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ABSTRACT 

An adjustment about the added white noise in Ensemble 
Empirical Mode Decomposition (EEMD) of Wu and Huang 
(2008) was presented in this paper.  The EEMD establishes an 
ensemble by adding time series of finite but not infinitesimal 
amplitude white noise into a time series of the signal to solve 
the mode-mixing problem occurred in the conventional EMD 
method.  The adding ensembles of noise are supposed to be 
exhausted from all possible solutions from the sifting process.  
However, in the Matlab script of the theory, it was found that 
the added noise could not be averaged out through the whole 
process.  The residue added noise thus causes some extra sig- 
nals exist in the sifting results, even the number of trials of the 
ensemble was up to 5000.  In the adjusted method, the added 
noises were randomly selected without repetition from a noise 
set which satisfies the normal distribution at each sampled node.  
With this approach, the added noises can be entirely averaged 
out without any residue at each node and on the entire time 
series.  The experiments show that number of trials can be re- 
duced to 50 sets.  It not only avoid the time consuming problem 
but also retains the benefit of EEMD. 

I. INTRODUCTION 

Empirical mode decomposition (Huang et al., 1998) is an in- 
tuitive, direct, and adaptive time-frequency data analysis me- 
thod for extracting signals from data with noisy, nonlinear or 
non-stationary properties.  It has been broadly applied to many 
scientific or technologic fields.  The EMD method implicitly as- 
sumes that, at any given time, the data may have many coexist-
ing simple oscillatory modes of significantly different frequencies, 
one (ridding waves) superimposed on the other (carrier waves).  
Each component is defined as an intrinsic mode function (IMF) 
which satisfies two conditions.  Firstly, the number of extrema 

and the number of zero crossings must either be equal or differ 
at most by one in the whole data set, and secondly, the mean 
value of the upper envelope defined using the local maxima 
and the lower envelope defined using the local minima is zero 
everywhere.  By using the sifting process, the original signal 
can then be decomposed into many IMFs and one residual.  
The siftings will be ended when a signal becomes a monotonic 
function or a function with only one extreme from which no 
more IMF can be extracted.  Moreover, due to the number of 
extrema needed in cubic spline process, when the total number 
of extrema is less than 3, the sifting process should stop and 
apply a suitable process to extract the final IMF. 

The EMD method still leaves some unresolved problems, 
however, like the frequency appearance of mode-mixing pro- 
blem.  The mode-mixing phenomenon is defined as a single IMF 
either consisting of signals of widely disparate scales, or a sig- 
nal of a similar scale residing in different IMF components (Huang 
and Shen, 2005). 

To overcome the problem, Wu and Huang (2008) proposed 
the EEMD method by adding a finite but not infinitesimal am- 
plitude white Gaussian noise set with sufficient number of trials 
into the original signal to create an ensemble and performing 
the sifting on the ensemble.  The addition of white Gaussian 
noise should force the noise-added signal to exhaust all pos-
sible solutions in the sifting process and making the different 
scale signals to collate in the proper IMF dictated by the dy-
adic filter banks.  The added white noise can be averaged out 
with sufficient number of trials and only the component of the 
original signal survives from the averaging process.  The final 
“true” IMFs are then taken from the mean of the sifted ensem-
ble.  The experiment with the algorithm and Matlab script pro- 
vided by Wu and Huang (2008) shows the process of EEMD is 
much easier than EMD.  For example, the number of IMFs can 
be predicted, no shifting criteria need to be checked, and the 
mode-mixing problem can be solved.  With this ensemble mean, 
one can separate scales naturally without any a priori subjective 
criterion selection as in the intermittence test for the original 
EMD algorithm.  However, it also causes some new problems 
that the reconstructed signal contains residual noises and dif-
ferent realizations of signal with noise may have different 
number of modes (Torres et al., 2011). 
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When analyzing the field wave data, the situation must be 
taken into account is the amount of sample data is huge.  For 
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example, when ocean waves are sampled for every 2 hours 
interval, there will be 4380 records per year for just one wave 
gauge.  The data process is always done in batch mode without 
any manual check, and the time consuming problem must be 
precaution.  In order to obtain the complete information from 
data, the analysis should guarantee that no information is lost 
from and no new information is added into the original signal.  
Under such circumstance, by referring the procedure of EEMD, 
this study has carried out a series of numerical experiments to 
find the suitability for using the EEMD to analyze the wave 
data.  The added noise was firstly checked independently to 
find the suitable number of trials which can ensure the noise be 
averaged out from the whole time series.  A series of tests for 
both Gaussian-type and uniform-type white noise shows that 
even though the number of trials exceeds 5000 sets, the mis-
sion is still failed.  In shifting process of the ensemble, by com- 
paring with the original signal, the summation of the true IMFs 
was found retain some residual added noise.  It is therefore the 
process of added noise was re-evaluated and an adjusted EEMD 
method (AEEMD) was proposed.  The new method considers 
the added noises in the ensemble at each sampled point of the 
signal should satisfy the Gaussian/uniform distribution to en-
sure the zero mean of the noises of the ensemble at each node 
and in the entire signal.  Some tests about the new method were 
done in the study. 

