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ABSTRACT 

To solve the three-dimensional pressure and load distribution 
of roller bearings, a new boundary element method (BEM) is 
presented in this report.  First, a discrete model of the initial 
location roller was established, and the other rollers’ discrete 
data could be obtained using geometrically similar conditions 
of this model.  Based on the three-dimensional elastic contact 
BEM, all of the bearing rollers could be described as one 
object; therefore, the roller bearing problem of a multi-object 
contact system could be simplified as the problem of a three- 
object contact system.  Bearing boundary elements were used 
to realize the discontinuous traction on the contact area, and 
the Hertz contact theory was used to revise the contact widths 
between the rollers and the bearing races, including the inner 
and outer races.  A coupling matrix equation was established, 
and the boundary matrix equation’s condensation process was 
illustrated.  A bearing-BEM program was compiled based on 
geometrically similar roller conditions, in which a four-row ta- 
pered roller bearing in a rolling mill was simulated.  The bearing 
contact pressure and load, roller contact widths and number of 
contact rollers were obtained.  Lastly, the simulation result was 
compared with that of the traditional bearing-BEM (T-BBEM) 
and the experimental data, which proved the validity and ef-
fectiveness of the developed method. 

I. INTRODUCTION 

Among the different types of mechanical transmission sys- 
tems, roller bearings are not only one of the most important 
parts but also the most easily damaged.  An accurate calculation 
of the distribution of load bearing is extremely important for 

improving its service life (Waghole and Tiwari, 2014).  The 
friction coefficient of rolling contact is considerably lower than 
that of the sliding contact, and the roller bearing has an elas-
tohydrodynamic lubrication effect on most operating condi-
tions, i.e., friction is generally not considered when the roller 
bearing load distribution is studied (Zhou et al., 2006).  A roller 
bearing system is a typical multi-object elastic contact prob-
lem.  When investigating the roller bearing load distribution, 
most researchers use both analytical (Wang and Yuan, 2013; 
Göncz et al., 2013) and numerical methods (Zhang, 2012; Wang 
and Dai, 2013). 

In numerical solutions, because the boundary element me- 
thod (BEM) with response parameters can be obtained directly 
on the boundary, the object boundary is only required to divide 
elements in the elastic state not the global region, and the 
solving scale is reduced by one dimension.  The dimension 
reduction results in small data preparation and high precision 
when calculating the elastic contact problems (Segond and 
Tafreshi, 1998).  Using the BEM to solve contact problems, 
Gun and Gao (2014) proposed a quadratic boundary element 
formulation for continuously non-homogeneous, isotropic and 
linear elastic functionally graded material contact problems 
with friction, in which the punch problem and two cylinders  
in contact were calculated.  Chen (2010) proposed a Taylor 
Series Multiple BEM for solving 3D multi-body elastic  
frictional contact problems using a “node-to-surface” contact 
model, in which a HC roll system was calculated.  L. Rodríguez- 
Tembleque and Abascal (2010) proposed a new and efficient 
methodology for 3D frictional contact problems based on the 
Generalized Newton Method using a line search.  Gui et al. (2013) 
proposed a variable elements length theory to determine the 
change in the contact area in contact problems.  Yu (2005) pro- 
posed a new mathematical model for the highly nonlinear 
problem of frictional contact.  A programming model, i.e., a 
multiple BEM, was developed for the 3-D elastic contact with 
friction to replace the Monte Carlo method.  Using the BEM  
to solve bearing contact problems, Shen et al. (2001) and Shu 
and Xing (2004) used plate units instead of rollers, which were 
fixed to the bearing’s inner race.  The bearing system was sim- 
plified into a two-object contact problem within the inner and 
outer races; instead of looking at the roller displacement, this  
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Fig. 1.  Location and geometric relationship of discrete rollers. 

 
 

method examines the roller’s radial approach value within the 
inner and outer races, which can then be used to simulate the 
roller bearing’s load distribution. 

