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ABSTRACT 

Risk assessment is crucial to the safety and durability of 
buildings constructed using concrete with high concentrations 
of chloride ions.  This study adopted grey statistical clustering 
and multi-phase fuzzy statistics in the development of a risk 
assessment model for existing reinforced concrete buildings.  
In the proposed model, evaluative indicators are divided into 
two categories: strength category included compressive strength 
and corrosion category included carbonation depth, chloride 
ion content, and steel corrosion current.  Overall, the risk to the 
building can be divided into three levels (low, medium, and 
high) based on critical values in risk evaluation strategies, 
parameter weights, and grey statistical clustering coefficients.  
A case study is presented to demonstrate the applicability and 
effectiveness of the proposed model. 

I. INTRODUCTION 

Despite considerable advances in construction techniques, 
the upkeep of existing buildings via repair, maintenance, altera-
tion and addition (RMAA) remains an important topic of re-
search.  The influence of chloride ions is particularly important 
in evaluating the safety and durability of reinforced concrete 
(RC).  This study defined indicators for the evaluation of RC with 
high concentrations of chloride ions in order to characterize 
symptoms of decay.  Grey statistical clustering and multi-phase 
fuzzy statistics were then used to develop a risk assessment 
model, in which three levels of risk (low, medium, and high) 
were defined.  The fuzzy membership function of each indicator 
with respect to every level (level membership functions) repre- 
sents the core of grey statistical clustering.  This study combined 
multi-phase fuzzy statistics with the results of a questionnaire  
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Fig. 1. Relationship between rate of rebar corrosion and service life of 

structure (Ohtsu, 2003). 

 
 

distributed to experts to calculate the critical values and weights 
in risk evaluation strategies of the level membership functions.  
We then applied the proposed model to a case study to dem-
onstrate its applicability and effectiveness. 

II. LITERATURE REVIEW 

In this chapter, we outline grey statistical clustering and 
multi-phase fuzzy statistics. 

1. RC Durability 

Concrete is a durable construction material which lasts for a 
long time as long as it is carefully proportioned and placed.  
However, incipient damage can occur when concrete is ex-
posed to a severe environment without adequate protection.  
The causes of concrete degradation can be divided into che- 
mical and physical attacks (Dhir et al., 1993; Young et al., 1998; 
Mamlouk et al., 1999; Secco et al., 2015; Wu et al., 2016), as 
shown in Table 1.  Rebar corrosion is the major cause of pre- 
mature degradation and the subsequent failure of reinforced 
concrete structures.  Rebar corrosion can be induced by car-
bonation and/or chloride ingress, resulting in cracking due to 
chemical attack or physical degradation.  Fig. 1 illustrates the 
relationship between deterioration and the service life of re- 
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Table 1.  Causes and symptoms of concrete degradation. 

Type Description Causes Symptoms 

Alkali-aggregate reaction of siliceous aggregates by alkali ions
coarse “map-cracking” with  

eruption of viscous fluids  

Sulfate attack reaction of paste components with sulfates general cracking and softening 

Acid attack dissolution by acids general etching of surfaces 
Chemical 

Rebar corrosion rusting of steel 
cracks with rust stains above  

location of reinforcement 

Frost attack freezing of water in pores general scaling and spalling at surface 

D-cracking freezing of water in pores 
fine crack pattern roughly parallel  

to joint in pavements 

Fire damage decomposition of hydration products cracking and spalling 

Physical 

Thermal cracking shrinkage internal stress from restrained contractions local cracking 

*summarized from studies by Dhir et al., 1993; Young et al., 1998; Mamlouk et al., 1999; Secco et al., 2015; Wu et al., 2016 
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Fig. 2.  Level membership functions used in grey statistical clustering. 