In the following, the EEMD process was briefly reviewed 
first, and then the new method is introduced.  The experiments 
about the added noise and EEMD, and the proposed new me- 
thod are discussed in sequence.  Finally, there are conclusions.  
Ten field wave data sets sampled from Guei-San Island water 
zone on the north-east coast of Taiwan was used in the expe- 
riments. 

II. THE ENSEMBLE EMPIRICAL MODE 
DECOMPOSITION (EEMD) 

The EEMD generates an ensemble by adding different reali-
zations of white Gaussian noise of finite but not infinitesimal 
amplitude into the signal, and defines the “true” IMF compo-
nents as the mean of the corresponding IMFs obtained via EMD 
sifting processes over the ensemble of trials.  The EEMD al- 
gorithm can be described as follow: 

 
1. Given an original signal 0 ( )x t ; 

2. Loops for the ensemble: for i = 1~m, where m is the number 
of trials in the ensemble; 
(1) In each trial i, generate a noise series wi(t) with the 

same length of x0(t) by using Gaussian random number 
function; 

(2) Establish 0( ) ( ) ( )i ix t x t w t   as a trial; 

(3) Let j = 0 and ( ) ( )j ix t x t ; 

(4) Shifting iterations while ( )jx t  is not an IMF: 

(a) Let k = 0; 

(b) Let ; ( ) ( ) ( )k
j jh t x t

(c) Identify all extrema (maxima/minima) of ; ( ) ( )k
jh t

(d) Connect all the local maxima (minima) by a cubic 
spline line to form the upper (lower) envelope, 
named as  ( ); max ( )e t min ( )e t

(e) Calculate the mean ; max min( ) ( ) ( )a t e t e t   
(f) Find the difference between  and a(t), i.e., 

; 

( ) ( )k
jh t

( 1) ( )( ) ( ) ( )k k
j jh t h t a t  

( 1)k(g) Check if  is not an IMF, let k = k  1 and 

repeat steps 4.(b) to 4.(f); 

( )jh t

(5) When  is an IMF, then let j = j  1, ( 1) ( )k
jh t

( 1)
1 ( )k

j( )jH t h 
 t ( )j j, and ( 1)

1 1( ) ( )k
jx t x t h t

   ; 

(6) Check if xj(t) is neither a monotonic function nor a 
function with only one extrema for which no more IMF 
can be extracted, then repeat step (4); otherwise, let ri = 
xj(t) be the residual and the sifting end; 

(7) Let n  1 be the final j, then 
1

( ) ( )
n

i ij
j

ix t H t


  r , 

where, n is the number of IMFs 
(8) Repeat step 3 for next i. 

3. The final “true” IMFs is the average of the corresponding 
IMFs of all trials in the ensemble, i.e., 

 
1

( ) ( )
m

j ij
i

H t H t m


   

 where 

 1 ~j n , and 1
1

( )
i

( )
m

n iH t r t m


  . 