Because the roller bearing contact problem has multiple 
small contact areas, there are extremely few literatures ana-
lyzing the load distribution of roll bearing using the BEM.  
Moreover, several simplifications have been performed in the 
existing literatures, which could not initially realize the full 
contact models of the bearing inner race, rollers and outer race.  
The bearing-BEM, which is based on the geometrically simi-
lar conditions of rollers known as GSC-BBEM, is proposed  
in this report.  In this method, all of the rollers in the roller 
bearing are assumed to be elastic contact objects and their elastic 
deformation can be calculated.  Thus, the roller bearing’s pres- 
sure and load distribution can be simulated more accurately. 

II. GEOMETRICALLY SIMILAR  
ROLLER CONDITIONS 

All rollers in a roller bearing have the same shape and bound- 
ary conditions, but their different positions.  Therefore, when 
analyzing a roller bearing with geometrically similar condi-
tions, the discrete model of the original roller (represented by 
R0) needs to be first established firstly.  Fig. 1 depicts a roller 
in the horizontal position. 

The other rollers’ node coordinates and element compositions 
can be calculated based on the node coordinates and element 
compositions of the original roller's (R0) geometric relation as 
follows: 
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where j
ix , j

iy  and j
iz  represent the coordinate values of the 

j-th node on the i-th roller; 0
jr  represents the distance from the 

center of the bearing to the j-th node on the original roller; 0
jx , 

0
jy  and 0

jz  represent the coordinate values of the j-th node on  
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Fig. 2.  Contact schematic of three elastic objects. 

 

 
the original roller; 2 /i i n   represents the angle of the i-th 

roller relative to the original roller; and 0
j  is the angle be-

tween the j-th node on the original roller and the positive 
direction of the x axis. 

For single-row bearings and multi-row cylindrical bearings, 
we only need to establish a discrete model of the original roller.  
For multi-row tapered bearings, the rollers are tapered, and the 
direction of the two adjacent columns is thus inconsistent.  
Therefore, the discrete models of the original rollers for both 
the first and second rows need to be established. 

III. THREE-OBJECT ELASTIC CONTACT  
BEM WITHOUT FRICTION 

Let us consider three line elastomers A, B and C (as illus-
trated in Fig. 2) that contact each other, and their corre-
sponding boundaries are A, B and C, respectively.  D is the 
contact boundary of A and B whereas E is the contact 
boundary of B and C (Yang and Xiao, 2009). 

1. Contact State 

The contact boundaries of D and E are divided into a 
pre-contact boundary, represented by DP and EP, and a con-

tacted boundary, represented by DC and EC.  F
k  indicates 

the non-contact area boundary of the k-th object. 
When using a condensed method, because the number of 

unknown quantities is greater than the number of equations, a 
local coordinate system (represented by 1 2 3, ,   ) should be 

established on the contact area to add equations, and the con-
tact area's unknown quantities can then be solved.  The pro-
cedure for establishing a local coordinate system can be given 
as follows: the direction of 3  must be the outward normal 

direction of the contact boundary, and the local coordinate 
system ( 1 2 3, ,   ) must meet the right-hand rule.  For example, 

the contact node can be selected from D . 

On the contacted boundary of DC, the node contact state 
can be expressed as follows: 
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On the pre-contact contact boundary of DP, the node con-
tact state can be expressed as follows: 
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where 
l

kt  is the traction in the l  direction under the local 

coordinate system of the k-th object; 
3

ku  is the displacement in 

the 3  direction under the local coordinate system of the k-th 

object; and 
3

Du  is the initial clearance of the contact node pair 

on the contact boundary D  in 3  direction under the local 

coordinate system. 
The contact state equations on the contact boundary E can 

be similarly presented using Eqs. (2) and (3). 

2. Boundary Integral Equation 

Based on the elastic problem’s boundary integral equation 
and coupling contact state equations, there are three-object 
boundary integral equations that need to be solved. 

For object A, 
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For object B, 
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For object C, 
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where kX  and kY  represent the source point and the integral 

point of the k-th object, respectively; k
jt  and k

ju  represent the 

traction and displacement of the k-th object in the j direction 
under the global coordinate system, respectively; lj  is the 

direction cosine between the l  direction under the local 

coordinate system and the jx  direction under the global co-

ordinate system; *
ijT  and *

ijU  represent the traction and dis- 

Table 1.  Revised contact states. 
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placement fundamental solutions, respectively; and 
3

Eu  repre-

sents the initial clearance of the contact nodes on the contact area 

E  in the direction of 3  under the local coordinate system. 

