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ABSTRACT 

This paper presents a method for integrating different algo-
rithms for building an autonomous robot.  The developed robot 
has the ability to construct the 2-D map of an unknown environ- 
ment, localize itself in the map, explore undiscovered area, and 
path finding.  In order to efficiently explore a map, we propose 
an exploration method.  Additionally, improvements of conven- 
tional A* algorithm are proposed.  Experimental results show 
that the developed robot is capable of navigating an unknown 
indoor environment with random obstacles. 

I. INTRODUCTION 

Recently autonomous robot systems are gaining much attention 
in our daily life.  Cleaning and surveillance robots are revealed 
to the public.  For example, iRobot roomba robotic vacuum cleaner 
is a great success of the development of autonomous robot sys- 
tems (Forlizzi and DiSalvo, 2006).  DARPA grand challenge- 
autonomous vehicles (Chen et al., 2004) and Google driverless 
car project (Levinson et al., 2011) showed that autonomous robot 
cars drove in cities.  The U.S.  states of California and Nevada 
permitted the operation of autonomous cars in 2012. 

For autonomous robots, the ability to perceive environments is 
vital.  The difficulties in acquiring this ability include map build-
ing, localization, path finding, and map exploration algorithms.  
The first two are usually solved by SLAM methods (Smith and 
Cheeseman, 1986a; Smith and Cheeseman, 1986b; Thompson 
et al., 2011; Tong et al., 2013).  There are four common algo-
rithms for SLAM: EKF, SEIF, FastSLAM, and GraphSLAM.   
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Fig. 1.  System architecture. 

 

 
Here we use another much simpler approach-Iterative Closest 

Point (ICP) (Besl and Mckay, 1992) for building map and local- 
ization.  Together with efficient path finding and map exploration 
algorithms to be discussed, an autonomous robot capable of na- 
vigating an unknown indoor environment with random obstacles 
can be developed. 

Block diagram of the developed robot system is illustrated 
in Fig. 1.  There are three major algorithms in this system-ICP, 
A* and map exploration logic.  A* is for path finding, and map 
exploration logic is for robot navigation (Kurabayashi et al., 
1996; Koenig et al., 2001; Fang et al., 2005).  In this paper, 
each of these three algorithms will be addressed in detail in the 
following sections.  Finally, experiments will be carried out to 
show effectiveness of the algorithms for a 2-D environment 
navigation. 

II. LOCALIZATION AND MAPPING 

1. Data Representation 

The first step of building an autonomous robot is to decide 
the representation method of its map data (Elfes, 1989; Kuipers  
and Byun, 1991; Bandera et al., 2001; Guivant et al., 2002; 
Schroter et al., 2004).  In this paper, we use occupancy grid map.  
It presents maps in grids.  Each grid keeps the probability of 
being occupied by obstacles, as illustrated in Fig. 2.  All grids 
initialize its probability to be 0.5, and 
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Fig. 2.  A 2-D occupancy grid map. 
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Fig. 3.  Rigid alignment. 

 
 

 If probability < LOW: occupied (black area in Fig. 2) 
 If probability > HIGH: empty (white area) 
 If LOW  probability  HIGH: uncertain cell (gray) 

 
where LOW and HIGH  (0, 1) are prescribed thresholds. 

2. ICP 

Once we know how to represent a map.  The next step is to  

(b)(a)  
Fig. 4.  Meshes with features. 

 
 

construct our environment map from sensory data.  This con-
structing problem can be considered as a rigid alignment (point set 
registration) problem.  For example, suppose we have two sets of 
sensory data P and Q.  The data in P and Q are partially the same, 
which means they have some identical points, as illustrated in 
Fig. 3.  We can match these two data sets as long as we can find 
the rotation and translation between P and Q. 

