral direction, many mechanical anti-sway de- 
vices can be utilized to eliminate lateral sway (Hong, 2009; Wang, 
2013).  Thus, this paper will not discuss the lateral anti-sway, 
which means we can ignore the pitch motion. 

The three coordinate systems are introduced to derive mathe- 
matical dynamic equations of OCC, as shown in Fig. 2.  OX0Y0  

Y0

X0
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Fig. 2.  Ship-crane-payload system and reference frames. 

 
 

is the inertial coordinate frame, which defines the direction from 
port to starboard as positive direction of X0 axis.  OsXsYs denotes 
the ship coordinate frame affixed to the center of the gravity of 
the hull.  OtXtYt denotes the trolley coordinate frame attached 
to the trolley.  M, m respectively represents the masses of the trol- 
ley and the payload (container).  h denotes the height of crane 
gantry.  x and y are the trolley position and the ship heave dis- 
placement in the inertial coordinate frame.  l(t) is the varying 
length of rope.   is the sway angle of payload in the plane of 
trolley motion.  fx is the control force applied to the trolley. 

 is roll angle of the ship under sea wave excitation.  So ship 
motion vector is defined as (y, ).  In inertial coordinate frame, 
the trolley position pM and payload position pm can be derived 
as below: 
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Based on (1) and (2), trolley velocity vM and payload velocity 
vm can be obtained as follows: 
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The kinetic energy and potential energy of trolley-payload 
system are expressed as: 
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( cos sin ) cos

cos sin

p

p

U Mg y h x m gl

m g y h x

  

 

   

  
 (6) 

where, g denotes the acceleration of gravity.  The ship’s kinetic 
and potential energy are not included, since the ship motions  
(y, ) are treated as external disturbance.  q = (x, ) is defined 
as generalized coordinate and f = (fx, 0) denotes generalized 
force.  The Lagrange’s equations are: 

 i
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The following nonlinear dynamic equations are obtained: 
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 (9) 

In order to verify the validity of dynamics model derived in 
Eqs. (8) and (9), an experimental setup is established.  The spe- 
cific parameters of the setup can be found in section V.  A driv- 
ing force fx = f0u(t) is applied to the trolley.  u(t) is step function 
once every 10 seconds.  the amplitude f0 is 10 N.  The wave- 
induced rolling motion of the ship is set as (t) = 0.01 sin(0.8 
time) rad.  The Runge-Kutta method is utilized to obtain numeri-
cal solution for Eqs. (8) and (9) (Sun, 2017).  The numerical 
results and experimental results, as shown in Figs. 3 and 4, are 
provided together for comparison.  The results show that the 
numerical results of dynamics equations and the experimental 
results are basically consistent, which verify the validity of the 
derived dynamic equations. 

III. CONTROL STRATEGY DESIGN  
AND ANALYSIS 

A second order sliding mode (SOSM) position track and anti- 
sway control strategy is presented based on the nonlinear dyna- 
mics equations of OCC derived in the previous section. 

Based on (8) and (9), the state space equations of OCC system 
can be obtained as follows: 
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Fig. 3.  The trolley velocity of theory and experiment. 
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Fig. 4.  The payload sway angle of theory and experiment. 
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where, 1 2 3 4, , ,x x x x x x      , xu f ,    1 2,d t d t  

are bounded parameters perturbation terms.   1g X ,  2g X , 

 2b X  are nonlinear functions as follows: 
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Assume that there exists positive constants 1Mg , 2Mg , 1Md  and 

2Md  to ensure    1 1 2 2,M Mg X g g X g   and  1 1Md t d , 

 2 2Md t d . 

The entire system state is divided in to two sliding surfaces 
according to the general construction form of sliding surface: 
s e e   . 

The target and real-time tracking positions of the trolley are 
defined as xd and x, respectively.  Plan the target swinging 
angle d = 0 and  denotes the real-time swinging angle.  Then 
error vector can be expressed as: 

 
T T

x d de e e x x             (11) 

The first-layer of sliding surface can be defined as: 

 
1 1
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where, c1, c2 are positive constants 
The equivalent control terms ueq1 and ue2 on the sliding 

manifold of each subsystem can be calculated using equivalent 
control method as follows: 

 
 1 1 2 1
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   (13) 
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   (14)  

As a typical underactuated system, offshore crane system can 
hardly fulfill the position track of the trolley and loads anti- 
swing simultaneously with only one control input.  For this rea- 
son, this paper ensures the synchronous combination control of 
such two objectives based on secondary sliding surface S by 
constructing the following second-layer sliding manifold: 

 1 2S s s    (15) 

where,  is a positive constant, and  is a variable following 
the system states. 