In Wu and Huang (2008), the white noise is Gaussian and is 
generated using the random function of normal distribution 
(randn) and multiplied by a given ratio (0.2) of the standard 
deviation (YSTD) of the original signal with the same length, 
i.e., 

 ( ) 0.2* ( )iw t YSTD randn t   (1) 

Since the random functions in computer language are all 
based on some specific formula, it is necessary to confirm the 
satisfaction of true randomness. 

III. EXPERIMENTS ON  
ADDED NOISE USED IN EEMD 

In this section, the properties of added white noise were 
checked first.  As stated previously, the noise are generated by 
random function of normal distribution multiplied by a given  
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Table 1.  Statistics of Gaussian noise in different trials. 
Gaussian Noise Statistics of all noise data in the whole trial Ensemble Statistics of sum of noise at each node 

No. sets Mean Std. Conf. Mean Std. Conf. 
50 0.0022 1.0016 0.0057 0.1084 7.1095 1.9706 

100 0.0036 0.9995 0.0040 0.3645 9.9349 1.9472 
500 -0.0004 1.0004 0.0018 -0.1768 22.2477 1.9501 
1000 -0.0001 0.9997 0.0013 -0.0679 31.6184 1.9597 
2000 0.0003 1.0002 0.0009 0.5194 43.8169 1.9204 
5000 -0.0001 0.9999 0.0006 -0.2961 70.2947 1.9480 
10000 0.0001 1.0002 0.0004 0.8269 99.1095 1.9425 

 
 

Table 2.  Statistics of uniform noise in different trials. 
Uniform Noise Statistics of all noise data in the whole trial Ensemble Statistics of sum of noise at each node 

No. sets Mean Std. Conf. Mean Std. Conf. 
50 -0.0006 0.2886 0.0016 -0.0277 2.0663 0.5728 

100 0.0005 0.2882 0.0012 0.0460 2.8112 0.5510 
500 -0.0002 0.2887 0.0005 -0.0891 6.4753 0.5676 
1000 -0.0001 0.2886 0.0004 -0.0552 9.0996 0.5640 
2000 0.0000 0.2886 0.0003 0.0511 13.0177 0.5705 
5000 0.0000 0.2887 0.0002 0.2125 19.9927 0.5542 
10000 -0.0001 0.2886 0.0001 -0.7607 28.9585 0.5676 
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Fig. 1.  Ensemble noise and its nodal sum for 2000 trials of random noise. 

 
 

ratio (0.2) of the standard deviation (YSTD) of the original 
signal with the same length (Eq. (1)).  In Matlab, there are two 
random number functions, rand() for uniform distribution and 
randn() for Gaussian distribution which were all tested in this 
paper.  The range of random number generated by rand() was 
adjusted from [0, 1] to [-0.5,0.5], and to [-2.5, 2.5] by randn(). 

In general, the field wave data are mostly sampled with 2400 
points with sampling rate of 2 Hz, therefore in our experiments 
the original signal is set as 2400 data points.  Various numbers 
of trials in the ensemble were tested, and the statistics properties 
of the ensemble noise were discussed. 

Tables 1 and 2 show the statistic properties of Gaussian/ 
uniform distributed noise sequentially in different number of 
trials, varied from 50 to 10000.  In column 2 to 4 of each table 
there are the mean value, standard deviation and confidence in- 
terval, sequentially, of all noise data in the whole trial.  It was 
found that the added noise can almost be averaged out no matter 
how many trials in the ensemble.  The mean value approaches 