ICP takes six stages to find the rotation and translation: 
 

 Down sampling 
 Matching 
 Weighting 
 Rejection 
 Building error function 
 Minimizing the error function 

1) Down Sampling 

When Besl proposed the very first ICP, he used all available 
points in both meshes.  However, the performance hits its limit 
when the number of points grows.  So, another two common 
sampling strategies were proposed: 

 
 Random sampling (Masuda et al., 1996) 
 Uniform subsampling (Turk and Levoy, 1994) 

 
Radom sampling reduces the number of point simply by ran- 

dom selection.  And Uniform subsampling selects points uniformly 
across the buckets.  Although these two strategies reduce the num- 
ber of points, they donʼt consider the feature of meshes.  For ex- 
ample, Fig. 4(b) has fewer features than in Fig. 4(a), random 
and uniform sampling methods might fail in Fig. 4(b) by missing 
features.  And this is why normal-space sampling (Rusinkiewicz, 
2001) and intensity sampling (Weik, 1997) were proposed. 

The idea of normal-space sampling is choosing points such 
that the distribution of normals among selected points is as large 
as possible.  Intensity sampling, on the other hand, has the selec-
tion of points with high intensity gradient.  Both of these strategies 
consider the features of meshes. 

No matter what strategy you use, you can choose to exert the 
sampling on only one mesh, or on both meshes.  Sampling on both 
meshes might help a little on the performance, but not much 
(Rusinkiewicz, 2001). 

2) Matching 

The second stage of ICP is to find the corresponding points 
between meshes.  In this stage, The original ICP (Besl, 1992) 
simply uses the closest point as the correspondence.  For in-
stance, Fig. 5(a) presents two meshes, and Fig. 5(b) shows the 
result of finding closest points. 
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(a) (b)  
Fig. 5.  Finding closest point. 

 
 

p1 q1

 
Fig. 6.  Normal Shooting. 

 
 

(a) (b)  
Fig. 7.  Reverse calibration. 

 
 
There are two issues in this closest point finding strategy.  

First, the closest point is not always the real correspondence.  
You can tell this from Fig. 5(b).  Second, this strategy is very 
time-consuming.  The cost is O (NM), where N and M represents 
the number of points in both meshes.  Therefore, we usually use 
k-d tree to accelerate the process.  K-d tree separates mesh spaces 
into several individual dimensions.  In this way, we only find cor- 
responding point in the same dimension, which increases the per- 
formance to O (logN). 

There are some other matching strategies: 
 

 Normal shooting (Chen, 1991) 
 Reverse calibration (Blais, 1995) 

 
Normal shooting finds the intersection of the source point’s 

normal with the destination surface.  For example, in the scene 
of Fig. 6, p1 finds its correspondence, q1, along its normal. 

Reverse calibration, Fig. 7(a), on the other hand, projects 
the source point onto the destination mesh.  This method has a 
remarkable performance, in constant time, because it uses pro- 
jection to find correspondences.  Another advantage is this me- 
thod doesnʼt easily be affected by noise.  For instance, Fig. 7(b) 
presents a scene with noise in the middle.  The original closest 
point method will generate a lot of incorrect correspondences 
because the noise has a shorter distance to the source points. 

Any of the above strategies can also use restrictions in ad-
dition, such as: 

 
 Angle between normals (Pulli, 1999) 

 
For example, Fig. 8(a) is a case that uses ordinary closest point 

to find correspondences.  Fig. 8(b), also uses ordinary closest  

(a) (b)  
Fig. 8.  Matching with restriction of angle between normals. 

 
 

 
Fig. 9.  Rejection of boundaries. 

 
 

point strategy, but it only matches correspondence when the 
source and the destination have normals within 20 degrees. 

3) Weighting 

After matching, we might also assign different weights to 
corresponding point pairs.  There are some available weighting 
strategies: 

 
 Constant weight 
 Weighting based on distance 
 Weighting based on normals 

 
The second weighting strategy uses the following formula to 

calculate the weights: 

 max

max

( , )Dist Dist p q
Weight

Dist


  

And the third strategy uses: 

  1 2Weight n n 

where n1 and n2 represent the normals of the source point and 
destination point. 