As for an underactuated system, the controller should ensure 
both the stability of actuated parts and the self-stability of under- 
actuated parts.  Therefore, to ensure each subsystem is on its own 
sliding surface, the total system control law must contain the 
control formula of each subsystem, which can be defined as: 
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where, usw is the switching control component when the system 
is at the reaching phase.   and k are positive control gains.  K1 
is defined as: 

 1 2 1
0

sup eq eq
t

K u u


   (17) 

Each parameter of the controller needs to meet the follow- 
ing conditions: 
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Theorem 1: As for nonlinear system depicted in (10), sliding 
surfaces with double-layer structures are constructed based on 
(12) and (15).  If controller is expressed in the form of (16) and 
its parameters satisfy (18) and (20), the second layer sliding 
surface S is stable, so is the first layer sliding surface s1. 

 
Proof: 

The energy function based on Lyapunov theorem is built on 
the second layer sliding surface S.  The Lyapunov function candi- 
date is chosen as: 

   21

2
V t S  (21) 

The derivative of V(t) in time is calculated as: 
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According to Lyapunov stability theorem, if 0V  , the sys- 
tem approaches asymptotic stability when s = 0 and so the se- 
cond layer sliding surface S is stable. 

Likewise, the Lyapunov energy function is built on the first 

layer sliding surface s1 and can be denote as   2
11

1

2
V t S , 

whose time derivative is calculated as: 
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where, *
1k b k  and 1 2 0b b    can be guaranteed by (19). 
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 (24) 

when 2 1b K   and  satisfies (18), 1 0V  .  It follows that 

the first layer sliding surface s1 is stable as well. 
 

Theorem 2: As for nonlinear system described in (10), sliding 
surfaces with double-layers structures are constructed based 
on (12) and (15).  The controller is in the form of (16).  If s1 
and S are stable, then s2 is stable as well. 

 
Proof: 

The first-order sliding mode surface s1 is stable, indicating 
that s1 has existence and reachability.  With arbitrary initial con- 

dition s10, there exists a time 1 1( )t t R  to ensure 
1

1lim 0
t t

s


 , 

which means s1 can converge to zero within finite time.  Simi- 
larly, as for the S with arbitrary initial condition S0, there exists 

a time 2 2( )t t R  to ensure 
2

lim 0
t t

S


 .  As a result, the sliding 

surface s2 can be rewritten as: 

  2 1
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lim lim 0
t T t T
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    (25) 

Thus, the first-layer sliding surface s2 is stable. 
 

Remark 1: the proof of the stability of s2 in theorem 2 is 
conservative, which means s2 can converge to zero when any  
t  T.  The conclusion is sufficient.  But there is no explanation 
on whether s2 can converge to zero when t < T.  Actually, in 
addition to converging to zero with s1 or S, s2 may converge to  
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Fig. 5.  Development process of OCC’s virtual prototype. 

 
 

 
Fig. 6.  Multi-body dynamics mechanical model of OCC system. 

 
 

zero with S = s1 at a faster convergence rate than s1 or S. 
 

Remark 2: If the controller can ensure the stability of s1 and S, 
it can control the sliding surface s2 as well.  It is thus evident 
that the presented control strategy can fulfill position track of 
the trolley and anti-swing of the payload simultaneously. 

IV. VIRTUAL PROTOTYPE SIMULATIONS 

Since it is very time-consuming and difficult to build up an 
OCC and test it under real sea conditions, we utilize virtual 
prototype technology to testify the designed offshore container 
crane control system, which can help engineers to modify the 
mechanical design and improve the controller. 

1. Multi-Body Dynamics Mechanical Model of OCC System 

Considering the suspended rope as a flexible body, a rigid- 
flexible coupling multi-body dynamics model of OCC is con- 
structed in ADAMS environment.  The development process 
of OCC’s virtual prototype is shown in Fig. 5. 

Detailed steps are shown as follows: a 3D model of OCC 
system based on the actual size and shape is built using 
SOLIDWORKS and imported into ADAMS environment.  
Then, the parameters of the components such as mass, material 
property, moment of inertia, etc. must be defined.  Next, by uti- 
lizing constraints, these parts are connected to each other.  For 
example, the trolley is connected with the boom using transla- 
tional joint.  The crane gantry is mounted on the ship using fixed 
joint.  The flexible cables are generated by Machinery/Cable mo- 
dule.  The contact forces are added between winch and winded 
ropes (Dong, 2015).  The ship is induced to roll and heave based 
on the wave disturbance function.  The developed multi-body 
dynamics model of OCC system is shown in Fig. 6. 
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Fig. 7.  The simulation and experimental results of trolley position. 
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Fig. 8.  The simulation and experimental results of sway angle. 
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Fig. 9.  The ADAMS module in MATLAB/SIMULINK. 