to zero, the standard deviation is nearly unity, and the confidence 
interval is little than 0.01 and decreases as the number of trials 
becomes larger.  Within these two random functions in Tables 
1 and 2, however, the convergence of uniform distributed noise 
is better than Gaussian distributed noise.  Columns 5 to 7 of each 
table show mean value, standard deviation and confidence in- 
terval of the ensemble sum at each data point, sequentially.  That 
is, the noises of the whole trials at each node were summed up 
first to get the time series of the ensemble sum, and calculated 
the mean value, standard deviation and confidence interval of 
whole time series.  It was found that, in both random functions, 
the mean value of ensemble sum is not equal to zero which means  
that the ensemble noise at each data point cannot be averaged 
out.  The standard deviations were accumulated as the number 
of trials became larger.  With these experiments, due to the es- 
sential of random number functions in Matlab, the added noise 
cannot be entirely averaged out from the ensemble.  Fig. 1 shows 
the time series of experimental results of ensemble noise for  
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Table 3.  Statistics of adjusted Gaussian noise in different trials. 

Gaussian Noise Statistics of all noise data in the whole trial Ensemble Statistics of sum of noise at each node 

No. sets Mean Std. Conf. Mean Std. Conf. 

50 0.0000 0.9229 0.0053 0.0000 0.0000 0.0000 

100 0.0000 0.9474 0.0038 0.0000 0.0000 0.0000 

500 0.0000 0.9801 0.0018 0.0000 0.0000 0.0000 

1000 0.0000 0.9932 0.0013 0.0000 0.0000 0.0000 

2000 0.0000 0.9946 0.0009 0.0000 0.0000 0.0000 

5000 0.0000 0.9975 0.0006 0.0000 0.0000 0.0000 

10000 0.0000 0.9995 0.0004 0.0000 0.0000 0.0000 

 
 

Table 4.  Statistics of adjusted uniform noise in different trials. 

Uniform Noise Statistics of all noise data in the whole trial Ensemble Statistics of sum of noise at each node 

Nofsets Mean Std. Conf. Mean Std. Conf. 

50 0.0000 0.5888 0.0033 0.0000 0.0000 0.0000 

100 0.0000 0.5888 0.0023 0.0000 0.0000 0.0000 

500 0.0000 0.5888 0.0010 0.0000 0.0000 0.0000 

1000 0.0000 0.5888 0.0007 0.0000 0.0000 0.0000 

2000 0.0000 0.5888 0.0005 0.0000 0.0000 0.0000 

5000 0.0000 0.5888 0.0003 0.0000 0.0000 0.0000 

10000 0.0000 0.5888 0.0002 0.0000  0.0000 0.0000 
 
 

the 2000 trials of Gaussian noise and of uniform noise.  In the 
figure, the solid line is the collection of the ensemble noise of 
all trials, and the dotted points show the ensemble sum of the 
noise at each node along the entire time series.  The random 
noise (solid line) are found uniformly distributed within a spe- 
cific range, but the ensemble sum (dotted points) are found dis- 
persive and non-zero. 

In EEMD, the added white Gaussian noise was defined on 
the whole time series and was independent between each pair 
of trials in the ensemble.  Therefore, the ensemble might find a 
zero sum of the noise of the entire signal, but cannot guarantee 
the ensemble sum of noise at each data point to be zero.  The 
experimental results in this section show that no matter how 
large the number of trials of the ensemble is, the noises in time 
appear uniformly distributed, but the ensemble sum at each 
data point is not equal to zero.  It is not only inconsistence with 
the assumption of EEMD but also some extra signal might be 
added into the signal. 

IV. NEW DEFINITION OF ADDED NOISE 

In Eq. (1), the amplitude of the added noise is set as 0.2 of 
the standard deviation (YSTD) of the original signal.  In this 
section, different ratio (YSTD) were tested.  The added noise is 
defined as follow: 

  (2) ( ) ( )iw t NSTD YSTD randn t  

In order to adjust the non-zero problem in EEMD, this paper 

introduces a new way to generate the added noise by forcing the 
ensemble noise at each data point to satisfy a specific distribu- 
tion.  At first, after assigning the number of trials and the NSTD 
value, a uniformly distributed data set with specified (Gaussian/ 
uniform) distribution with the same number of trials was gen-
erated.  Such data set were deployed at each data point of the time 
series with random permutation to establish the added noise 
for each trial in the ensemble.  With such process, the ensemble 
sum of the noise at each data point and also on the entire time 
can be ensured to be zero which means the added noise can be 
averaged out in the final “true” IMF. 