3. Contact Criteria 

Because it is highly non-linear, when calculating the con-
tact problem, the contact area initially needs to be assumed, 
and an iterative algorithm is then used for an accurate calcu-
lation.  For the i-th contact element of object A, Table 1 is used  
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to revise the contact states at the (m-1)-th and m-th processes 
of iteration. 

For object A, the number of contacted elements at the m-th 

and (m-1)-th iterations are ADCNm  and 1
ADCNm , respectively.  

Similarly, for object C, the number of contacted elements 

within two iterations are CECNm  and 1
CECNm .  The convergence 

condition of iteration can be given as follows: 

 

1
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1
C EC C EC

N N

N N

m m

m m





 

 

 

IV. BEARING-BEM 

1. Discrete Model for the Inner and Outer Bearing Races 

Each roller has two contact areas, i.e., contact areas with 
both the inner and outer races of the bearing.  The bearing’s 
inner and outer races contact with n rollers; therefore, the 
contact areas of both races can be considered as one single 
contact area, which are divided into n groups.  In the discrete 
model depicted in Fig. 3, the contact nodes and the contact 
elements start from 0   (the position of roller R0, as indi-
cated in Fig. 1) counterclockwise. 

A contact group is illustrated in Fig. 4. 
As seen in Fig. 4, one contact group contains two elements 

and six nodes.  Both elements are contact elements; of the six 
nodes, the third and fourth are contact nodes while the others 
are non-contact nodes.  The shaded part of the figure indicates 
the contact width between the rollers and the inner or outer 
race. 

2. Bearing Boundary Element 

As indicated in Figs. 3 and 4, traction exists only in positions 
that contact the rollers in contact areas of the inner and outer 
races.  Therefore, bearing boundary elements are used to solve  

1
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Fig. 5.  Schematic plan of bearing boundary sub-elements. 

 
 

the discontinuous problem of traction in both the inner and outer 
races along the circumferential directions (Yang et al., 2014). 

One contact group contains two bearing boundary elements, 
as indicated in Fig. 5.  Bearing boundary element I represents 
the bearing boundary element on the left side, and bearing 
boundary element II represents the bearing boundary element 
on the right side.  One bearing boundary element is divided 
into two sub-elements, there is continuous traction on the sub- 

elements of 1
i  and 1

1i , and there is zero traction on the sub- 

elements of 2
i  and 2

1i .  Assuming a normal traction on the 

sub-elements of 1
i  and 1

1i  presents a parabolic distribution 

along the width direction and a linear distribution along the 
length direction. 

The distribution of traction on the sub-elements of 1
i  and 

1
1i  can be given as follows: 
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where 0
2  is the length in the 2  direction of the inner side of 

the sub-elements 1
i  and 1

1i  on the bearing boundary ele-

ment; and it  and 1it 
  represent the traction on the sub- 

elements 1
i  and 1

1i  for the bearing boundary elements I and 

II, respectively. 

The aspect ratio of the sub-elements 1
i  and 1

1i  is so large 

that larger errors will result during the integral calculation.  
Therefore, it needs to be further divided into multiple bearing 
boundary micro-elements (Shu and Xing, 2004), and the 
bearing boundary micro-element aspect ratio should be limited 
to less than 3.  The aspect ratio of the bearing boundary micro- 
element with a singular point is equal to one.  The schematic 
plan of the bearing boundary micro-elements is illustrated in 
Fig. 6. 

Each bearing boundary micro-element’s area is a   

1 b   and 2a b    .  A Gaussian integration should be 

performed under area conditions of 1 1    and 1 1   .  

