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ABSTRACT 

An explicit one-dimensional model based on the extended 
Boussinesq equations was established to calculate solitary wave 
propagation in vegetated and non-vegetated waters.  This model 
adopts a hybrid solution combining the finite difference (FD) 
and the finite-volume (FV) methods.  This hybrid model can also 
simulate wave propagation as the FV solution of a non-linear 
shallow water equations (NSWE) model by removing the higher 
order Boussinesq terms.  The resistance force caused by vege- 
tation is added into a source term in the momentum equation.  
The interface fluxes are evaluated using the Harten-Lax-van 
Leer (HLL) approximate Riemann solver with reconstruction 
technique, providing a robust method to track the moving shore- 
line.  This model is used to simulate solitary wave run-up on a 
sloping bed with vegetation and to evaluate wave attenuation 
through a vegetation zone.  It is found that the model reasonably 
predicts wave height attenuation in cases where there is com-
bined vegetation in a flat bed, implying that vegetation may cause 
energy loss in solitary wave propagation.  The larger wave height 
and the larger vegetation density cause the larger wave attenua- 
tion for solitary waves through vegetation water.  A positive cor- 
relation is found between wave attenuation and wave height.  
Modeling vegetation through the use of a source term in mo- 
mentum equations is proved to provide a reasonable estimation 
for the amount of wave height attenuation that may occur through 
wetland marshes. 

 

I. INTRODUCTION 

Different forms of coastal vegetation create coastal wetlands.  
Examples include mangrove forests, wetland reeds, marsh or 
seagrass growing in soil near coastal waters, and others.  This 
wetland vegetation is regarded as a means of providing stabi-
lization of banks, habitat and food for animals, and serveing 
as a pleasing landscape for recreational use (Irtem, 2009; Li and 
Zhang, 2010; Blackmar, 2014).  Furthermore, healthy wetland 
vegetation can also function as a natural barrier against catastro- 
phic typhoon or tsunamis by attenuating wave energy (Kathiresan, 
2005; Sanchez-Gonzalez, 2011).  Marine/estuarine vegetation, 
however, consists of complex leaf shapes, rigid and flexible pro- 
perties, and variable plant types.  As such, it is difficult to eva- 
luate the effects of marine/estuarine vegetation on wave energy 
attenuation, and the wave-vegetation interaction processes are 
not well understood.  With advances in computer technology and 
numerical methods, numerical simulations have become useful 
tools for studying the hydrodynamic processes of coastal waters, 
and are widely applied to help understand the interactions between 
waves and coastal aquatic vegetations. 

Numerical methods can be classified into three groups: finite- 
difference method (FDM), finite-element method (FEM) and 
finite volume method (FVM).  FVM coupled with nonlinear 
shallow water equations (NSWE) is a frequently applied model 
for simulating wave propagation, and can represent breaking 
waves as propagating bores or hydraulic jumps (Li, 2002).  In 
the case of dealing with flow discontinuities, a proper treatment 
of the shoreline motions must be considered to accurately 
model wave run-ups for the shore’s dry states.  Godunov-type 
schemes based on a Riemann solver have remarkable shock- 
capturing capabilities, and can address discontinuous flows.  
They have been used to process breaking wave simulations, 
such as surf zone wave breaking.  Researchers have applied shock- 
capturing finite volume schemes in both coastal and riverine 
flood hazard modeling (Dodd, 1998; Hu, 2000; Begnudelli, 
2008; Kuiry, 2012).  Although these applications are relevant 
to surf-zone processes in some aspects, the lack of dispersion in 
the nonlinear shallow-water equations hampers their applica-
tion to nearshore wave modeling. 
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transformation of broken-waves, represented as shocks, in the 
inner surf and swash zones.  However, due to the absence of 
frequency dispersion, the NSWE can not be applied to wave pro- 
pagation before breaking.  When a wave is propagated from a 
distance far away from the shoreline, the dispersion effect is 
important and the NSWE is not suitable.  Therefore, a set of 
dispersive and hyperbolic depth-averaged equations have been 
developed using a hyperbolic approximation of a set of fully 
nonlinear and weakly dispersive Boussinesq-type equations 
(Bellotti, 2002; Antuono, 2009; Grosso, 2010; Antuono, 2013; 
Brocchini, 2013).  The extended Boussinesq formulations of 
Madsen and Sørensen (MS) and Nwogu (1993) have been widely 
applied to model wave propagation from deep to shallow water.  
Using this foundation, a number of studies have successfully 
verified models to solve Boussinesq equations with either field 
or laboratory data, and have yielded reasonable results in pre- 
dicting different run-up features (Madsen, 1992; Shiach, 2009; 
Tonelli, 2010; Kazolea, 2013).  In considering the drag force 
caused by wetland vegetation, an additional drag force sink term 
is implemented into the momentum equations.  This approach 
has proven successful in representing the interaction of flow 
with submerged and emergent vegetation (Lopez and Garcia, 
2001; Wilson, 2006; Iimura, 2012; Tang, 2013).  A new analy- 
tical equation has been derived to convert the drag resistance 
induced by submerged vegetation into an equivalent Manning 
roughness coefficient (Zhang, 2013).  Recently, the drag force 
approach is also applied to calculate the effects of regular and 
irregular waves through vegetation (Li and Zhang, 2010). 