With different number of trials varied from 50 to 10000, Tables 
3 and 4 show the statistic properties of Gaussian/uniform dis- 
tributed noise sequentially for the new added noise process.  In 
columns 2 to 4 of each table, the mean value of all noise data in 
the ensemble is zero for all experiments, the standard deviation 
still tends to unity, and confidence interval are small and uniform 
distributed noise has better convergence than Gaussian distri- 
buted noise.  In columns 5 to 7 of each table, the mean value of 
the ensemble sum at each data point, and also its standard de- 
viation and confidence interval are all equal to zero which means 
no residue added noise left in the time series.  Still the conver- 
gence of uniform distributed noise is better than Gaussian dis- 
tributed noise. 

Comparing the parameters in Tables 1 to 4, the new added 
noise has better performance than the original added noise.  
The statistics of all noise data in the ensemble of both methods 
(columns 5 to 7 in each table) have similar tendency with 
almost zero mean, small confidence interval, and non-zero but 
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unity standard deviations, which proves that the random func- 
tions have their essential characteristics.  However, when ob- 
serving the results at each node (columns 5 to 7 in each table), 
the original added noise method shows its shortcoming that 
the added noise at each node cannot be averaged out from the 
ensemble mean.  From the experiments, the new adjusted process 
for added noise is proved that it can solve the residual added 
noise problem either in Gaussian noise or in uniform noise.  Even 
though the number of trials is only 50 sets can still perform 
good convergence.  On the other hand, the standard deviation 
of original process of added noise will be piled up as the num- 
ber of trials increased. 

V. THE ADJUSTED ENSEMBLE EMPIRICAL 
MODE DECOMPOSITION (AEEMD) 

From the above discussions, a new EEMD was proposed in 
this paper.  The added white noise signal is generated from a 
Gaussian random number set where the number of data equals 
the number of trials in the ensemble.  And, at each trial, ran-
domly picked up values without repetition for each data point 
of the time series are used to create a noise signal.  With this 
procedure, we can ensure that the noise of the ensemble be 
averaged out at each data point and from the whole original 
signal.  The algorithm of the new EEMD method (named as 
AEEMD) can be described as follow: 

 
1. Generate a finite number data set zi, (i = 1~m) which satis-

fies Gaussian distribution with zero mean and unit standard 
deviation, where m is the number of trials in the ensemble.  
The data set will be applied at each data point in the original 
signal as a source of random number; 

2. Given an original signal x0(t); 
3. Loops for ensemble: for i = 1~m 

(1) Randomly select a value without repetition from data 
set z at each data point of the signal, and create the 
noise signal wi(t); 

(2) Establish xi(t) = x0(t)  wi(t) as a trial; 
(3) Let j = 0 and xj(t) = xi(t) ; 
(4) Shifting iterations while xj(t) is not an IMF: 

(a) Let k = 1; 

(b) Let ; ( ) ( ) ( )k
j jh t x t

(c) Identify all extrema (maxima/minima) of ; ( ) ( )k
jh t

(d) Connect all the local maxima (minima) by a cubic 
spline line to form the upper (lower) envelope, 
named as  ( ); max ( )e t min ( )e t

(e) Compute the mean ; max min( ) ( ) ( )a t e t e t  
(f) Obtain the difference between the  and 

, i.e., ; 

( ) ( )k
jh t

( )a t
( 1)k

( 1) ( )( ) ( ) ( )k k
j jh t h t a t  

(4) If  is an IMF, then let j = j  1; ( )jh t

( )j j
( 1)

1 1( ) ( )k
jx t x t h t

   , and ( 1)
1( ) ( )k

j jH t h t
 ; oth-

erwise, let k = k  1 and repeat steps 4.(b) to 4.(f); 
(5) If ( )jx t  is neither a monotonic function nor a function 

with only one extrema from which no more IMF can be 
extracted, repeat step (4); otherwise, r = xj(t) is the re-
sidual and sifting end; 

(6) Let n  1 be the final j, then 
1

( ) ( )
n

i ij
j

ix t H t


  r , 

where, n is the number of IMFs. 
(7) Repeat step 3 for next i. 

