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ABSTRACT 

This study developed an estimation model for noise signal 
characteristic diagnosis based on the time-frequency analysis 
technique.  The time-frequency analysis theory uses the relatively 
mature and extensively used wavelet method as the basis of sig- 
nal analysis, but wavelet analysis generates wavelet theories 
different from other mother wavelet methods.  This study used 
the Morlet Transform, which is a type of wavelet transform 
using a mother wavelet for wavelet analysis of signals.  The time 
axis was integrated according to the result of time-frequency 
analysis in order to obtain the marginal spectrum value of the 
frequency domain.  Finally, statistical regression analysis was 
used as the estimation method of feature extraction.  This study 
determined and validated the behavior estimation functional 
equation of a wind turbine blade in normal operation versus 
the signal of a wind turbine blade in abnormal operation.  The 
proposed model can be used as a diagnostic method of early 
warning and health management of a wind turbine. 

I. INTRODUCTION 

Frequency analysis is presently an important tool for vibra-
tion and noise analyses, with spectral analysis being the most 
extensively used in recent years.  However, spectral analysis 
cannot show the variation of frequency with time.  The variation 
of frequency with time reveals whether an abnormal rotational 
frequency of a machine is continuous or intermittent, which sig- 
nificantly influences the judgment of the mechanical anomaly.  
(Chian, 2011).  Therefore, the variation of frequency with time 
is of great importance (Pan, 2015).  The present analysis modes 

for time-frequency analysis include the approximate wavelet 
analysis method (Meyer, 1993), HHT (Huang et al., 1998), and 
STFT (Qian and Chen, 1996).  This study uses the wavelet 
method as the theoretical method for time-frequency analysis. 

In recent years the wavelet method has been used exten-
sively in speech processing, image processing, computer vision, 
biomedicine, and vibration noise analysis.  The wavelet trans- 
form evolved from wavelet analysis, as first proposed by Haar 
in 1910 (cited in He (2003)).  The Haar wavelet is the easiest 
orthogonal wavelet and is the basic dyadic wavelet transform.  
In 1984, French geophysicist Jean Morlet applied the concept 
of the wavelet method to signal analysis (Goupillaud et al., 
1984).  The most frequently used signal analysis at present is 
Fourier transform.  When the time-domain signal is converted 
via Fourier transform, the signal distribution in the frequency 
domain will be obtained and the main frequency of the signal 
will be found.  However, the disadvantage of Fourier transform 
is that the time of the occurrence of the main frequency cannot 
be identified.  Morlet wavelet is preferred over Fourier trans-
form because it simultaneously converts the time sequence for 
each frequency of occurrence.  In addition, the Morlet wavelet 
uses finite or quickly attenuated mother wavelet oscillation wave- 
forms to represent signals.  This waveform and matched input 
signal are processed by scaling or translation.  However, the de- 
fect of the Morlet Transform is that the high frequency diverges 
as the frequency resolution decreases.  Therefore, the Enhanced 
Morlet Transform (Cheng et al., 2005; Jeng et al., 2005) is pro-
cessed by the Gauss function in advance, in order to solve the 
energy spread in the high frequency parts and to meet the 
primitive character of the original signal. 

Regression analysis is a convenient and rapid method for 
statistical analyses, which helps to build a statistical model of 
the relationship between dependent variables and independent 
variables.  The trend of dependent variables can be predicted by 
the appropriate selected independent variable.  It is most fre-
quently used as a statistical analysis tool.  The regression ana- 
lysis of one dependent variable for one or multiple independent 
variables is called univariate regression analysis.  The regression 
analysis of multiple dependent variables for one or multiple in- 
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dependent variables is called multivariate regression analysis.  
The univariate regression analysis has both linear regression 
(Neter et al., 1996) and nonlinear regression methods (Seber 
and Wild, 2006).  This paper will use regression analysis to cal- 
culate the estimation functional equation of feature extraction. 

The research on the abnormal operation of wind turbine blades 
is relatively sparse.  The research method adopted generally cen- 
ters on vibration signal analyses, with diagnoses on feature noise 
signals relatively rare.  Therefore, this study utilizes noise ana- 
lyses to diagnose the abnormal operation of a wind turbine blade. 