This paper investigates the propagation process of solitary 
waves crossing vegetation using the NSWE and extended Bous- 
sinesq models.  The intercell fluxes of the models are evaluated 
using the HLL approximate Riemann solver with MUSCL (Mono- 
tonic Upstream Scheme for Conservation Laws) reconstruction, 
it can accurately capture the moving waterline and simulate 
multiple flow regimes, including subcritical, transcritical, or su- 
percritical flows.  The effects of vegetation on the flow are re- 
presented in momentum equations.  The proposed model can be 
applied to both wet- and dry-shorelines and can be further used 
to model dam-break wave and solitary wave propagations with 
or without vegetation.  The numerical model is verified against 
measured data, the results will be presented in next sections. 

II. MATHEMATICAL MODEL 

1. Governing Equation 

The hybrid model used in this study is based on the ex-
tended Boussinesq equations of Madsen and Søensen (1992) 
and can be expressed as follows: 
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Fig. 1.  Sketch of geometry and solution variables. 

 
 
In these equations, t is the time, h is the flow depth, η is the 

water surface elevation ( = h  zb) as shown in Fig.1.  The va- 
riable zb 

is the bed elevation in Fig. 1, u is the depth-averaged 
velocity, n is the Manning roughness coefficient, g is the gra- 
vitational acceleration, and f is the vegetation effect force on 
the wave. 
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In this equation,  is the model dispersion term, B represents 
the Boussinesq linear dispersion enhancement coefficient with 
a value of 1/15, and d is the still water depth from bed to still 
water level (SWL). 

A one-dimensional form of the extended Boussinesq equa-
tions is rewritten in vector form: 

  (4) t x DU F S

In Eq. (4), U, F(U) and S(U) are the vectors of conserved 
variables, fluxes, and source term in the x direction, respec-
tively, defined as follows:  
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In this equation, U(hu) is the velocity function, Sd is disper- 
sion term. 

For the extended Boussinesq equation, 
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Fig. 2.  Three possible wave configurations. 

 
 
For the nonlinear shallow water equation, 

  (7) U( ) , =0dhu hu S

2. Numerical Scheme 

1) Spatial Discretisation and Time Integration 

The numerical scheme used to solve the governing equa-
tions is a fourth-order in space, second-order accurate in time, 
and uses the hybrid FD and FV scheme.  The flux terms are dis- 
cretised using a finite-volume method; the pressure source term 
of water level and dispersion term (Sd) are discretised using 
centered finite-differences (Shiach, 2009; Tonelli, 2010). 

The extended Boussinesq equations can be integrated at a 
control volume: 

 d
t x  
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U F

D dS  (8) 

Time integration is performed using a predictor-corrector 
scheme, which is second order accurate in time (Shiach, 2009).  
The predictor step uses a non-conservative approach to deter- 
mine the intermediate values over a half time step: 
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where t and t  1/2 denote the current and intermediate values, 
xi is the space step for cell i, M is the number of the cell sides, 
ni is the outward pointing normal vector to side i and t is the 
time step. 