4. The final ‘true’ IMFs can be obtained as the average of the 
corresponding IMFs of all trials in the ensemble, i.e., 

 
1

( )
m

j i
i

( ) jH t H


  t m  

 where 

 1 ~j n , and 1
1

( )
i

( )
m

n iH t r t m


  . 

VI. EXPERIMENTS ON FIELD WAVE RECORDS 

In order to evaluate the applicability of EEMD and 
AEEMD on water wave analysis, 10 wave records taken from 
Guei-San Island at north-east coast of Taiwan measured in 1998 
were used in experiments.  Each record contains 2400 data 
points with the sampling rate of 2 Hz.  The unit of water elevation 
is meter, and time is second, respectively.  Based on the added 
white Gaussian noise was suggested by Wu and Huang (2008), 
the following discussions focus only on Gaussian noise.  In the 
experiments, three ensembles were established with 50, 100 and 
500 trials, respectively.  Followed from Wu and Huang (2008), 
the ratio of standard deviation of Gaussian added noise and ori- 
ginal signal was set at 0.2, and the number of IMFs was equal to 
fix(log(2400)) = 11, plus a residual.  The total square error (TSE) 
between the sum of ensemble IMFs (including the residual) and 
the original signal is defined as 

 

2
1

0
1 1

( ) ( )
m n

j
i j

TSE x t H t


 

 
  

  
   (3) 

1. Experiments on NSTD Value 

In order to find the suitable NSTD value for AEEMD, an ex- 
periment was carried out first for NSTD varied from 0.05 to 
0.5 with an increment of 0.05.  Fig. 2 shows some experimen- 
tal results, including the mean value and standard deviation 
of the ensemble IMFs for different NSTD values (0.05, 0.1, 
0.15, 0.2, and 0.25), the results of EEMD are also included.  The 
parameters c1, c2, , c10 represent the IMF components 
from sifting process.  Observing the ensembles IMFs of dif-
ferent NSTD (not shown here), and the ensemble mean and 
standard deviation of IMFs in Figs. 2(a) and 2(b) respectively,  
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Fig. 2.  Comparisons of ensemble IMFs for different NSTD values. 
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Fig. 3  Samples of the spectra of ensemble IMFs. 
 
 

no obvious difference was found in the results of different 
NSTD in AEEMD.  However, such differences were identified 
for the results of EEMD, especially within the c1, c2 and c3 
which belong to higher frequency components. 

Examining the results of the spectra of ‘true’ IMFs of either 
EEMD or AEEMD with different NSTD values show that the 
mode-mixing problem can be better solved as NSTD is smaller 
than 0.1 by AEEMD.  Taken as an example, Fig. 3 shows the 

spectra of IMFs of one wave record decomposed by EEMD 
with NSTD = 0.2 for 500 trials, and AEEMD with NSTD = 
0.05 and 0.2 for 50 trials.  The numbers in the figures are the 
order of ensemble IMFs.  For NSTD = 0.2 in Fig. 3(a) for 
EEMD and in Fig. 3(c) for AEEMD, the spectra of the first 
two IMFs are too close to be identified, while in Fig. 3(b) is 
not (NSTD = 0.05 for AEEMD).  The results show that the 
AEEMD with NSTD = 0.05 has better mode decomposition  
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Fig. 4.  Comparisons of ensemble IMFs between different trials. 
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Fig. 5. Comparisons of Standard deviations of all IMFs for all records 

between EEMD and AEEMD. 

results than that of EEMD and AEEMD with NSTD = 0.2 in 
Fig. 3.  The NSTD was suggested to be set smaller than 0.1. 

