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ABSTRACT

The dislocation structure evolution in polycrystalline cop-
per at constant strain amplitude during low cycle fatigue is
well understood. Single crystal, ultra-large grain polycrystalline
copper dislocation development has received little attention.
Ultra-grain polycrystalline copper with 600 um average grain
size was used in this study to investigate the dislocation de-
velopment at different fatigue strain amplitudes. The results show
that; (1) the stress curve vs. number of cycles (S-N curve)
produces hardening in the first stage followed by softening
regardless of the strain amplitude. At the same time, no plateau
is found in the S-N curves. (2) The fatigue saturation stress in-
creases consistently with increased grain size. (3) The special
dislocation morphology of ultra-grain copper during fatigue
displays a loop patch structure or veined structures embedded
in a long band area in parallel dislocation. This is because the
larger grain has larger saturation stress, producing a large area
with the same slip system band that regulates the high satura-
tion stress.

I. INTRODUCTION

It is well known that fatigue fracture occurs due to dislocation
interaction. The evolution of dislocation structure under the
fatigue process is among the stacking fault energies in the ma-
terial structure, such as face-center cube (FCC) (Laird et al.,
1986; Ma and Laird, 1988; Chen et al., 2003; Toribio and Kharin,
2006), Therefore, the optimum strength can be o body-center
cube (BCC) (Mughrabi et al., 1976; Mughrabi et al., 1981;
Buchinger et al., 1986; Sommer et al., 1988) and hexagonal close
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packing (HCP) (Steveson and Breedis, 1975; Gu et al., 1994).
The dislocation structures can be cataloged into two modes.
The first is wavy form, which is observed in high stacking fault
energy materials, and subsequently develops a loop patched
structure, veined structure, persistent slip bands (PSBs), walled
structure, cell structure and miss-orientation cell structure
(Winter et al., 1981; Ackermann et al., 1984; Laird et al., 1986;
Ma and Laird, 1988; Chen et al., 2003; Toribio and Kharin, 2006).
The second form is a planar material that exhibits low stacking
fault energy with a persistent Liider band dislocation structure,
regardless of the fatigue cycle progression (Buchinger et al.,
1986; Inui et al., 1990). The dislocation fatigue structures differ
in the space between the Liider bands. This means that the dis-
tance between the persistent Liider bands decreases with in-
creased plasticity strain accumulation during fatigue.

The wavy form of dislocation structure has been widely
researched in the literature. Pure copper FCC materials have
been extensively investigated, such as polycrystalline copper
under variable strain amplitude (Ma and Laird, 1988; Huang,
2003), low strain amplitude (Buchinger et al., 1984; Laird et
al., 1986), frequency effect (Yan and Laird, 1986), temperature
effect (Basinski et al., 1980; Sommer et al., 1988; Basinski and
Basinski, 1989), load type effect on dislocation structures (Ma
et al., 1990; Llanes and Laird, 1993), grain size effect (Lianes
et al., 1993; Morrson, 1994) and single crystal copper for fa-
tigue dislocation evolution (Buchinger et al., 1984; Holwarth
and EBmann, 1993). The results from the above mentioned re-
ports reveal that the developed dislocations are similar re-
gardless of the load condition, temperature, strain amplitude,
frequency, grain size and polycrystalline type. The difference is
the variation in dislocation fatigue acceleration or retardation
evolution, high or low saturation stress or the space between
the walls. However, the evolution of extra-large grain structural
dislocation (about several hundred micro-meters) has seldom
been reported. The microstructural evolution of polycrystalline
copper with extra-large grain size is therefore studied in this
research.

II. EXPERIMENTAL
A polycrystalline copper rod with oxygen free high purity
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Table 1. The fatigue test data at constant strain amplitudes.

Sample  Strain Amplitude  Fatigue cycles Fracture TEM
A 0.3% 3000 No Yes
B 0.3% 19246 Yes Yes
C 0.2% 6000 No Yes
D 0.2% 39851 Yes Yes
E 0.1% 119376 Yes Yes

Fig. 1. The grain size of OFHC pure copper annealed at 10° Torr.

vacuum for 4 hours. The average grains size is about 600-800 pm.

(OFHC, 99.99%) was used for this study. The specimens were
annealed at 800°C for 4 hours in a vacuum at 10° Torr.
Samples were then cooled in the furnace. The specimen grain
sizes were 650-700 um, as shown in (Fig. 1). The specimen
preparation followed the ASTM E647 instructions for
hour-glass. The specimen configuration is shown in (Fig. 2).

Before fatigue, the glass specimens were polished using 240,
400, 600, 1000, 1200 mesh abrasive papers. The polished spe-
cimen was processed using Al,O3; powder (0.3 micron). Low
cycle fatigue tests were performed on a computerized Instron
8801 hydraulic testing machine at strain ratio R (R = &uin/ Emin =
—1) and a frequency of 1 Hz. The fatigue condition is shown in
Table 1.

Specimens prepared through the low cycle fatigue process
were cut into 0.6 mm thick slices along the cross section to
observe the dislocation structures. The slices were ground to
a thickness of 0.1-0.15 mm using abrasive paper and then
punched into disks 3 mm in diameter. The 3 mm disks were
twin-jet polished using Struer D, solution at 10 V and —10°C.
A Philip 200 CM transmission electron microscope (TEM)
was employed to investigate microstructures of the low cycle
fatigue specimens.

III. RESULTS AND DISCUSSION

Journal of Marine Science and Technology, Vol. 24, No. 5 (2016)
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Fig. 3. The stress vs. number of fatigue cycles diagrams at 0.3% strain

amplitudes.