II. INTRODUCTION TO THEORY 

The calculation methods of the Morlet wavelet theory, the 
Enhanced Morlet Transform, and the linear regression are briefly 
described as follows. 

1. Wavelet Analysis 

The wavelet transform is roughly divided into continuous wave- 
let transform (CWT) and discrete wavelet transform (DWT).  
The continuous transform operates on all probable scaling and 
translation, while the discrete transform uses the specific sub- 
set of all scaling and translation values (Li, 2011).  CWT de- 
composes the continuous signal of a time in order to decompose 
the time sequence into several wavelets.  The function x(t) with 
continuous time and integrability processed by CWT can be 
expressed as Eq. (1). 
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where (t) is called the mother wavelet, which is a continuous 
waveform in the time and frequency domains, b is the trans-
lation parameter for translating the wavelet function, and a is 
the compressed and amplified wavelet parameter.  The a value 
is converted into frequency.  The mother wavelet is defined as 
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The Morlet wavelet in this paper is a method using Gabor 
Functions (Mallat, 1999; Jeng et al., 2005) to convert signals 
to a complex plane.  According to the uncertainty principle, the 

temporal resolution must be poor when the frequency resolu-
tion is high, and the frequency resolution must be poor when 
the temporal resolution is high.  The main defect of the Morlet 
Transform at high frequency is the poor frequency resolution; 
thus, the calculated time-frequency chart will have an energy 
spread in the high frequency region.  Therefore, another En-
hanced Morlet Transform is used. 

The Gabor Function is multiplied before wavelet transform, 
and the marginal and low amplitude signals are removed, in order 
that the high frequency resolution is increased.  Eq. (2) of this 
transform is below. 
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where G(, b, t) is the Gaussian function expressed as 
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   due to the high frequency section, the 

scale parameter a of the Morlet wavelet decreases, and the high 
frequency resolution worsens as a result.  Hence, the Morlet 
wavelet is multiplied by a Gaussian Window G(, b, t) to in- 
crease the frequency resolution before the wavelet transform.  
The computing time is relatively prolonged; however, the di- 
vergence resulting from a lack of high frequency resolution can 
be solved. 

2. Marginal Spectrum 

After time-frequency analysis of a signal, The H(t, ) is ob- 
tained after time-frequency analysis of a signal, and the fre- 
quency axis is integrated to get obtain the distribution of time 
as a parameter.  It is mathematically expressed as Eq. (3). 

 ( ) ( , )h t H t d 




  , (3) 

where H(t, ) is the time domain distribution of the time- 
frequency two-dimensional array, i.e., Marginal Time.  The distri- 
bution of frequency as a parameter can be obtained by integrating 
the time axis.  The mathematical expression is Eq. (4). 

  (4) ( ) ( , )h H t




  dt

where, h() is the frequency domain distribution, i.e., Mar-
ginal Frequency.  The marginal spectrum measures the total am- 
plitude or total energy of each frequency. 

3. Regression Analysis 

Researchers can judge the model of this mathematical for- 
mula according to past experience or theory.  There are 5 main 
basic classes: linear, logarithmic, polynomial, power, and expo- 
nential.  It is expected to be linear in calculation, as the general 
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linear model provides simple and intelligible ways and uses 
samples to better approach the parent. 

When K independent variables are imported, the generalized 
multivariate regression model is: 

 Y = A0  AlXl  A2X2    AkXk   

The matrix is expressed as Eq. (5). 
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where, Y = A0  AlXl  A2X2    AkXk   uses the Least 
Square Regression Formula to export the estimates a0, a1, a2  
aK of parameters A0, Al, A2  AK in the regression equation.  
The estimation equation of the corresponding regression line 
can be expressed as: 

 y = a0  alXl  a2X2    aKXK   

The least square method is selected for the general multi-
variate regression model, and the estimated regression line y = 
a0  alXl  a2X2    aKXK   can minimize the sum squared 
error (Yi  yi)2 of all sample points.  The sum squared error is 
expressed as follows: 