The corrector step that provides the fully conservative so-
lution over one time step is given by: 
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where  is the flux vector function of the pre-

dictor step at the cell interface i, the values are found by solving 
a local Riemann problem that occurs at each interface.  Vari-

ables  and  are the values of the conserved variables to 

the left- and right-hand side of cell boundaries. 
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A variable t is needed to require a Courant-Friedrichs- 
Lewy (CFL) condition for an explicit scheme model.  The one 
dimensional solver is: 
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Here,  is Courant number between zero and one,  is re- 
commended with a value 0.7 in this study. 

2) Riemann Fluxes 

A detailed description of the HLL scheme are provided by 
Toro (2001) and Zhang (2012), which include a detailed dis-
cussion about the Riemann problem and the reasons for a 
special treatment of the cells on the wave front or shore line 
(wet/dry boundary).  The HLL scheme assumes only one con-
stant intermediate state between the left and the right wave, as 
shown in Fig. 2. 

The HLL scheme assumes and defines the flux at an inter-
face as 

  (12) 
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In this scheme, FL and FR are the flux evaluated at the left- 
hand and the right-hand sides of each cell interface.  In the model, 
the HLL approach provides the approximate expression for es- 
timating F* 
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 In this equation, the symbols SL and SR represent the wave 
celerity, separating constant states of the local Riemann pro- 
blem solution at cell interfaces. 
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The symbols SL and SR can be estimated as follows: 
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The symbols hL and hR are the water depth of the left and 
right states.  For a dry bed problem the wave speeds SL and SR 
are estimated according to the following expressions: 

 L L L R LS , S 2U gh U gh    L  (18) 

for right dry bed 

 L R R R R RS 2 , SU gh U gh     (19) 

for left dry bed 

If the intermediate states UL and UR are defined as the cell- 
centered values, a first-order accurate scheme is obtained, which 
suffers from excess numerical dissipation, limiting accuracy.  
A fourth-order MUSCL reconstruction is first used to calculate 
interface values in the Navier-Stokes solver by Yamamoto et al. 
(1998).  In this study, the technique is used to reduce the mo- 
del’s truncation errors of dispersion terms.  Usually, a van Leer 
nonlinear slope limiter function is used to calculate the inter-
faces fluxes at the cell in x direction, the minmod slope limiter 
is used here to eliminate under/overshoots that caused spuri-
ous oscillations in the solution. 

3) Evaluation of Velocity Function 

The velocity function can be discretized using a finite dif-
ference scheme and can be rewritten using the matrix equation 
for the extended Boussinesq equations: 
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Therefore, the coefficients of diagonal elements for Madsen 
and Sørensen's formulation are: 
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The tri-diagonal system can be calculated to obtain the U(hu) 
value by applying the Thomas algorithm after the predictor and 
corrector stages (Bellotti, 2002; Shiach, 2009). 

4) Evaluation of Dispersion Term 

The spatial derivatives present in the dispersion term are dis- 
cretised using central difference, and are expressed as follows: 
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3. Resistance of Vegetation on Waves 

The effect of vegetation on waves can be simulated using an 
internal source of resistant force per unit fluid mass added into 
the momentum equations; the resistance force exerted on vege- 
tation per unit volume can be expressed as (Li and Zhang, 2010): 
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In this equation, where fD is the drag force, fI is the inertia 
force, CD is the drag force coefficient, N is the vegetation den- 
sity defined as the number of vegetation elements per unit area, 
bv and tv are the width and thickness of a vegetation element, 
respectively.  hv is the height of vegetation, and CM is the inertia 
force coefficient. 