2. Experiments on the Number of Trials 

In order to find the suitable number of trials of the ensemble 
for the application of AEEMD for water wave analysis, a series 
of experiments on establishing the ensemble with different num- 
ber of trials was carried out.  By altering the number of trials in 
the ensemble, varied from 51 to 501, Fig. 4 shows the com-
parisons of IMFs of different number of trials on one wave 
record, including the mean and standard deviation of IMFs, 
and the mean and standard deviations of the difference of en- 
semble IMFs between different trials.  The standard deviation of 
original signal is 0.338746 m.  Observing the results in Fig. 4 
and comparing them with the standard deviation of the original 
signal, we may find that only the first two IMFs have larger 
variations which should be affected by the added noise, but the 
differences of IMFs between each pair of trials are acceptable 
(within  0.002), and one can proceed a similar experiments for 
the number of trials for a specific signal to determine a suitable 
number of trials in the ensemble.  For the current wave records, 
50 trials can offer a satisfactory solution. 

3. Comparisons Between EEMD and AEEMD 

Due to the random character of the observed water waves and 
the white noise, Fig. 5 show the comparisons of the standard 
deviations of ten repetitions of ensemble IMFs for all ten wave 
records between EEMD and AEEMD.  The differences be-
tween EEMD and AEEMD are small for c4 to c10.  The large 
differences at c1 to c3 are caused by the residual white noise in 
EEMD.  The added white noise might affect the decomposition  
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Fig. 6.  Total square error (TSE) of the ensembles between 50, 100 and 500 trials (NSTD = 0.2). 
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Fig. 7.  Samples of the ensemble IMFs with 500 trials by EEMD. 

 
 

of higher frequency portion of the wave data.  The difference 
between the repetitions analyzed by EEMD is larger than that 
of AEEMD.  It is because in AEEMD, the added white noise 
are randomly picked up from a limit set of Gaussian number 
generator instead of fully random as in EEMD. 

Fig. 6 show the total square error (TSE) of the ensemble by 
EEMD and AEEMD with 50, 100 or 500 trials.  The TSE of 
EEMD decreased as number of trials increased; on the contrary, 
the TSE of AEEMD is always zero. 

Taken as an example, Fig. 7 shows the ensemble results of 
IMF of one wave record with 500 trials by EEMD method, si- 
milar results can also be found for the results with 1000 trials.  
In this figure, the related IMFs are plotted from left to right, 
and from top to bottom where the first plot is the original 
signal, the 2nd to 11th plots are ensemble IMF components, the 

12th plot at the right column is the residual, and the final plot 
on the right column is the residual noise obtained from the 
subtraction all IMFs from original signal.  The related spectra 
of each ensemble IMF are shown in Fig. 3(a).  The last plots in 
Fig. 7 shows that since the added noise cannot be averaged out, 
there are some extra signal elements that were added into the 
original wave signal during the analysis, and its spectrum ap- 
pears to be a white noise. 

Fig. 8 shows the AEEMD ensemble results of the same wave 
record as in Fig. 7 with 50 trials, the arrangement of plots is the 
same as in Fig. 7, and similar results can also found for the 
results with 100 and 500 trials.  The last plot shows that the 
difference between AEEMD process and the original signal is 
only a small value lying within  which might be 
caused by the truncation/cutoff error during the sifting and can  

142 10 
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Fig. 8.  Samples of the ensemble IMFs with 50 trials by AEEMD. 
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Fig. 9.  Ensemble IMFs for different trials by EEMD. 
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Fig. 10.  Samples of the ensemble IMFs for different trials by AEEMD. 

 
 

VII. DISCUSSIONS be neglected.  This shows that the AEEMD has better results 
on keeping the original signal from residual noise.  The related 
spectra of each ensemble IMF are shown in Fig. 3(b). 1. In this study, we evaluated the convergence of EEMD by 

Wu and Huang (2008) and found that the added noise can- 
not be averaged out from the ensemble mean.  This might 
be caused by the random number function in Matlab failing 
to guarantee the noise satisfy the Gaussian distribution even 
with the number of trials up to 10000, and the EEMD as-
signs the added noise with Gaussian distribution along the 
time axis instead of doing so at each node and thus causes 
some residue noise be introduced into the process.  The re-
sidual added noise exists at each node and along the entire 
time series. 