Therefore, the coordinates of all of the bearing boundary micro- 
elements can to be transformed as follows 
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3. Coupling Matrix Equation 

When integrating the coupling boundary integral Eqs. from 
(4) to (6), the known boundary quantities and corresponding 
impact coefficients can be placed on the right-hand side of  
the equation, and the unknown boundary quantities and corre-
sponding impact coefficients can be placed on the left.  The dis- 
crete boundary integral equation can be written as follows: 

       , A, B, C
k k k

k Y x b  (9) 

where Y is the influence coefficient matrix of the unknown 
quantities; x is the vector of the unknown quantities; and b is 
the product vector between the known quantities and the cor-
responding coefficients. 

Because the rolling friction coefficient is small, friction cannot 
be considered when studying the roller bearing load distribution.  
All bearing rollers can be described as one object; therefore, 
the system of roller bearing can be simplified to a three-object 
contact problem without friction.  A is the inner race contact 
object, B is the contact object of all rollers and C is the outer 
race contact object. 

The boundary integral equation of the k-th roller can be 
given as follows: 
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The bearing system’s matrix equation can be obtained when 
the boundary integral equation of the rollers has been coupled 
with the inner and outer race as follows: 
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where, as indicated in Eq. (11), A is the coefficient matrix  
of the unknown quantities in the contact area.  As depicted in 
Eq. (12), the vector of x is the unknown quantities in the con-
tact area. 

Object B represents all rollers 
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Fig. 7.  Gaussian elimination process. 

 
 

[AC]k [C]k
Condensation Pre-contact

area
Contact

area=

 
Fig. 8.  Condensation process. 
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The forms of BEPH , 
1

BDC
H , 

2

BDC
H , 

1

BEC
H , 

2

BEC
H , 

3

BDC
H , 

3

BEC
H , 

3

BDC
G  and 

3

BEC
G  in Eq. (11) are the same as those in  

Eq. (13), and the forms of BEPu , 
1

BDC
u , 

2

BDC
u , 

1

BEC
u  and 

2

BEC
u  

in Eq. (12) are the same as those in Eq. (14). 
In Eqs. (10) to (14), H and G represent the coefficient ma-

trix of the displacement and traction, respectively, superscripts 
DCk  and ECk represent the coefficient matrix and the un-

known quantities of the k-th object on the contacted area, 
respectively, DPk  and EPk represent the coefficient matrix 
and the unknown quantities of the k-th object on the pre- 
contact area, respectively, Fk  represents the coefficient matrix 
and parameters of the k-th object on the non-contact area, 

RDP
iH  represents the displacement influence coefficient ma-

trix of the i-th roller on the pre-contact area and RDP
iu  repre-

sents the displacement of the i-th roller on the pre-contact area. 

4. Condensation Solving Process 

Using the numerical method to solve the boundary integral 
equation, the boundary must be dispersed into elements with 
the element node indicating the displacement and traction on 
the boundary (Yang and Xiao, 2009). 

1) Gaussian Elimination 

For the three-object coefficient matrix, represented by [A]k, 
the Gaussian elimination can be used until the contact area is 
reached.  Then, the elements from the three objects that have 
been eliminated can be removed, and a new matrix equation 
can be re-formed, as represented by [AC]k.  Fig. 7 illustrates 
the Gaussian elimination process. 

2) Condensation 

[C]

ACDP

BCDP
BCEP

CCEP

ACDC

BCEC

CCEC

BCDC[C]k, k = A, B, C =

0 0

00

0 0
 

Fig. 9.  Coupling process. 

 
 
The impact coefficients of the contacted area can be placed 

behind the pre-contact area (Yang et al., 2014).  The condensed 
coefficient matrix of the contact area represented by [C]k can 
be obtained when a condensation treatment for the contact 
area’s coefficient matrix [AC]k has been performed.  Fig. 8 
illustrates the condensation process. 

3) Coupling 

Based on the contact state equations, the coupling coefficient 
matrix of the contact area represented by [C] can be obtained 
by coupling the condensation coefficient matrix [C]k.  This 
matrix includes the displacement of the contact area and the 
impact coefficient of traction.  Furthermore, the impact coeffi-
cients of the contacted area can be placed behind the pre-contact 
area.  Fig. 9 depicts the coupling process. 