The idea of these two strategies is: The greater distance (or dif- 
ference between normals), the less accuracy.  However, weighting 
doesn’t affect the speed of convergence that much.  The choice 
of a weighting strategy should be based on the accuracy. 

4) Rejection 

The purpose of this stage is to eliminate the impact of noise 
and incorrect corresponding pairs.  An easy way to do this is to 
reject pairs that have distance more than a given threshold.  Or, 
you can reject the worst n% of pairs based on the distance (Pulli, 
1999).  However, this stage doesn’t improve the speed of con- 
vergence either.  The affection of this stage is majorly on the ac- 
curacy. 

An interesting strategy of this stage is to reject boundaries 
on meshes (Turk, 1994).  Since boundaries usually cause lots of 
incorrect pairs, as in Fig. 9, this strategy is usually recommended. 
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5) Building and Minimizing Error Function 

The classic ICP has the following error function: 

  (1) 2
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where R denotes the rotation matrix, and T denotes the trans-
lation matrix. 

Since Eq. (1) has two unknowns (R and T, it is impossible 
to solve an equation with two unknowns).  So we have to re- 
write Eq. (1) by the following steps: 

First, find the centers of P and Q: 
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and then shift P and Q to the origin of coordinates: 
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after shifting P and Q to the origin, we can rewrite Eq. (1): 
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Compare Eq. (1) to Eq. (4), we can see the new Eq. (4) has 
only one (rotation) unknown in it, which is solvable: 
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To minimize this error function (5), we only have to maxi- 

mize the later part ( ) after minus sign. t
iq Rp

In order to maximize  in Eq. (5), let t
iq Rp
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(a) (b)  
Fig. 10.  Situation 1. 

 
 
In this way, we switch the original minimizing problem to 

another question: “How to maximize Trace (RH)?” 
Thus, let us find R so that RH is symmetric positive define.  

Then we know for sure that Trace (RH) is maximal.  If H = 
tU V  is the SVD (Singular Value Decomposition), we define 

 . (8) tR VU

Now let us check RH: 

  (9) ( )( )t tRH UV U V V V    ,t

which is a symmetric matrix and its eigenvalues are positive, 
meaning that RH is symmetric positive define. 

Consequently, we can find the translation matrix T in Eq. (1), 
because: 

 T q Rp   (10) 

After matching P and Q, we have a basic map on our own.  
Moreover, by calculating the rotation and translation, we get 
the position and orientation of the robot too, which means we 
solved the mapping and localization problems simultaneously. 

III. MAP EXPLORATION 

Using ICP gives the robot the ability to draw a map and 
localize itself.  But the robot still doesnʼt know how to navigate 
through the environment yet.  This is why we need a map ex- 
ploration logic. 

To explore a map, we first assume the robot is located in a 2-D 
occupancy grid map.  Each grid in the map has three possible 
statues: 

 
(1) Occupied by obstacle.  (Black area in Fig. 10) 
(2) Not occupied (Empty).  (White area in Fig. 10) 
(3) Uncertain.  (Gray area in Fig. 10) 

 
Of course, all the grid cells in the map are initialized to be 

“Uncertain”, and the robot has at least one sensor (such as 
camera or infrared, Fig. 15) to “see”. 
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(a) (b)  
Fig. 11.  Situation 2. 

 
 

 
Fig. 12.  Situation 3. 

 
 
Now, to explore this map, we constantly make the robot search 

for the nearest “Uncertain” cell.  If an uncertain cell is found, we 
use a path-finding algorithm to find a valid path, and then make 
the robot move along the path. 

As long as we repeatedly do the “search-path finding-move” 
action, the robot will eventually explore the whole environment.  
However, there are three possibilities for finding a path: 

 
1. Path found  Robot move  Move successfully. 
2. Path found  Robot move  Robot can’t move (obstacle 

found) 
3. No available path. 