 

 
The dynamic response of the crane without control is inves- 

tigated.  The motion of the trolley in x-axis direction is x = step 
(time, 0, 0, 18, 2.7).  The parameters of virtual prototype are 
set as the experimental setup.  The ship rolling motion is set as 
(t) = 0.01 sin(0.5 time) rad.  The simulation and experimental 
results are shown in Figs. 7 and 8, which illustrate the con-
structed model can imitate the real dynamics of OCC system.  
This model will be used in the subsequent simulation, verification 
and analysis of OCC control system. 

2. Modeling of Control System 

The control model of the proposed control strategy is built 
in Matlab/Simulink, which provides interface to ADAMS mo- 
dule shown in Fig. 9.  The two software agents exchange signals 
by transferring state variables in a closed loop shown in Fig. 10. 

Multi-dynamics model
ADAMS
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Fig. 10.  The communication of ADAMS and MATLAB/SIMULINK. 
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Fig. 11.  The mechatronics virtual prototype. 

 
 
Combine the ADAMS mechanical model with controller based 

on MATLAB/Simulink, the mechatronics virtual prototype is 
established, as illustrated in Fig. 11. 

3. Co-Simulation Results 

Co-simulation results of the virtual prototype are collected 
to illustrate the performance of the proposed controller.  In order 
to demonstrate increased performance of the proposed control- 
ler versus conventional controller, the simulation results of the 
conventional PID controller are also provided. 

According to the real OCC, the parameters of the system 
are chosen as: h = 48 m, M = 2.0  104 kg, l = 15 m, xd = 36 m, 
(t) = 0.007 sin(1.25 t) rad (Sea State 3), (t) = 0.0165 
sin(0.924 t) rad (Sea State 4) and (t) = 0.0286 sin(0.714 t) rad 
(Sea State 5). 

 
(1) Co-simulation results of PID controller 

In order to control the position and sway simultaneously, 
the double-PID controllers are selected including position PID 
and sway PID.  The controller parameters are sufficiently 
tuned to obtain the best performance, which yields the fol-
lowing values: 

 2500kP  , 100iP  , 18000dP   for position PID. 

 500ksP  , 20isP  , 700dsP   for sway PID. 
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Fig. 12. The tracking and anti-sway results of PID controller with froll = 

1.25,  roll = 0.007 (sea state 3). 
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Fig. 13. The tracking and anti-sway results of PID controller with froll = 

0.924,  roll = 0.0165 (sea state 4). 
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Fig. 14. The tracking and anti-sway results of PID controller with froll = 

0.714,  roll = 0.0286 (sea state 5). 
 
 

froll and  roll denote roll frequency and amplitude of .  The 
tracking and anti-sway results are depicted in Figs. 12-14. 
(2) Co-simulation results of the proposed controller 

The optimal parameters of the proposed SOSM controller 
yield the following values: 
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The tracking and anti-sway results are shown in Figs. 15-17. 
The control goals of OCC system include tracking the trol- 

ley position quickly and suppressing the payload swing.  The 
desired specifications are required as follows: 

Settling time  15 s; Overshoot  2 %; Steady state error  
0.05 m; Residual swing  0.05 rad. 
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Fig. 15. The tracking and anti-sway results of the proposed controller 

with froll = 1.25,  roll = 0.007 (sea state 3). 
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Fig. 16. The tracking and anti-sway results of proposed controller with 

froll = 0.924,  roll = 0.0165 (sea state 4). 
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Fig. 17. The tracking and anti-sway results of proposed controller with 

froll = 0.714,  roll = 0.0286 (sea state 5). 
 
 
According to the Figs. 12-17, the relevant data statistics are 

listed in the Tables 1 and 2 to evaluate the control performance.  
The co-simulation results demonstrate that conventional PID 
controller’s settling time is much longer than the required time 
and the residual sway angle also can’t meet the requirement of 
control goal.  For the proposed SOSM controller, overshoot = 
0.74%-0.87%, settling time = 10.9-12.1 second and steady state 
error is 0.02-0.04 m upon sea state 3 & 4, which can satisfy the 
control goal perfectly.  But due to the ship moves sharply on 
the sea state 5, the trolley can’t achieve accurate positioning with 
the steady state error of 0.11 m. 