Using the coupling coefficient matrix [C] and the corre-
sponding matrix equation, a one-step increment iteration’s 
displacement and traction of the contact area under the local 
coordinate system can be obtained.  Then, the contact state can 
be determined based on those results, and the next step of in- 
cremental solving can be performed until convergence occurs.  
Lastly, the unknown quantities of the non-contact area can be 
solved with the general matrix equation and the calculated 
result of the contact area. 

5. Revise the Contact Widths between Rollers and Bearing 
Races 

For a highly non-linear bearing system, the contact widths 
between the rollers and the bearing races, including the inner 
and outer races, need to be assumed during the calculation pro- 
cess.  The Hertz contact theory can be used as a revision basis 
when the iterative algorithm is used to revise the contact width 
between each roller in contact and the inner or outer race.  The 
actual contact width is eventually obtained, and the load bearing 
distribution can be obtained using the actual width (Xiao et al., 
2010). 

First, a half-width of the contact represented by 0b  can be 

assumed.  The contact pressure value of all nodes can be ob-
tained after the first iteration.  Then, the total load on the bear-
ing’s sub-elements can be calculated.  For one contact group 
(as indicated in Fig. 4), after the calculation, it is possible to 
obtain the pressure values of every contact node that is on the 

i-th element; which can be represented by ,i j
kt  (the load of the 

j-th node on the i-th element in the direction of k).  The dis-
crete form of the resultant load on the bearing boundary 
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sub-elements can be given as follows: 

 
4

, 1, ,
1 2 1 2 1 2
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      (15) 

The total load on the outward normal direction of the ele-
ment, which is also known as ‘the positive contact pressure’, 
can be given as follows: 

 
3 3

3
, , 1 ,1

3
1

i i j i
k k
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
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where n represents the number of bearing boundary mi-

cro-elements on the sub-element of 1
i ; l represents the 

number of Gaussian integration points; 1  and 2  represent 

the weight coefficients of the corresponding integral points; 

1  and 2  represent the coordinates of the Gaussian integral 

points,  represents the shape function; J represents the Jacobi 
value; and 3k  represents the direction cosine in the direction 

of 3  under the global coordinate system. 

For cylindrical or tapered roller bearings, the Hertz contact 
theory can be used.  The contact widths between the rollers 
and the bearing races can be expressed as follows (Bai and Liu, 
1996): 
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 (17) 

where ib  and ob  represent the contact half-widths between the 

rollers and inner or outer races, respectively; iR  represents the 

outer radius of the inner race; oR  represents the inner radius of 

the outer race; R represents the radius of the rollers (for ta-
pered roller bearings, take the average radius); and l' repre-
sents the effective length of the rollers. 

The contact half-width of each roller can be obtained using 
Eq. (17).  Using the new contact half-widths, the integral cal- 
culation and iterative solution are performed until the given 
convergence criterion is satisfied.  Thus, the contact widths for 
all of the rollers obtained at this time are true. 

The convergence criterion can be given as follows: 

 1 0b b    

where 1b  represents the contact half-widths between the roll-

ers in contact and the inner or outer race after the Hertz contact 
theory has been revised; and  represents an infinitesimally 
small positive value. 
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Fig. 10.  Computation flow chart. 

 

6. Computation Flow Chart 

With geometrically similar conditions, the discrete model 
of the original location roller is used to calculate the discrete 
models of rollers at other locations, the Hertz contact theory  
is used to revise the contact width between the rollers and 
bearing races, and the bearing boundary elements are used  
to simulate the contact elements of the bearing system.  The 
computation flow chart for the bearing-BEM based on geo-
metrically similar roller conditions is depicted in Fig. 10.  The 
numerical BEM algorithm for bearing can be briefly summa-
rized as follows: 

 
(1) Input the coordinates of the nodes, composition of elements 

and boundary conditions of body 1, body 3 and the original 
roller. 

(2) Assuming the contact width is b0, input the coordinate 
conversion data of the bearing boundary micro-elements. 
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Fig. 11.  Bearing assembly drawing on the work side of the bottom roll. 

 
 

(3) Calculate the integral coefficients of body 1, body 3 and 
the original roller. 