 SSE = (Yi  yi)2 = (Yi  a0  alXl  a2X2    aKXK)2 
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where a0, al, a2  aK can be worked out. 
There are two main standards for determining the feasibility 

of the regression equation: rationality of data and conformance 
of data.  Rationality means the regression equation shall be rea- 
sonable, it can be combined with theory, and it is intelligible.  
In terms of data conformance, the regression equation should 
fully interpret and match data.  Data conformance is judged on 
the residual.  The residual value (Ei) is the observed value minus 

the predicted value, where the larger the residual is, the more 
ideal the regression line is.  All residual values are squared and 
summed up to obtain the sum of the squares of residuals SSe.  
The total sum of squares (SSt) is all numerals minus the mean, 
which are squared and added up. 

Let Y denote the observed value of data, where  represents 
the predicted value generated by this regression line, and 

Ŷ
Y  is 

the mean: 

  2
SSe Y Y 


,  2

SSt Y Y   

After conversion, SSt minus SSe leaves the sum of squares 
of regression (SSreg), i.e.: 

  2
regSSt SSe Y Y SS   


 

The sum of the squares of regression is SSreg, where each 
prediction value, minus the mean, is squared and added up.  
The percentage of SSreg to SSt is the part of this regression line 
conforming to data, which is known as R2, as well as the co-
efficient of determination.  It is expressed as Eq. (6). 
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The value of R2 is 0 to 1.  If the interpretation of this line 
of data equals the guess on mean, then R2 equals 0.  If this line 
completely conforms to the data without any residual, then 
R2 equals 1.  In fact, the R2 value does not equal 0 or 1, but is 
between them.  The larger R2 is, the better the regression line 
conforms to the data, i.e., better conformance. 

If R2 of two regression lines is almost identical, then the 
rationality is almost identical, and as the regression line is the 
simpler the better, problems can be simplified.  For example, 
the regression equation can be used to estimate the error value, 
and this estimated error value cannot be completely accurate.  
Therefore, the calculation of standard deviation (SD) must be 
imported.  SD is used to measure the difference between the 
observed data and the mean and can be one of the standards for 
judging the feasibility of this estimation model. 

The technique of regression analysis is like order number 
and nonlinear terms and is free of criteria.  The advantage is that 
the regression equation is not complex, and it can be calculated 
by a microprocessor.  As it is reliable to some extent in estimat-
ing data, it is a noncomplex and feasible method. 

III. RESEARCH STRUCTURE AND DESIGN 

1. Research Structure 

This study developed a noise characteristic estimation model 
for wind turbine blades in rotation and applied it to estimate  
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X(+)

P2.

P1.

P5.

P6.

P7.P8.

P4.P3.

Z(+)

Y(+)  

Table 1.  Operating conditions. 

Noise value calculation conditions 

Common operating conditions 

1. Wind turbine 3 blades 
2. Vinlet = 11.4 (m/s) 
3. Rotation speed is 12.1 rpm 
4. TI value is 0.01% 

1. Wind turbine 3 blades 
2. Vinlet = 11.4 (m/s) 
3. Rotation speed is 12.1 rpm 
4. TI value is 0.01% 

Normal operation Abnormal operation 

1.  = 0 
2.  = 0 

1.  = 0 
2.  = 5 

TI: Turbulence intensity  : Pitch angle of top blade 
: Angle of wind inflow direction Vinlet: Inlet velocity of wind Fig. 2.  Noise value calculated positions. 

  
  

Normal noise
simulation value 

Abnormal operation noise
simulation value

Wavelet
time-frequency analysis 

Marginal spectrum
calculation 

Linear regression
analysis 

Normal characteristic
estimation function 

Abnormal operation
characteristic estimation

Diagnosis of normal and abnormal
operation of wind turbine

 

Z
Y
X

Y(+)

X(+)

Z(+)

= 0° wind inflowdirectionβ  
Fig. 3.  Wind inflow direction. 
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Fig. 4.  Position 3 and Position 7 time series. 