III. APPLICATION OF MODEL  

1. Dam-Break Flow at a Sloping Bed 

The first test validated the simulation accuracy of the NSWE 
model.  The laboratory dam-break flow on a sloping beach was 
recommended by Aureli (2000).  The physical experiment in- 
cluded complex hydraulic properties such as run-up and rundown 
between wet and dry beds.  The laboratory set up is illustrated 
in Fig. 3.  The rectangular channel for this experiment is 7 m in 
length; the experiment consists of a reservoir with water depth 
up to 0.25 m, contained by a dam at x = 2.25 m, and a dry bed 
downstream.  The 1:10 sloping beach is located at 1.25 m down- 
stream of the dam.  To observe the depth evolutions, all gauges 
are located at 1.4 m, 2.25 m, 3.4 m, and 4.5 m from the up-
stream boundary, as shown in Fig. 3.  The Manning roughness 
coefficient is set as 0.01 s  m-1/3 with the same value of the ex- 
periment.  In the computation, x = 0.1 m, t = 0.001 s, the  
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Fig. 3.  Layout of the dam-break experiment (Aureli, 2000). 
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Fig. 4.  Comparison of simulated water depths and experimental data. 
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Fig. 5.  Sketch of the solitary wave run-up on a sloping beach. 

 
 

simulation was carried out for 20 s.  The calculated water depth 
time series at the four gauge points are shown in Fig. 4.  This 
shows that the predicted water depth evolutions and arrival 
time of the wave are comparable and in agreement with the 
measured data at all gauges.  At time t = 0, the dam is removed 
suddenly, and the reservoir water floods downstream due to 
gravity.  When it reaches the sloping beach, the flooding wave 
begins to run up and is then partially reflected, generating a wave 
propagating upstream.  The run-up and rundown processes re- 
peat several times until balance is reached due to bed friction.  
The calculated results show that the NWSE model has capa-
bility to simulate the dam-break wave process. 

2. Solitary Wave Run-up and Reflection at a Sloping 
Beach 

Solitary wave propagation in shallow water, and associated 
processes such as wave-breaking and run-up played an impor- 
tant role in the nearshore dynamics, so solitary wave run-up on 
a sloping beach was one of the most intensively studied pro- 
blems in long-wave modeling.  Laboratory experiments carried 
out by Synolakis (1986) provide important data for validation 
tests in wave-breaking and run-up modeling, as shown in Fig. 5.  
In Synolakis’s experiment, the constant water depth was 1 m, 
and a solitary wave of height was 0.3 m, propagating from left 
to right on a 1:19.85 sloping beach.  In our study, the NSWE 
model and the extended Boussinesq model were used to repro- 
duce the wave propagation processes in Synolakis’s experiment.  
The initial conditions include a solitary wave, propagating from 
left to right, with the wave crest located at X1.  The initial so- 
litary wave is simulated by the solitary wave formula as (Kuiry, 
2012): 

       2
1,0 sec 3 /(4 )x H h H d x X    (26) 
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Fig. 6.  Comparison of solitary wave run-up and rundown on a 1:19.85 sloping beach. 
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In these equations, H is initial wave height of the solitary 
wave. 

The computation domain is subdivided into cells in a uni-
form mesh with space step x = 0.1 m; the Manning coeffi-
cient is 0.01.  Simulated results of water surface profiles are 
recorded to provide a comparison with the experimental data.  
Fig. 6 compares the measured and computed wave profiles; 
the water surface elevation and the length scale are normalized 
by the water depth, x* = (x  xtoe)/d, xtoe is the initial location 

of slope’s toe; and the time scale is normalized as /t t g d  .  

As seen in this figure, as the initially symmetric solitary wave 
shoals across the slope’s toe at x = 73 m, the wave speed is 
slowed by the bottom friction and the seabed’s topography.  
As such, it begins to skew to the front forming a vertically- 
faced propagating bore.  To simulate the long wave run-up on 
beaches, the numerical model must correctly reproduce the run- 

up process and the highest climb-up of the water front.  In this 
study, both the NSWE model and the Boussinesq model accu- 
rately present the run-up process as shown Fig. 6.  The obtained 
results using the NSWE model do have some discrepancies 
at the wave crest compared to the experimental data, particu-
larly with respect to simulating the breaking zone wave profile.  
Those discrepancies may be due to the limitation of the shal-
low water equation itself in simulating wave dispersion.  Overall, 
the extended Boussinesq system provides wave transformation 
results at higher accuracy levels, particularly with respect to 
the breaking zone wave profile, and the accurate wave run-
down processes from the sloping beach can be also presented.  
In next cases, the extended Boussinesq model will be further 
tested owing to its capability of calculating breaking waves. 