(4) Calculate the coordinates and the integral coefficients of 
the nodes of the other rollers 

(5) Perform a Gaussian elimination on the coefficient ma-
trixes to obtain the matrix equations of the contact areas. 

(6) Set the initial gap between the rollers and the outer race of 
the bearing. 

(7) Couple the coefficient matrixes of the contact areas and 
calculate the displacements and tractions of the nodes on 
the contact areas. 

(8) Determine whether the criterions of the contact states of 
the nodes on the contact areas are satisfied.  If yes, then go 
to step (9).  Otherwise, go to step (7). 

(9) Calculate the total forces of the contact elements with 
traction and the contact width b0 of the contact nodes.  
Calculate the contact width b1 using the Hertz contact 
theory and re-calculate the coordinate conversion data of 
the bearing boundary micro-elements. 

(10) Determine whether the convergence criterion is satisfied.  
If 1 0b b   , then go to step (11).  Otherwise, let b0 = 

b1 and go to step (3). 
(11) Calculate the unknown quantities on the un-contact 

areas, and output the calculated results. 

V. NUMERICAL EXAMPLE 

1. Experimental Data 

The load distribution experiment of the four-row tapered 
bearing with the shaft block direct measure method was per-
formed on a two-roll experimental rolling mill (Yang et al., 
2014).  The primary technical parameters of the mill can be 
provided as follows: roll diameter is 210 mm, top roll body 
length is 150 mm, bottom roll body length is 110 mm, and di 
ameter of the roll neck is 90 mm.  Fig. 11 depicts the bearing 
assembly drawing on the work side of the bottom roll.  Fig. 12 
and Fig. 13 depict the pictures of the experimental rolling mill 
and the experimental data acquisition system respectively. 

An aluminum plate rolling experiment was conducted using 
the experimental conditions as follows: rolling speed of 0.2 
m/s, width of the aluminum plate of 40 mm and length of the 
aluminum plate of 200 mm. 

 
Fig. 12.  Experimental rolling mill. 

 
 

 
Fig. 13.  Experimental data acquisition system. 
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Fig. 14.  Distribution of the radial force for the work side bearing. 

 
 
The four rows bearing the radial load distribution on the 

operating side are illustrated in Fig. 14.  It can be seen from the  
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Table 2.  Discrete data. 

Total Contact area 
Component 

Node Element Node Element 

Shaft block 1000 1000 160 160 

Mill roll 1034 1032 160 160 

Rollers 74  80 72  80 4  80 4  80 
Total of 

GSC-BBEM 
7954 7792 640 640 

Total of 
T-BBEM 

2034 2032 320 320 

 
 

(a) Shaft block (b) Mill roll (c) Original roller  
Fig. 15.  Discrete models. 

 
 

figure that the second row bears the maximum load, followed 
by the first row.  The calculated rolling force is 147.6 kN. 

2. Numerical Example 

One half of the bottom roll system is used as the calculation 
model, as indicated in Fig. 11.  The modulus of elasticity for the 
mill roll, shaft block and rollers is 210000 MPa, the Poisson 
ratio is 0.3, and the bearing size is 90 mm / 160 mm  180 
mm.  The simulation was performed using the geometrically 
similar conditions bearing-BEM (GSC-BBEM) and the tradi-
tional bearing-BEM (T-BBEM). 

1) Simulation Results with GSC-BBEM  

The structure and geometry of the calculation model can be 
simplified as follows: 

There are 20 rollers on one circle of bearing.  One circle  
of the inner race and outer race have been divided into 40 
bearing boundary elements with the rollers at the bottom of  
the first and second columns as the original positions.  The 
rollers at the bottom of each column are numbered as zero.  
Going anti-clockwise, the roller numbers are negative; going 
clockwise, the numbers are positive. 

The bearing contact angle is 15, the tapered roller half- 
cone angle is 2.  The axial arrangement of nodes starts moving 
from the operating side to the mill roll side. 

The mill roll is simplified to be a cantilever beam, and the 
fixed end is a contact position between the mill roll and a 
rolled piece.  The rolled piece’s width is 40 mm; the rolling 
force is 147.6 kN; reaction force is exerted at the corresponding 
position of the pressure screw on top of the shaft block.  An 
axially fixed constraint is exerted at the corresponding posi-
tion of the corresponding axial tailgate on the shaft block.   
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Fig. 16.  Pressure and load distribution of the outer race. 