In summary, for the novel OCC system, because of the com- 
plexity of marine environment, the conventional PID control me- 
thod no longer meet the control goals.  The proposed anti-sway 
tracking controller has a good performance and strong robust- 
ness.  It can track the desired position quickly and accurately 
with rather small residual sway angle upon sea state 3 and 4. 
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Table 1.  The comparison of the trolley position response. 

external disturbance Control method Settling time (s) Overshoot (%) steady-state error (m) 

none / / 0.20 

PID 23.6 4.92 0.12 Sea State 3 

SOSM 10.9 0.74 0.02 

none / / 0.40 

PID 24.5 5.23 0.15 Sea State 4 

SOSM 11.3 0.81 0.04 

none / / 1.21 

PID 25.2 5.60 0.38 Sea State 5 

SOSM 12.1 0.87 0.11 

 
 

Table 2.  The comparison of the payload sway angle response. 

external disturbance Control method Settling time (s) residual sway angle (rad) 

none / / 

PID 18.6 0.030 Sea State 3 

SOSM 12.0 0.008 

none / / 

PID 20.8 0.050 Sea State 4 

SOSM 12.3 0.013 

none / / 

PID 24.4 0.058 Sea State 5 

SOSM 13.1 0.025 
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Fig. 18.  Structure of the experimental test bed. 

 

V. EXPERIMENTAL RESULTS 

After sufficient simulation tests, much effort has been put to 
perform experiments to further evaluate the performance of 
the proposed control strategy. 

Since it is hard to build an offshore container crane attached 
in a mobile harbor with disturbance from currents and waves, 
an experimental setup is established as illustrated in Fig.18. 

The test bed includes crane structure, 6-DOF motion plat-
form, angular and displacement sensors (encoders), driving sys- 
tem and controller crate shown in Fig. 19.  The 6-DOF platform 
can imitate the roll motion of the ship.  The upper computer uti- 
lizes Matlab/Simulink RTWT (Real Time Windows Target) as  

Computer/Monitors
Driving system

D
rivers &

 circuits

Encoder
6-DOF platform

Crane structure

Limit switch

Motor of X-axis

Motion control card

Control system
 

Fig. 19.  Experimental system. 

 

 
real-time control platform.  The DMC-1842 motion control card 
is chosen to programme the upper computer’s output signal, 
whose functional block diagram is plotted in Fig. 20. 

The experimental system parameters are set to be: 

 h = 2.5 m, M = 16 kg, m = 4 kg, l = 0.7 m, xd = 0.5 m. 

For the experiments, the parameters and gains of SOSM 
controller are carefully determined as follows: 
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Fig. 20.  Functional block diagram of motion control card. 
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Fig. 21.  Results of Experiment 1: trolleyʼs position. 
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Fig. 22.  Results of Experiment 1: payload's sway angle. 
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To fully investigate the performance of the proposed track 
position & anti-sway control strategy, two sets of experiments 
are implemented to evaluate the controllerʼs tracking perfor- 
mance and the sway suppression capacity, respectively. 

Experiment 1: Proposed Controller without Ship Motion 

The experimental results for the proposed control algorithm 
are provided in Figs. 21 and 22 in experiment of the ship is 
stationary ( = 0).  we can find that the sway angle is eliminated 
remarkably within 2 seconds before the trolley reach its desired 
position. 

Experiment 2: Proposed Controller with the Ship Roll 
Motion 

The roll motion of the ship used for the experiment verifica- 
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Fig. 23.  The rolling angle. 
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Fig. 24.  Results of Experiment 2: trolleyʼs position. 
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Fig. 25.  Results of Experiment 2: payloadʼs sway angle. 
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Fig. 26.  Results of Experiment 2: control force. 

 
 

tions is depicted in the Fig. 23. 
Figs. 24-26 illustrate the control performance of the de-

signed control strategy with the existent motion of ship.  Fig. 
24 shows that the trolley can track the goal position quickly 
and the position error stays within an acceptable motion region 
[-0.02 m, 0.02 m].  It can be found in Fig. 25 that the payload 
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maintains small residual sway angle less than 0.02 rad, which 
can satisfy the control objective remarkably. 

VI. COCLUSION 

In this paper, we have addressed the problem of payload 
sway suppression and trolley position track for OCC system 
with disturbances of ship motions and parameters perturbation.  
By utilizing Euler-Lagrange equations, the mathematical mo- 
del of OCC system is derived comprehensively and a SOSM 
control strategy is presented to achieve the control goal.  A vir- 
tual prototype of OCC is established and extensive simulation 
results show a good cancellation of the track error and residual 
sway upon sea state 3 and 4, but not so satisfying on sea state 5.  
Experimental results are provided to examine its practical con- 
trol performance.  The designed method is also applicable to 
other types of cranes with convenient modification (including 
gantry cranes and tower cranes) and can be used for reference 
to control other underactuated mechatronic systems as well. 
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