 
 

inforced concrete structures (Ohtsu, 2003). 
Concrete degradation due to rebar corrosion can be divided 

into four periods: incubation, initiation, acceleration and dete-
rioration.  The incubation time is governed by the penetration 
and concentration of chloride ions, the onset of corrosion, and 
the thickness of concrete covering the rebar.  When the con-
centration of chloride ions at the surface of the rebar exceeds 
a critical value, the passive film is destroyed.  When oxygen 
and water are supplied by the environment, rebar corrosion is 
initiated.  The reaction of iron and oxygen leads to the forma-
tion of iron oxide (rust), which increases the volume of area 
taken up by the rebar.  This expansion process undermines the 
tensile strength on the surrounding concrete, resulting in crack-
ing, spalling, or fracturing.  One survey of collapsed buildings 
reported that the failure of most reinforced concrete structures 
can be attributed to the corrosion of rebar.  Rebar corrosion 
shortens the service life of concrete structures and necessi-
tates costly repairs (Kramar et al., 2016; Mangat et al., 2016; 
Zhou et al., 2016).  The influence of chloride ions is particu-
larly important when evaluating the safety and durability of ex- 
isting RC structures. 

2. Grey Statistical Clustering 

Grey statistical clustering for risk assessment is an inte-
gration of grey system theory with fuzzy theory.  This approach 
results in reliable decisions, even when limited by the avail-
ability of data.  It also maintains compatibility with fuzzy lin- 

guistic scales, which can help to overcome many of the disputes 
involved in real-world applications (Lin et al., 2008).  The al- 
gorithm used in the grey statistical clustering method is out-
lined in the following (Wen, 2008; Lin et al., 2009; Hsu, 2011).  
Assume that a decision problem comprises n objects, m eva- 
luation indicators, and s levels.  Grey statistical clustering is 
used to identify the level to which the ith object belongs, 
according to calculations based on the m evaluation indicators. 

The core of grey statistical clustering is the level member-
ship function, denoted as fi

k(i).  Level membership functions 
can be divided into three types: upper, medium, and lower, as 
shown in Fig. 2. 

In Fig. 2, i
k indicates the critical value of the jth indicator 

on the kth level.  After the level membership function and the 
critical value are defined, the weight of the jth indicator on the 
kth level (i

k ) can be calculated using Eq. (1). 
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Thus, the grey statistical clustering coefficient j
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defined as follows: 
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Table 2.  Level membership functions for compressive strength of concrete. 

Level Level membership function R2 

Left 0.96 Low risk 0.95 , ( ) 1

0.61 0.95, ( ) 3 1.82

, ( ) 0

x f x

x f x x

others f x

 
    
 

 Right -- 

Left 1 Medium risk 0.75 0.92, ( ) 6 5.5

0.55 0.75, ( ) 1

0.38 0.55, ( ) 6 2.3

, ( ) 0

x f x x

x f x

x f x x

others f x

    
   
    
 

 
Right 1 

Left -- High risk 0.45 0.59, ( ) 7 4.15

0.45, ( ) 1

, ( ) 0

x f x x

x f x

others f x

    
  
 

 Right 1 

 
 

where xij refers to the measurement of the ith object on the jth 
indicator.  Coefficient vector i comprises s grey statistical clus- 
tering coefficients and indicates the level to which the ith ob- 
ject belongs: 
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The level to which the ith object belongs can be identified 
according to the maximum value of the grey statistical clus-
tering vector: 

  *

1
maxk k

i i
k s

 
 

  (4) 

3. Multi-Phase Fuzzy Statistics 

The level membership function is defined by the researcher 
based on the results of previous studies or experience; however, 
this process can be daunting.  To overcome these difficulties, we 
employed multi-phase fuzzy statistics (Chen, 2009; Choi et al., 
2009) in the integration of the knowledge of experts (obtained 
from questionnaires) in the definition of the level membership 
functions. 

We first sought to establish the frequency distribution in 
order to identify the membership degree with the highest fre- 
quency, as follows: uA (x) = 1.  We then calculated the relative 
frequency ratios by dividing the highest frequency into a fre- 
quency at each point and drawing a draft level membership 
function curve to connect them.  We employed the least square 
method for curve fitting to avoid the difficulties involved in 
using an irregular membership function curve.  Explanation 
capability (R2) was used to identify a curve suitable for curve 
fitting.  Higher order curves are sometimes required; however, a 
linear function is sufficient to explain most situations. 
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Fig. 3.  Structure of proposed risk assessment model. 