Fig. 1.  Noise characteristic estimation model analysis process.  
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the service behavior of this wind turbine.  This study refers to ab- 
normal operation as changes in the pitch angle of the top blade.  
The noise data of wind turbines are derived from numerical 
analysis of noise simulation.  The analysis process is shown in 
Fig. 1. 

Fig. 5.  Position 6 and Position 8 time series. 
2. Research Design  

The positions of this project’s calculated noise data are shown 
in the following figure, where the calculated position is on the 
ground within a radius of 125 m from the wind turbine center, 
and the precalculated positions are at intervals of 45, as shown 
in Fig. 2.  Table 1 lists the operating conditions. 

 
The noise signal analyzed is from the numerical calculation 

simulation result of this study.  The wind turbine has three blades, 
and the calculated positions are shown in Fig. 2.  The rotation 
speed is 12.1 rpm, and the wind inflow is normal to blades, as 
shown in Fig. 3.  The noise signal of the time series of normal op- 
eration is extracted, as shown in Figs. 4. and 5. The black curve 
symbolizes positions 3 and 6.  The blue curve symbolizes po- 
sitions 7 and 8. 

IV. ANALYSIS COMPARISON  

1. Creation of Feature Estimation Functional Equation in 
Normal Operation To develop a wind turbine blade feature estimation model  
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Fig. 6.  Position 3 and Position 7 time-frequency analysis. 
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Fig. 7.  Position 6 and Position 8 time-frequency analysis. 
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Fig. 8.  Position 3 and Position 7 marginal frequency analysis. 
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Fig. 9.  Position 6 and Position 8 marginal frequency analysis. 

 
 

and diagnostic capability, the symmetrical positions of P3 and 
P7 and of P6 and P8 are taken as examples to analyze normal 
operation feature estimation.  First, the wavelet method is used 
for time-frequency analysis of the two groups of position sig- 
nals, as shown in Figs. 6. and 7.  From the time-frequency chart, 
the apparent frequency occurs at the dominant frequency and 
double frequency of the blades and continues with time.  In ad- 
dition, the wind inflow is positive zero, and so the energy in front 
of and behind the wind turbine is greater than that on the sides, 
which adhere to the physical phenomenon. 

In order to know the sum of amplitude or energy correspond-
ing to each frequency, the marginal spectrum of the time-frequency 
signal is made to obtain the marginal frequency, as shown in 

Figs. 8. and 9.  According to this analysis, 1.22 Hz-3.1 Hz is most 
apparent at the dominant frequency 0.61 Hz and 2-5 double 
frequency; thus, the linear regression independent variable fre- 
quency characteristic range is 3 Hz. 

2. Time-Frequency Analysis and Marginal Spectrum  
Calculation in Abnormal Operation 

The noise signal analyzed is derived from the numerical 
calculation simulation result of this project.  This wind turbine 
has three blades, and the top blade is turned 5 as an abnormal 
operating condition.  The time-frequency chart, as obtained by 
the wavelet method, is shown in Figs. 10. and 11.  The marginal 
spectrum of the time-frequency signal is made to obtain the 
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Fig. 10.  Position 3 and Position 7 time-frequency analysis in abnormal operation. 
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Fig. 11.  Position 6 and Position 8 time-frequency analysis in abnormal operation. 
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Fig. 12.  Marginal frequency analysis of Position 3 and Position 7 in abnormal operation. 
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Fig. 13.  Marginal frequency analysis of Position 6 and Position 8 in abnormal operation. 
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Fig. 14.  Marginal spectrum analysis of Position 3 and Position 7 in normal and abnormal operation. 

 
 

marginal frequency, as shown in Figs. 12. and 13. 

3. Noise signal Diagnosis in Normal and Abnormal  
Operations 

The wavelet time-frequency is calculated in normal and ab- 
normal operations and converted into marginal spectrum.  The 
two signals in the same position are combined and compared 
in Figs. 14. and 15.  According to this result, the frequency 0-5 

Hz is the most apparent extracted feature. Thus, the marginal 
frequency distribution in four positions in normal operation is 
averaged to calculate the estimated trend curve of 6-order 
linear regression and to create the feature estimation function 
in normal operation, as shown in Figs. 16 and 17. 