1. Situation 1 

Suppose the robot is in the middle of a map, illustrated as 
Fig. 10(a).  The nearest cell (denoted by a red cross) is on the 
upper-left of the robot, and there is a path to this target cell.  
Moving the robot will be able to update the map on the upper- 
left corner, illustrated as Fig. 10(b). 

2. Situation 2 

Illustrated as Fig. 11.  When robot is moving, there is a chance 
we might find a new obstacle on the way.  If so, we have to stop 
the robot and rearrange a new path for the robot. 

3. Situation 3 

In this situation, the target cell is unreachable to the robot.  
As illustrated in Fig. 12, the hatched area is isolated to the 
robot, there is no path for the robot to move. 

As we can see, this exploration method is simple.  As long 
as we handle these three situations carefully, the robot will be 
able to explore the whole environment eventually. 
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Fig. 13.  Dijkstra vs. A*. 

 

 
However, there are two other problems here.  First, this me- 

thod needs a path finding algorithm for arranging the moving 
path.  Second, there might be an efficiency issue, because it simply 
arranges path for every undiscovered grid.  These two prob-
lems are to be dealt with in the following section. 

IV. PATH FINDING 

1. Path Finding Algorithms 

There are three well-known algorithms that can be used to 
find an optimal path: Dijkstra, Ant and A* algorithm. 

Dijkstra is a greedy algorithm that solves a single-source 
shortest-path problem when all edges have non-negative weights.  
It starts at the source vertex, S.  And grows a tree, T, that ulti- 
mately spans all vertices reachable from S.  Vertices are added to 
T in order of distance i.e., first S, then the vertex closest to S, then 
the next closest, and so on.  The original Dijkstra runs in time 
O(V2), where V is the number of nodes in the tree.  This algo- 
rithm can be improved by min-priority queue (implemented by 
a Fibonacci heap) and running in O(E  VlogV), where E 
is the number of edges.  This algorithm guarantees to find the op- 
timal path, However, the performance is poorer than A* algorithm 
(next section), which has the worst case O(E).  Fig. 13 illustrates 
the search path of Dijkstra and A*. 

On the other hand, the original idea of ant algorithm comes 
from observing the exploitation of food resources among ants, 
in which antsʼ individually limited cognitive abilities have col- 
lectively been able to find the shortest path between a food source 
and the nest.  The first ant finds the food source, via any way, then 
returns to the nest, leaving behind a trail pheromone.  Ants in- 
discriminately follow any possible ways, but the strengthening of 
the runway makes it more attractive as the shortest route.  Ants 
take the shortest route; long portions of other ways lose their 
trail pheromones.  According to LW Santoso’s study, ant algo- 
rithm is less stable and requires a long time to do a search. 

2. Conventional A* Algorithm 

A* uses the following function to estimate the cost of a 
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possible path: 

  (10) f(n) = g(n) + h(n)

It divides the path into two parts, and evaluates these two 
parts separately: 

 
1. g(n): The cost from the start point to current node. 
2. h(n): The estimated cost from current node to the goal. 

 
The separating point is called a node, we now keep the total 

estimated cost f(n) on this node. 
The conventional A* has the following pseudo-code.  We usu-

ally use OPEN and CLOSED list to record nodes.  The OPEN 
list contains those nodes that are candidates for examining.  
Initially, the OPEN list contains only one element: the starting 
point.  The CLOSE list contains those nodes that have already 
been examined.  Initially, the CLOSE list is empty. 