 
 

An axially force is applied to the end surface of the mill roll’s 
operating-side. 

The discrete models are illustrated in Fig. 15.  The discrete 
data are listed in Table 2. 
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Fig. 17.  Contact width of the rollers. 

 
 
The load and pressure distribution of the load-bearing inner 

and outer races are essentially the same, i.e., the load and 
pressure of the load-bearing inner races are only slightly larger 
than those of the outer races.  Therefore, only the distribution 
of the load-bearing outer race is depicted in Fig. 16. 

The radial pressure, axial pressure, radial load and axial 
load of the load-bearing outer race are illustrated in Fig. 16.  
From Fig. 16, it can be seen that the initial position of the roller 
on the third column bearing, which is near the mill roll, bears 
the maximum radial pressure and load of 837.96 MPa and 
5215.37 N, respectively.  The directions of the axial pressure 
and axial load borne by rollers at the first and third columns 
point to the operating side whereas that of the second and 
fourth columns point to the mill roll.  The direction of the axial 
pressure and axial load of the four-columns tapered bearings is 
the same as the taper distribution.  The negative values in the 
axial pressure and axial load distribution figures indicate that 
their direction points to the mill roll side. 

The contact widths of the rollers are depicted in Fig. 17.  
The contact width of each roller is the same as the radial load 
distribution, and the contact widths between the rollers and  
the outer race are slightly larger than the widths between the 
rollers and the inner race.  This result conforms to the Hertz’s 
contact theory.  Furthermore, the maximum width of the con-
tact roller is 0.298 mm. 

2) Simulation Results with T-BBEM  

The structure and geometry of the calculation models have 
been simplified as the GSC-BBEM; however, one difference  
is that the rollers have been simplified into a plate unit with 
infinite stiffness.  The Hertz formula is used to calculate the 
contact deformation of the plate units.  The plate units are con- 
sidered to be fixed on the inner race (Xiao, 2010). 

The discrete models are depicted in Figs. 15(a) and (b).  The 
discrete data of the shaft block and mill roll is listed in Table 2. 

Figs. 18(a) and (b) depict the radial and axial load distri-
bution of the rollers for the numerical calculation using the 
T-BBEM, respectively. 

Table 3 provides a comparison of the simulation results and 
the test results on the work side. 

Table 3. Comparison of experimental results with simu-
lated results. 

Row number 1st row 2nd row 3rd row 4th row 

Experimental 
results 

10.05% 16.49% 40.79% 32.67% 

GSC-BBEM 9.63% 16.95% 43.57% 29.85% 

Errors 4.18% 2.79% 6.82% 9.73% 

T-BBEM  9.89% 14.05% 43.47% 32.59% 

Errors 1.59% 14.80% 6.57% 0.24% 
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Fig. 18.  Load distribution of rollers using the T-BBEM. 

 
 
Table 3 indicates that the errors between the simulation 

result of the T-BBEM and the test result are less than 15%, and 
the errors between the simulation result of the GSC-BBEM 
and the test result are less than 10%, which is allowed in the 
simulation of engineering problems.  Therefore, the validity 
and effectiveness of using the GSC-BBEM to solve the load 
distribution of bearings are proven. 

VI. CONCLUSIONS 

This study presents a new method to analyze the load distri- 
bution of roller bearings using the Boundary Element Method.  
Based on geometrically similar conditions, all of the rollers 
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can be described as one object.  Without considering the effects 
of friction, the load distribution of the roller bearings can be 
simulated with a three-object elastic contact BEM without 
friction.  Bearing boundary elements are used to realize the dis- 
continuous traction on the contact area, and the Hertz contact 
theory is used to revise the contact widths between the rollers 
and the bearing races. 

The method is feasible for performing contact pressure 
distribution, load distribution and contact widths distribution 
between the rollers and the bearing races.  The feasibility and 
validity of the method is certified by comparison with the 
traditional bearing-BEM and the experimental data. 
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