 

III. RISK ASSESSMENT MODEL FOR 
CONCRETE WITH HIGH CONCENTRATIONS 

OF CHLORIDE IONS 
The structure of the proposed risk assessment model is out- 

lined in Fig. 3.  Evaluative indicators were used to measure 
symptoms of decay in the floors of the selected building.  
Level membership functions derived from experts were then 
used to implement grey statistical clustering in order to deter- 
mine the level of risk associated with each floor. 

1. Risk Evaluation Indicators in RC Buildings with High 
Concentrations of Chloride Ions 

This study divided into two categories the indicators used to 
evaluate the risk of RC buildings: compressive strength and cor- 
rosion, including carbonation depth, chloride ion content, and 
steel corrosion current (Angst et al., 2009; Carvajal et al., 2012; 
Shi et al., 2012).  These are both important indicators of the 
durability of RC buildings, particularly those with high con-
centrations of chloride ions. 

2. Level Membership Functions 

A questionnaire was used to define the level membership  
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Table 3.  Level membership functions for carbonation depth in concrete. 

Level Level membership function R2 

Left -- 

Low risk 

1.2, ( ) 1

1.2 1.45, ( ) 4 5.8

, ( ) 0

x f x

x f x x

others f x

 
     
 

 
Right 1 

Left 0.99 

Medium risk 

0.82 1.4, ( ) 1.75 1.43

1.4 1.6, ( ) 1

1.6 2.1, ( ) 2 4.2

, ( ) 0

x f x x

x f x

x f x x

others f x

   
   
     
 

 
Right 1 

Left 1 

High risk 

1.71 2.0, ( ) 3.5 6

2.0 , ( ) 1

, ( ) 0

x f x x

x f x

others f x

    
  
 

 
Right -- 

 
 

Table 4.  Level membership functions for concentration of chloride ions in concrete. 

Level Level membership function R2 

Left -- 

Low risk 

0.3, ( ) 1

0.3 0.425, ( ) 8 3.4

, ( ) 0

x f x

x f x x

others f x

 
     
 

 
Right 1 

Left 1 

Medium risk 

0.167 0.5, ( ) 3 0.5

0.5 0.78, ( ) 3.5 2.74

, ( ) 0

x f x x

x f x x

others f x

   
     
 

 
Right 0.99 

Left 1 

High risk 

0.475 0.6, ( ) 8 3.8

0.6 , ( ) 1

, ( ) 0

x f x x

x f x

others f x

   
  
 

 
Right -- 

 
 

Table 5.  Level membership functions for corrosion current of steel. 

Level Level membership function R2 

Left -- 

Low risk 

0.5, ( ) 1

0.5 1.125, ( ) 1.6 1.8

, ( ) 0

x f x

x f x x

others f x

 
     
 

 
Right 1 

Left 0.9067 

Medium risk 

0.80 2.0, ( ) 0.9 0.7167

2.0 4.0, ( ) 1

4.0 5.54, ( ) 0.7 3.8167

, ( ) 0

x f x x

x f x

x f x x

others f x

   
   
     
 

 
Right 0.9932 

Left 1 

High risk 

4.29 5.0, ( ) 1.4 6

5.0 , ( ) 1

, ( ) 0

x f x x

x f x

others f x

   
  
 

 
Right -- 

 
 

functions.  For reliability, it is recommended that no fewer than 
ten experts be recruited from a variety of fields or fifteen to 
thirty experts from the same field (Dallkeyrt al., 1963; Del-
becq et al., 1975).  We invited ten experts to participate in this 
investigation, including professors, technicians, and engineers 

in the field of RC buildings.  The average range of experience 
dealing with high concentrations of chloride ions exceeded 
fifteen years. 

Based on multi-phase fuzzy statistics, we used the results of 
the questionnaire (Tables 1 to 4) to draw up draft membership  



1020 Journal of Marine Science and Technology, Vol. 24, No. 5 (2016 ) 

 

Table 6.  Critical values and weights of indicators. 