After low cycle fatigue under 0.3%, 0.2% and 0.1% strain
amplitude, the stress vs. fatigue number of cycles for 0.3%
strain amplitude specimens is shown in (Fig. 3). The S-N curves
for 0.2% and 0.1% strain amplitude are similar to the 0.3%
strain amplitude samples. This result shows that regardless of
the strain amplitude, the S-N curves show hardening initiated
and then softening until fatigue fracture. At the same time no
plateau area is shown in any S-N curve. These results vary from
single crystal specimens (Buchinger et al., 1984). The satu-
ration stress (11.04 kgf/cm®) for ultra-large grain is larger than
that for the large grain (Lianes et al., 1993; Morrson, 1994).
However, the S-N curve in this study showed no secondary
hardening effect. This result is different from that for small and
large grain size specimens under the same strain amplitude
(Wang and Mughrabi, 1984; Laird et al., 1989; Wang et al.,
1989). The microstructures were observed using a Philip 200
CM transmission electron microscope, shown in Figs. 4-8. Fig.
4 shows the dislocation structure at 3000 cycles under 0.3%
strain amplitude. It reveals a similar loop patch structure or
veined structures embedded in a long band clipped in parallel
dislocation walls. Vein structures, cells and miss-orientation cell
structures were also observed. The dislocation structures in the
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Fig. 4. The dislocation structure in specimen A (0.3% strain amplitude
fatigue to 3000 cycles) reveals loop patches and veins structure

embedded in two parallel walls.

Fig. 5. The dislocation structure in specimen B (0.3% strain amplitude
fatigue to fracture) shows cells and mis-orientation cells.

uncondenscdywallsy

Fig. 6. The dislocation structure in specimen C (0.2% strain amplitude
fatigue to 6000 cycles) shows uncondensed cells.

fracture at 0.3% strain amplitude are revealed in (Fig. 5). This
result is similar to that reported for copper materials (Laird
et al., 1986). Fig. 6 shows the dislocation structure at 6000

Fig. 7. The dislocation structure in specimen D (0.2% strain amplitude
fatigue to fracture) reveals uncondensed cells, cells and mis-
orientation cells.

eallls

The dislocation structure in specimen E (0.1% strain amplitude
fatigue to fracture) revealed loop patch elongated cells and equi-
axed cells.

cycles under 0.2% controlled strain amplitude. A similar loop
patch or veined structure is shown in the uncondensed dis-
location wall structure. The dislocation fracture structures at 0.2%
strain amplitude present a cell structure (Fig. 7). Similarly, the
dislocation structure at 0.1% fatigue strain amplitude fatigue
also presents a cell structure (Fig. 8). The difference between
Figs. 5, 7 and 8 is the cell size and cell shape. The cell size
(0.5~0.7 pum, average 0.6 um) is smaller when the strain ampli-
tude is increased. This is consistent with that reported in the lite-
rature (Laird et al., 1986). The dislocation cell shape at 0.1%
strain amplitude varies compared to 0.2% and 0.3% strain am-
plitude, the strain amplitude change dislocation cell morpho-
logy shown in Table 2. This is because the strain amplitude is
too low to create a loose multiple slip density system.

Based on the results above the dislocation structures in the
ultra-large grain size are similar to those in the small or large
grain size. The differences among these specimens are shown
in (Fig. 5). The S-N curve reveals softening after the initial
hardening stage with no secondary hardening effect. According
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Table 2. The cell morphology at change strain amplitudes.

Strain Amplitude Non-Saturation (3000 cycles) Saturation
0.1% The dislocation structures dominated by elongated cells and equiaxed cells
equiaxed cells. The equiaxed cells are majority.
0.2% The dislocation structures dominated by elongated cells and equiaxed cells
equiaxed cells. The elongated cells are majority.
The elongated cells take the most part of the dislocation
0.3% structuref The equiaxed cells are ral;ely. clongated cells

& W

Fig. 9. The dislocation structure in specimen A (0.3% strain amplitude

fatigue to 3000 cycles) reveals loop patches with high density
dislocation.

to the literature reports, the loop patch and veined structure
occur in the hardening phase and the persistent slip band oc-
curs in the softening phase (Winter et al., 1981). Because the
larger grain has higher saturation stress (Lianes et al., 1993;
Morrson, 1994) and higher dislocation density (Fig. 9), there is
a larger slip system with the same direction upon the second
slip system created when the fatigue reaches saturation stress.
This result induces softening in the S-N curve. At the same
time, the plasticity strain accumulation is smaller than that in
the previous step due to the softening effect. Therefore, the
same directional slip systems that induce the slip band remain
within a narrow band and continue to regulate the plastic strain
accumulation. Based on above two factors, the S-N curve ex-
hibits continued softening with no secondary hardening ob-
served. Unless the plastic strain accumulation becomes large
enough to result in multiple slip systems, the second slip sys-
tem continues operate. Therefore, the dislocation morphologies
in Fig. 4 were formed. In other words, the dislocation struc-
ture shown in Fig.4 is the ultra-grain result with high saturation
stress and the strain amplitude is insufficiently large to create a
multiple slip system or extend the slip band in the same di-
rection to form a cell structure.

IV. CONCLUSIONS

This study revealed that dislocation obeys a wavy form type
development. This means that the dislocation evolves from a loop

patch, veins, PSBs, walls, cells and then mis-orientation at the
plastic strain accumulation during fatigue. Special dislocation
morphology was observed in ultra-large polycrystalline copper
grain. This phenomenon is due to the larger grain with larger
saturation stress to regulate. The high saturation stress induces
a larger slip system band. At the same time the S-N curves in-
dicate softening. The strain amplitude is based on the average
grain size in fatigue specimens regardless of the load conditions.
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