 
1 Add START to OPEN list 
2 while (OPEN is not empty) 
3 { 
4 Get node n from OPEN that has the lowest f(n) 
5 move n to CLOSED 
6 
7 if (n is GOAL) 
8 return path 
9 
10 for (each n' == CanMove (n, direction)) 
11 { 
12 g(n') = g(n) + MOVECOST 
13 h(n') = Manhattan(n') 
14 f(n') = g(n') + h(n') 
15 
16 if (n' in OPEN || CLOSED list) 
17 if (new n' is not better) 
18 continue 
19 remove n' from OPEN 
20 remove n' from CLOSED 
21 
22 add n' to OPEN 
23 set n as a parent of n' 
24 } 
25 } 
26 if we get to here, then there is No Solution. 

 
According to the pseudo-code, when GOAL is moved to 

CLOSED list, A* returns the path.  But what is this “path” ? To 
understand this “path”, let us take a look on line 23.  Here we 
learned each node in A* has its parent.  When GOAL is moved 
to CLOSED list, it means we can find GOAL’s parent (and the 
parent of GOAL’s parent, and so on).  Just move along with par-
ents in CLOSED list, we eventually have the whole return path. 

Use A* algorithm, we should be able to find a valid path for the 
robot.  This solves the first problem we have mentioned earlier. 

To solve the second problem, we look closer to the pseudo- 
code again.  That “No Solution” on the last line means: “To make 
sure there is no valid path for the robot, we have to walk through 
the whole algorithm”. 

“No Solution” is the worst case of A*.  In Fig. 12, The grids 
in the hatched area are all instances of A* worst case.  They are 
the reason why our exploration method encounters an efficiency 
problem.  So, the idea of solving this efficiency problem is to 
reduce the incidence of A* worst case. 

3. Isolated Area & Flood-Fill Algorithm 

To reduce the incidence of A* worst case.  We look care-
fully at Fig. 12 again, the hatched area is isolated to the robot.  
If we visit all the grid cells in hatched area one by one, it will 
be a time-consuming task.  For example, if there are 1000 grid 
cells in hatched area, the robot will use A* algorithm on all 
1000 cells, which takes a lot of time. 

In order to solve this problem, we find , in Fig. 12, all the 
grid cells in hatched area are all adjacent to each others.  If we 
can apply flood-fill algorithm (George Law, 2013) on this area, 
it will be able to gather all the cells in the same area together.  
And then, no matter how many cells in the hatched area are, 
the robot only has to use A* algorithm once, which takes time 
O(1). 

Therefore, whenever the robot find an unreachable (No So- 
lution) grid, flood-fill algorithm is applied to mark all grids in 
the same area.  In this way, no extra cost on these grids is spent. 

4. Lazy Evaluation 

In addition to flood-fill algorithm, the A* can also be improved 
by using lazy evaluation.  Consider the situation in Fig. 14(a), 
the robot is in a room, and the moving target is marked with a 
cross.  Now, is it efficient to evaluate the whole path? The an- 
swer is obviously not.  The latter part of the path has a good chance 
to be located behind a wall.  If we can cut short the path, it will 
speed up the A* path-finding process. 

Consequently, we modify the A* pseudo-code as follows: 
 

 
4 Get node n from OPEN that has the lowest f(n) 
5 move n to CLOSED 
6 
7 if (n is GOAL  UNCERTAIN_CELL encountered) 
8 return path 
 

 
The difference between the conventional A* and the modified 

A* is the UNCERTAIN_CELL, which means whenever A* 
encounters an “Uncertain cell”, the A* evaluating process stops. 

But why? According to the pseudo-code of A*, the time com- 
plexity of A* increases with the length of the path.  The longer 
the path, the more time A* takes.  In the case of Fig. 14(a), the 
latter part of the path has a good chance to be located behind a 
wall.  Return path on the half way such as Fig. 14(b) is a time- 
saving strategy.  Even if the latter part of the path is not located  
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(a) (b)  
Fig. 14.  Lazy evaluation of A*. 

 
 

wifi

U
SB

 
Fig. 15.  Robot hardware setting. 

 
 

 
Fig. 16.  Indoor space and initial condition of the robot. 

 
 

behind a wall, we can always call another A* process and con- 
struct another path. 