3. Solitary Wave Propagation on a Flat Bed with  
Emergent Vegetation 

In this study, we investigated the interactions of solitary waves 
with emergent vegetation on a flat bed using the extended Bous- 
sinesq model.  The cases were from the laboratory experiments  
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Fig. 7.  Locations of wave probes and vegetation arrangement for model B2. 
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(b) G5  
Fig. 8.  Comparison of calculated water surface elevations above SWL for model B2. 

 
 
G1 G3 G4 G5 G6 G7

0.2 m 3 m 0.545 m  0.545 m

G2

0.3 m0.545 m  
Fig. 9.  Locations of wave probes and vegetation arrangement for model C3. 

 
 

conducted by Huang et al. (2011), the glass-walled wave flume 
was 32 m long and 0.55 m wide.  The vegetation models were 
placed on the horizontal bed in the middle of the wave flume.  
The model vegetation was made of Perspex tubes with a uni-
form outer diameter of 0.01 m; each vegetation block was 
0.545 m in width.  Experiments B2 had a solid volume portion 
of 0.087, which could be recalculated to vegetation density per 
unit area; six resistance-type wave probes were used to record 
the surface elevations at the selected locations, as shown in 
Fig. 7.  The initial water depth was 0.15 m, the incident wave 
height was 0.03 m.  The computational domain was represented 
with a mesh consisting of 2500 cells in the longitudinal direc- 
tion; the space step was 0.02 m in this study.  The time step was 
variable and determined using the CFL stability condition.  The 
Manning roughness coefficient n was 0.01.  The drag coefficient 
CD and the initial drag coefficient CM were calibrated as bulk 
constants of 1.45 and 2.0, respectively. 

Fig. 8 shows the comparison of the predicted and measured 

water surface elevation above SWL for G1 and G5 stations, the 
calculated results follow closely with the measured data.  Slight 
discrepancies can be found in the evolution of undulating tails; 
these weaker undulating tails were also predicted by other re-
searchers using different numerical schemes, the computed main 
peaks and shapes of the waves follow the measured ones very 
well, except for the details in the undulating tails (Huang, 2011).  
The calculated water surface elevation above SWL was 0.03 m 
in front of the vegetation block (G1) and the calculated water 
surface elevation above SWL decreased to 0.017 m behind the 
vegetation block (G5).  The vegetation obviously influenced the 
wave propagation.  Experiments C3 has a solid volume portion 
of 0.044; seven resistance-type wave probes were used to re- 
cord the surface elevations above the still water depth at the se- 
lected locations, as shown in Fig. 9.  The incident wave height 
is 0.05 m.  The drag coefficient CD and the initial drag coeffi-
cient CM in this case are calibrated as bulk constants of 1.45 
and 2.0, respectively (Huang et al., 2011). 

Comparing the numerical and experimental data reveals that 
the simulated results show a good level of accuracy against the 
measured data considering the vegetation effect, as shown in 
Fig. 10.  In experiment B2,  stands for the ratio of wave height 
attenuation,  =(G1  G5)/G1 = 43%; in experiment C3,  = 
(G1  G5)/G1 = 27%, when the vegetation density increases, 
the water surface elevation above SWL decreases more quickly 
at the same length in the vegetation domain.  Fig. 11 shows an 
approximate linear relationship between the wave surface ele- 
vation reduction and the vegetation width.  The attenuation of  
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Fig. 10.  Comparison of calculated water surface elevations above SWL at different locations for model C3. 
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Fig. 11. Linear relationship between the water surface elevations above 

SWL and the width of vegetation for model C3. 
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Fig. 12. Water surface elevation attenuation over vegetation with dif-

ferent incident wave heights for model C3. 