By using the same wave record as in Fig. 7, and setup of 
three ensembles with 50, 100 and 500 trials, Fig. 9 collects the 
sifting results from EEMD.  Fig. 9(a) is the ensemble IMFs, only 
small difference of IMFs between them can be found.  Fig. 9(b), 
however, shows the differences of IMFs between different en- 
sembles with different number of trials are small which means, 
in EEMD, more trials in the ensemble can get more stable en- 
semble results.  Fig. 10 collects the results from AEEMD.  Only 
small difference of IMFs between them was found which means 
the results from 50 trials should be acceptable.  In AEEMD, 
the increase of the number of trials in the ensemble is less ad- 
vantageous as to the accuracy of the sifting results. 

2. The adjusted method (AEEMD) firstly created a finite num- 
ber data set which satisfies Gaussian distribution with zero 
mean and unit standard deviation and was applied at each 
node as a pool of random number, the added noise of each 
trial was randomly chosen from the pool without repetition 
at each node of the original signal independently.  Such pro- 
cess ensures added noise in the ensemble can be averaged 
out at each node on time axis, and also be averaged out from 
the ensemble mean.  From the experiments, the benefit of 
the original EEMD can still be retained. 

All these comparisons show that the AEEMD has the same 
performance on sifting the signals as EEMD.  However, since 
EEMD employs a totally random noise, theoretically they 
should be averaged out with enough number of trials in the en- 
semble, but the random number function provided by any com- 
puter programming language doesn’t guarantee this requirement.  
A controlled added noise was then employed in the new method 
and proved to be more reasonable without introducing any new 
component into the signal.  The AEEMD was proved to have 
higher accuracy and more efficiency than EEMD. 

3. Due to the added noise in the ensemble can be averaged 
from each node and from the entire time series, the number 
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of trials in AEEMD can be limited to 50 sets which avoid the 
time consuming problem when analyzing time series with 
large number of elements, like field wave observations. 

4. For decomposition of water wave signals, the amplitude of 
the added noise (NSTD) can be set less than 0.1 of the stan- 
dard deviation of the original signal.  For other types of time 
series, however, an initial experiment is recommended. 

5. In order to do the ensemble average with same number of 
IMFs, Wu and Huang (2008) suggested the number of IMFs 
equals to fix(log(no.data)) , plus a residual.  As the number 
of data becomes large, the number of IMFs increased even 
the sampled data were taken from the same time series with 
longer duration or with higher sampling rate to the same du- 
ration.  Such might distort the signal decompositions, and con- 
fused the sifting results. 

VIII. CONCLUSIONS 

1. The AEEMD has better convergence than the original EEMD, 
the added noise of the ensemble can be averaged out at each 
node and from the whole time series which ensures no extra 
signal was added into the original signal.  With a limited number 
of trials but similar approach as EEMD, the AEEMD has better 
performance on solving the mode-mixing problem in water 
wave analysis.  Apart from that, EEMD and AEEMD have the 
same performance on decomposition of the original signal. 

2. Using 50 sets of noise-added signal in the ensemble and choos- 
ing NSTD smaller than 0.1 in AEEMD process can solve the 

mode-mixing problem and offer good performance to avoid 
time consuming problem.  Such process is suitable for the 
analyses of large amount of field data. 

3. The number of IMF set equal to fix(log(no.data)) plus a re- 
sidual might distort the sifting results and increase unneces- 
sary IMFs especially the decompositions of the trend.  Further 
studies on choosing a suitable number of IMFs are needed. 

4. End effect still plays an important role on the sifting and suit- 
able end conditions in cubic spline calculations should be eva- 
luated. 
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