V. EXPERIMENTAL RESULTS 

In this section, the above-mentioned algorithms are imple- 
mented to create an autonomous robot.  The hardware of the 
robot system, as shown in Fig. 15, includes a Festo Robotino 
robot, a Hokuyo laser rangefinder (sensor), and a laptop com- 
puter (controller).  Note that the Robotino is an omnidirectional 
robot, itʼs easier to move in all directions; and the rangefinder 
can scan an angle of 240 with detection distance between 2 cm 
to 4 m. 

This experiment took place in a room with obstacles, as shown 
in Fig. 16.  The room is about 35 square meters.  The cross sign 
marks the initial position of the robot.  The robot was facing to 
the right from the beginning, it could only see a small area in 
the front initially. 

According to the map exploration logic, The robot searched 
for the nearest uncertain cell, which was located behind the robot 
(denoted by a yellow plus sign).  The robot turned over, as shown 
in Fig. 17, and discovered some extra area. 

The second step, the robot searched for the next uncertain 
cell in the map.  This time, the uncertain cell was located on the 
south of the robot.  So the robot used A* algorithm, and found a 
valid path to the cell.  As shown in Fig. 18.  In the first two steps,  

 
Fig. 17.  First step of robot navigation. 

 
 

 
Fig. 18.  Second step of robot navigation. 

 
 

 
Fig. 19.  Third step of robot navigation. 

 
 

 
Fig. 20.  Fourth step of robot navigation. 

 
 

 
Fig. 21.  Fifth step of robot navigation. 

 
 

there was no obstacles in the way. 
Next step (see Fig. 19), the robot found an uncertain cell on 

the right.  However, according to lazy evaluation logic, the 
latter part of the path was located on the unknown area, we donʼt 
have to complete the whole A* process.  So the path was cut in 
half to save time. 

The lazy evaluation speed-up strategy also affected the next 
two steps, as shown in Figs. 20 and 21. 
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Fig. 22.  Sixth step of robot navigation. 

 

 

 
Fig. 23.  Seventh step of robot navigation. 

 
 
Now, the robot found an uncertain cell on the right, but it 

couldn’t find a valid path to reach it, as shown in Fig. 22.  There- 
fore, the flood fill was used to mark the whole isolated area, 
and no more cost was spent on this area ever since. 

In the final step, there was a small area on the center that was 
out-of-reach too, as shown in Fig. 23.  Flood fill algorithm was 
employed again to mark this area as well, thus completing the 
construction of the 2-D map. 

VI. DISCUSSION AND CONCLUSION 

In this paper, integration of different algorithms was carried 
out for building an autonomous robot for navigating an unknown 
environment.  First of all, ICP algorithm was used for map build-
ing and localization.  And then, a map exploration method was 
proposed, it uses the flood fill algorithm to eliminate unreachable 
area for reducing the computational time.  Furthermore, the con- 
ventional A* algorithm was improved by using lazy evaluation. 

Without flood fill and lazy evaluation strategies, the experi-
ment took more than 30 minutes to finish.  With flood fill and lazy 
evaluation, the worst case was blocked out and the process was ac- 
celerated.  In this experiment, it took less than 3 minutes to do 
the same job. 

By comparing Fig. 16 and Fig. 23, the room contour is depicted 
well by the robot, except for some corners that are too narrow 
for the robot to get through.  Compare this study with another 
similar one (Bao, 2007), which uses EKF SLAM (see Fig. 24). 

The room size is similar to ours.  The difficulties of using EKF 
SLAM come from the existence of uncertainties in a real environ- 
ment such as sensor noises.  Our study uses another approach- 
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Fig. 24.  Map building result with EKF SLAM. 

 
 

Iterative Closest Point (ICP) for building map and localization.  
Together with efficient path finding and map exploration algo-
rithms, an autonomous robot capable of navigating an unknown 
indoor environment with random obstacles can be developed. 
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