Low risk Medium risk High risk 
Indicators 

Critical Weight Critical Weight Critical Weight 
Compressive strength 0.95 1 0.65 1 0.45 1 

Carbonation depth 1.2 0.48 1.5 0.31 2.0 0.30 

Chloride ion content 0.3 0.41 0.5 0.35 0.6 0.30 

Corrosion current 0.5 0.11 3.0 0.34 5.0 0.41 
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Fig. 4.  Level membership functions of indicators. 

 
 

functions of indicators, as shown in Fig. 4.  We then used the 
linear least square method to fit the level membership func-
tions, as shown in Tables 2 to 5.  The R2 of the level membership 
functions indicates that the explanatory power provided by the 
curve fitting is acceptable. 

3. Risk Evaluation and Maintenance Strategies 

The next step involved calculating the critical values and 
weights of the level membership functions, as shown in Table 
6.  The critical value can be defined as the mean of the two end 
points in the upper side of the trapezoid.  For example, in the me- 
dium level membership function for the compressive strength of 
concrete, the critical value is defined as follows: 

 
0.55 0.75

0.65
2

Middle risk
Compressive strength 

   (5) 

This includes only one indicator related to strength risk.  
Therefore, the weight of each level membership function is the 
same and calculated as follows: 

 1
1 1

1
1

1
k

k

k k
j

j




 


 


 (6) 

The weights of the level membership function for corrosion 
risk are calculated using Eq. (1), the results of which are pre-
sented in Table 6.  However, grey statistical clustering does not 
allow for a comparison of indicators with critical values of dif- 
ferent scales.  Indicators with critical values of larger scales are 
allocated greater weights, which results in an unfair comparison.  
This study used preprocessing to overcome this problem. 

Generally, preprocessing can be conducted using the initial 
value, the mean value, or the maximum or minimum value (Hsia 
et al., 2004; Pan et al., 2004).  In the initial pre-processing 
stage, the first value is used as a base for dividing the critical 
value.  However, this can lead to considerable error.  The maxi- 
mum value and minimum value preprocessing methods both 
introduce directionality, which may distort the relative rela-
tionship with the original critical values.  Thus, we adopted mean  
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Table 7.  Maintenance strategies. 

 Low risk (Strength) Medium risk (Strength) High risk (Strength) 
MS1: MS2: MS3: 

Paint concrete surfaces Repair concrete spalling and cracks
Repair cracks in concrete and  

apply carbon fiber mesh,  
steel beams, or steel plating. 

Low risk  
(Corrosion) 

 Apply antirust paint or  
epoxy to steel. 

Apply antirust paint or  
epoxy to steel. 

MS4: MS5: MS6: 

Repair cracks in concrete. Repair cracks in concrete. 
Repair cracks in concrete and  

apply carbon fiber mesh,  
steel beams, or steel plating. 

Apply antirust paint or  
epoxy to steel.  Apply antirust paint or  

epoxy to steel. 

Medium risk  
(Corrosion) 

   

  Apply current cathodic protection. Apply current  
cathodic protection. 

MS7: MS8: MS9: 
Repair cracks in concrete. Repair cracks in concrete.  

Apply current cathodic protection. Apply current cathodic protection.  
High risk  

(Corrosion) 
 Partially demolish and  

rebuild beams and plates. 
Partially demolish and  

rebuild beams and plates. 
 
 

(a) cracking (b) spalling  
Fig. 5.  Deterioration of reinforced concrete structure: twelve-story residential building. 

 
 

value preprocessing in this study. 
As shown in Table 6, the weights related to corrosion risk 

were calculated using critical values that underwent preproc-
essing.  Under high corrosion risk, the weight of steel corrosion 
current (0.41) was the largest.  Under medium corrosion risk, 
the weights of the three indicators (carbonation depth, chloride 
ion content, corrosion current) were similar.  Under low corro-
sion risk, the weight of concrete carbonation depth (0.48) was 
the largest. 

After obtaining values for the indicators (xij), we calculated 
the grey statistical clustering coefficient (i

k) using Eq. (2).  
The level membership functions, (fj(i)) are listed in Tables 2  
to 5, and the weights (ηj) are listed in Table 5.  This makes it 
possible to formulate maintenance strategies according to the 
assessment of risk pertaining to strength and corrosion.  To de- 
termine a suitable maintenance strategy, we assembled a ma-

trix based on the levels of risk, as shown in Table 7. 