 
 

water surface elevation along the channel with varying incident 
wave heights is shown in Fig. 12.  The results report the water 
surface elevation above SWL normalized by the incident wave 
heights.  It can be seen that the larger wave height causes the 
larger attenuation of water surface elevation at the same vege- 
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Fig. 13.  Vegetation arrangement used in this study. 

 
 

tation zone.  These findings should be further explored in the 
future using more experimental data across different vegetation 
types. 

4. Solitary Wave Run-Up and Reflection at a Sloping 
Beach with Vegetation 

Coastal areas are often affected by typhoons and tsunamis.  
Where disasters occur frequently (for example damage of coastal 
levees), one of main causes of damage is the impact of waves 
on levees.  In recent years, biological revetment form (planting 
vegetation on beaches) has already began to be used to reduce 
wave energy, but detailed wave-vegetation interactions on sloping 
beaches needs further study.  In this case, the extended Boussi-
nesq model with one-dimensional form was used to investigate 
the solitary wave run-up and the solitary wave energy attenua-
tion in vegetated and non-vegetated channel.  The detailed calcu- 
lation domain and the vegetation arrangements are shown in 
Fig. 5 and Fig. 13, the diameter of the plants was 0.01 m, the 
plant height was 0.3 m, the density was 200 and 400 plants per  
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Fig. 14.  Comparison of the solitary wave run-up and rundown with and without vegetation. 
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Fig. 15. Comparison of the solitary wave run-up with the different coef-

ficients of CD. 

 

 
unit area for different arrangement, and the plant length was 
0.3 m.  Fig. 14 shows the comparison of solitary wave run-up 
and run-down with and without vegetation.  In Fig. 14, when 
t*  20, the calculated water level of vegetated and non- 
vegetated conditions almost coincide, the main reason for this 
coincidence is that the solitary wave movement has not reached 
the vegetation zone, and therefore, the wave propagation is not 
affected by plants.  When t*  25, t*  30 and t*  40, the 
run-up height of the solitary wave in the presence of vegeta-
tion is lower than that in the absence of vegetation; solitary 
waves propagating through vegetation lose energy due to their 
interaction with the vegetation.  The propagation of the soli-
tary wave is discussed along the channel with varying drag co- 
efficients shown in Fig 15.  It can be seen that larger vegetation 
drag force and vegetation densities cause larger wave attenuation.  
The model was able to reproduce the effect of breaking solitary 
waves dampened by vegetation over a sloping beach, and the 
results show that the vegetation field damping should be con-
sidered to be a biological mechanism to reduce typhoon and 
tsunami damage. 

IV. CONCLUSION 

In this study, we used a hybrid FV/FD scheme of 1D ex-
tended Boussinesq model to simulate the wave propagation 
through vegetated and non-vegetated waters.  The HLL solver 
was used to calculate the flux of interface by using fourth- 
order MUSCL reconstruction for left and right interfaces.  The 
vegetation field was represented by an additional sink term in 
the momentum equation.  The model was validated using several 
cases, including dam-break wave and solitary wave propaga-
tion on vegetated and non-vegetated channels.  We paid special 
attention to compare the results of the Boussinesq model and the 
NSWE model.  The calculated results show that the extended 
Boussinesq model presents more accurate results than the NSWE 
model due to the dissipative terms in the wave breaking pro- 
cess.  The model solutions, however, are almost identical in 
run-up and rundown processes after wave breaking.  For the ve- 
getated sloping beach, the calculated results from the extended 
Boussinesq model show that the solitary wave run-up height 
decreases quickly and wave rundown processes occur in ad-
vance, due to the effect force of vegetation on waves.  The si- 
mulated results show that planting wetland vegetation on a coastal 
bank may be effective in reducing wave energy and reducing 
disasters caused by typhoons or tsunamis.  The developed Bous- 
sinesq model can be used to forecast the effect of vegetation on 
typhoon and tsunami wave propagation, and provide guidance 
on riparian vegetation management for coastal wetland waters. 
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