Se in abnormal operation Se in normal operation
 Index 1

Se in normal operation
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Table 2.  Abnormal noise feature extraction judgment criteria. 
Abnormal noise feature extraction judgment criteria (at radius of 125 m from wind turbine center point) 

 Sum of residuals (Se) SD of estimated value and measured value 
P Nor Abnor Inde  1 Nor Abnor Inde  2 Model 
3 0.022 0.118 4.4 0.002 0.009 3.5 0.845 
7 0.021 0.116 4.5 0.002 0.005 1.5 0.828 
6 0.017 0.142 7.4 0.002 0.008 3.0 0.914 
8 0.028 0.127 3.5 0.003 0.007 1.3 0.875 
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Fig. 15.  Marginal spectrum analysis of Position 6 and Position 8 in normal and abnormal operation. 
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Fig. 16.  Position 3 and Position 7 linear regression estimated curve. 

 

SD in abnormal operation SD in normal operation
 Index 2

SD in normal operation


  

Se: Absolute values of all residuals are taken and added up, 
i.e., the sum of residuals 

P: Position 
Nor: Normal operation 
Abnor: Abnormal operation 
Model: Model (coefficient of determination) 

 
The smaller the sum of residuals (Se) is, the more accurate 

the estimation of the regression equation; standard deviation 
(SD) represents the amount of dispersion of the regression 
equation and the values measured.  Thus, this study utilizes the 
two indices, Se and SD, to distinguish between normal opera- 
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Fig. 17.  Position 6 and Position 8 linear regression estimated curve. 
 

 
tion and abnormal operation. 

According to the above figures and Table 2, positions P3 
and P7 have the same curve distribution trend, where the coef- 
ficient of determination of 6-order regression analysis is higher 
than 0.7, and Se is lower than 0.002.  In addition, positions P6 
and P8 have closer curve distribution trends, the coefficient 
determination of 6-order regression analysis is higher than 0.9, 
and Se is lower than 0.002.  Therefore, the 6-order curvilinear 
equation obtained in the four positions conforms to the consis- 
tency of statistical indices and the accuracy of estimation, which 
is applicable to creating the functional equation of the estima- 
tion model in the future.  The measurement or calculation result  
will be converted by the estimation program, and the values are  
substituted in related estimation equations, in order to know the  
usability of the blades as reference and eigenfunction for judging  
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the abnormal sound of blades. 

V. CONCLUSION 

This study used time-frequency analysis, marginal spectrum 
transform, and a linear regression estimation curve to build a 
noise estimation model.  According to the above analysis, Po- 
sition 3 and Position 7, or Position 6 and Position 8, have a cer- 
tain symmetry in regression statistics, data synchronism, and 
rationality.  The coefficient of determination (R2) of the pre-
diction function of regression analysis is 0.85 on average, mean-
ing the prediction curve matches the actual data.  Therefore, the 
6-order polynomial regression analysis estimated equation has 
certain accuracy.  The mathematical model for normal operation 
is determined by this noise feature extraction estimation model. 

The data in abnormal operation (top blade 5), as calculated 
in this study, are calculated by the feature extraction of the mar- 
ginal spectrum, and the obtained values are substituted in the re- 
gression analysis feature model in normal operation, with the  
result shown in Table 2.  When Se (index 1) and SD (index 2) 
are analyzed, index 1 and index 2 in abnormal operation are ob- 
viously different from that in normal operation and are even 
change multiple times. 

Provided that the system noise value is substituted in this 
estimation model, the service behavior of this wind turbine 
blade can be easily determined.  It should be noted that when this 
feature estimation system is used, the model must be rebuilt 
for different forms of wind turbines in order to ensure the ac- 
curacy of the mathematical model.  In the same way, for the same 
form of wind turbine, the model is built only once for mass pro- 
duction and can even adjust relevant parameters.  The feature 
extraction estimation procedure can be used as a health evalu- 
ation result of predictive diagnosis and health control and can 
provide a decision reference for wind farms to operate and re- 
pair wind turbines in the future. 
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