IV. ILLUSTRATIVE EXAMPLE 

This study applied the proposed model to the case of a 
building in Taiwan to demonstrate its applicability and effec-
tiveness.  The case study was an RC building with twelve 
floors and one basement level.  The building showed symp-
toms of high concentrations of chloride ions, including con-
crete spalling, efflorescence, and steel corrosion.  The average 
risk indicator values from six samples are presented in Table 8.  
The reinforced concrete structure was designed to function as 
a twelve-story residential building for 25 years.  The initial 
compressive strength exceeded 210 kg/cm2; however, cracks 
and spalling appeared in several locations, as illustrated in  
Fig. 5. 



1022 Journal of Marine Science and Technology, Vol. 24, No. 5 (2016 ) 

 

Table 8.  Measurements of evaluative indicators. 

Floor Compressive strength (kgf/cm2) Carbonation depth (cm) Chloride ion content (kg/m3) Corrosion current (A/cm2) 

B1F 136.0 3.50 1.202 5.00 

1F 139.7 0.76 1.647 0.25 

2F 166.0 3.70 1.188 5.00 

3F 166.0 2.93 1.499 0.50 

4F 192.0 3.63 1.488 0.25 

5F 93.7 1.83 1.242 5.00 

6F 190.0 3.73 1.264 5.00 

7F 183.7 1.63 1.430 4.50 

8F 195.7 0.80 0.573 3.50 

9F 260.0 0.36 1.082 0.50 

10F 205.7 2.23 0.525 0.25 

11F 269.7 1.83 1.654 5.00 

12F 205.3 2.13 1.850 1.00 

 

 
Table 9.  Strength risk: fj

k(xij). 

Floor Low risk Medium risk High risk 

B1F 0.12 1.00 0.00 

1F 0.18 1.00 0.00 

2F 0.55 0.76 0.00 

3F 0.47 0.93 0.00 

4F 0.92 0.01 0.00 

5F 0.00 0.38 1.00 

6F 0.89 0.07 0.00 

7F 0.80 0.25 0.00 

8F 0.98 0.00 0.00 

9F 1.00 0.00 0.00 

10F 1.00 0.00 0.00 

11F 1.00 0.00 0.00 

12F 1.00 0.00 0.00 

 

 
Table 10.  Strength risk: σi

k values. 

Floor Low risk Medium risk High risk 

B1F 0.12 1.00 0.00 

1F 0.18 1.00 0.00 

2F 0.55 0.76 0.00 

3F 0.47 0.93 0.00 

4F 0.92 0.01 0.00 

5F 0.00 0.38 1.00 

6F 0.89 0.07 0.00 

7F 0.80 0.25 0.00 

8F 0.98 0.00 0.00 

9F 1.00 0.00 0.00 

10F 1.00 0.00 0.00 

11F 1.00 0.00 0.00 

12F 1.00 0.00 0.00 
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Table 11.  Corrosion risk: fj
k(xij) values. 

 
 

1. Strength Risk Assessment 

In the assessment of strength risk, the values of fi
k(xij) were 

calculated by substituting data (Table 8) into the level mem-
bership functions of strength risk to obtain the results shown in 
Table 9.  Grey statistical clustering coefficients (i

k) were then 
calculated using Eq. (2) and the previously determined 
weights.  As shown in Table 10, the fifth floor was within the 
range of high risk, while the others were within the ranges of 

medium risk or low risk. 

2. Corrosion Risk Assessment 

In the assessment of corrosion risk, the values of fi
k(xij) were 

calculated by substituting the measurements of concrete car-
bonation depth, concrete chloride ion content, and steel cor-
rosion current into the level membership functions of corro-
sion risk, as shown in Table 11.  Grey statistical clustering 
coefficients (i

k) were then calculated using Eq. (2) and their 

Floor Indicator Low risk Medium risk High risk 

Carbonation depth 0.00 0.00 1.00 

chloride ion content 0.00 0.00 1.00 B1F 

corrosion current 0.00 0.42 1.00 

Carbonation depth 1.00 0.00 0.00 

chloride ion content 0.00 0.00 1.00 1F 

corrosion current 1.00 0.00 0.00 

Carbonation depth 0.00 0.00 1.00 

chloride ion content 0.00 0.00 1.00 2F 

corrosion current 0.00 0.42 1.00 

Carbonation depth 0.00 0.00 1.00 

chloride ion content 0.00 0.00 1.00 3F 

corrosion current 1.00 0.00 0.00 

Carbonation depth 0.00 0.00 1.00 

chloride ion content 0.00 0.00 1.00 4F 

corrosion current 1.00 0.00 0.00 

Carbonation depth 0.00 0.54 0.41 

chloride ion content 0.00 0.00 1.00 5F 

corrosion current 0.00 0.42 1.00 

Carbonation depth 0.00 0.00 1.00 

chloride ion content 0.00 0.00 1.00 6F 

corrosion current 0.00 0.42 1.00 

Carbonation depth 0.00 0.94 0.00 

chloride ion content 0.00 0.00 1.00 7F 

corrosion current 0.00 0.77 0.30 

Carbonation depth 1.00 0.00 0.00 

chloride ion content 0.00 0.72 0.78 8F 

corrosion current 0.00 1.00 0.00 

Carbonation depth 1.00 0.00 0.00 

chloride ion content 0.00 0.00 1.00 9F 

corrosion current 1.00 0.00 0.00 

Carbonation depth 0.00 0.00 1.00 

chloride ion content 0.00 0.89 0.40 10F 

corrosion current 1.00 0.00 0.00 

Carbonation depth 0.00 0.54 0.41 

chloride ion content 0.00 0.00 1.00 11F 

corrosion current 0.00 0.42 1.00 

Carbonation depth 0.00 0.00 1.00 

chloride ion content 0.00 0.00 1.00 12F 

corrosion current 0.20 0.18 0.00 
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Table 12.  Corrosion risk: σi
k values. 

Floor Low risk Medium risk High risk 

B1F 0.00 0.14 1.00 

1F 0.59 0.00 0.30 

2F 0.00 0.14 1.00 

3F 0.11 0.00 0.59 

4F 0.11 0.00 0.59 

5F 0.00 0.31 0.82 

6F 0.00 0.14 1.00 

7F 0.00 0.55 0.42 

8F 0.48 0.59 0.23 

9F 0.59 0.00 0.30 

10F 0.11 0.31 0.41 

11F 0.00 0.31 0.82 

12F 0.02 0.06 0.59 
 
 

pre-determined weights.  As shown in Table 12, the first and 
ninth floors were at low risk, while the others were at medium 
or high risk. 

Finally, we drew up a maintenance strategy based on these 
results.  For example, the chloride ion content of the concrete 
on the ninth floor was not high enough to cause damage (low 
risk for strength as well as corrosion).  The maintenance rec-
ommended for this case is painting of the surface. 

V. CONCLUSIONS 

Three conclusions can be drawn from the results of this study: 
 

1. The risk assessment indicators for buildings with high 
concentrations of chloride ions can be divided into: those 
associated with compressive strength and those associated 
with corrosion, including carbonation depth, chloride ion 
content, and steel corrosion current.  Overall, risk can be 
divided into three levels: low, medium, and high. 

2. We employed multi-phase fuzzy statistics and the results of 
a questionnaire distributed to experts to define effective 
level membership functions.  The least squares method and 
explanatory power were used to direct curve fitting.  Grey 
statistical clustering was used to develop a risk assessment 
model for RC buildings.  The level membership functions, 
critical values, and weights were used to determine the risk 
level of the building through evaluative indicators.  We also 
presented a maintenance strategy matrix based on the as-
sessment of risk pertaining to the compressive strength of 
the concrete and observed corrosion. 

3. A case study was used to demonstrate the applicability of 
the proposed model in assessing risk and identifying an 
appropriate maintenance strategy for the evaluation of ex-
isting RC structures with high concentrations of chloride 
ions.  The proposed model could easily be extended to other 
cases in civil engineering with similar problems, such as 
existing RC bridges, RC dams, or RC pump houses. 
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