
Volume 25 Issue 1 Article 4

EXPLORATION METHOD IMPROVEMENTS OF AUTONOMOUS ROBOT FOR EXPLORATION METHOD IMPROVEMENTS OF AUTONOMOUS ROBOT FOR
A 2-D ENVIRONMENT NAVIGATION A 2-D ENVIRONMENT NAVIGATION

Nien-Yu Chen
Institute of Mechatronic Engineering, National Taipei University of Technology, Taipei City, Taiwan, R.O.C.,
optimal_uu@hotmail.com

Jinsiang Shaw
Institute of Mechatronic Engineering, National Taipei University of Technology, Taipei City, Taiwan, R.O.C.

Hsien-I Lin
Institute of Automation Technology, National Taipei University of Technology, Taipei City, Taiwan, R.O.C.

Follow this and additional works at: https://jmstt.ntou.edu.tw/journal

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Chen, Nien-Yu; Shaw, Jinsiang; and Lin, Hsien-I (2017) "EXPLORATION METHOD IMPROVEMENTS OF AUTONOMOUS
ROBOT FOR A 2-D ENVIRONMENT NAVIGATION," Journal of Marine Science and Technology: Vol. 25: Iss. 1, Article 4.
DOI: 10.6119/JMST-016-0719-1
Available at: https://jmstt.ntou.edu.tw/journal/vol25/iss1/4

This Research Article is brought to you for free and open access by Journal of Marine Science and Technology. It has been
accepted for inclusion in Journal of Marine Science and Technology by an authorized editor of Journal of Marine Science and
Technology.

https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/vol25
https://jmstt.ntou.edu.tw/journal/vol25/iss1
https://jmstt.ntou.edu.tw/journal/vol25/iss1/4
https://jmstt.ntou.edu.tw/journal?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol25%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol25%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jmstt.ntou.edu.tw/journal/vol25/iss1/4?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol25%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages

EXPLORATION METHOD IMPROVEMENTS OF AUTONOMOUS ROBOT FOR A 2-D EXPLORATION METHOD IMPROVEMENTS OF AUTONOMOUS ROBOT FOR A 2-D
ENVIRONMENT NAVIGATION ENVIRONMENT NAVIGATION

Acknowledgements Acknowledgements
This work was supported by Minister of Science and Technology, Taiwan, under grant number NSC
102-2221-E-027-039.

This research article is available in Journal of Marine Science and Technology: https://jmstt.ntou.edu.tw/journal/
vol25/iss1/4

https://jmstt.ntou.edu.tw/journal/vol25/iss1/4
https://jmstt.ntou.edu.tw/journal/vol25/iss1/4

34 Journal of Marine Science and Technology, Vol. 25, No. 1, pp. 34-42 (2017)
DOI: 10.6119/JMST-016-0719-1

EXPLORATION METHOD IMPROVEMENTS
OF AUTONOMOUS ROBOT

FOR A 2-D ENVIRONMENT NAVIGATION

Nien-Yu Chen1, Jinsiang Shaw1, and Hsien-I Lin2

Key words: autonomous robot, iterative closest point, path planning,
robot navigation.

ABSTRACT

This paper presents a method for integrating different algo-
rithms for building an autonomous robot. The developed robot
has the ability to construct the 2-D map of an unknown environ-
ment, localize itself in the map, explore undiscovered area, and
path finding. In order to efficiently explore a map, we propose
an exploration method. Additionally, improvements of conven-
tional A* algorithm are proposed. Experimental results show
that the developed robot is capable of navigating an unknown
indoor environment with random obstacles.

I. INTRODUCTION

Recently autonomous robot systems are gaining much attention
in our daily life. Cleaning and surveillance robots are revealed
to the public. For example, iRobot roomba robotic vacuum cleaner
is a great success of the development of autonomous robot sys-
tems (Forlizzi and DiSalvo, 2006). DARPA grand challenge-
autonomous vehicles (Chen et al., 2004) and Google driverless
car project (Levinson et al., 2011) showed that autonomous robot
cars drove in cities. The U.S. states of California and Nevada
permitted the operation of autonomous cars in 2012.

For autonomous robots, the ability to perceive environments is
vital. The difficulties in acquiring this ability include map build-
ing, localization, path finding, and map exploration algorithms.
The first two are usually solved by SLAM methods (Smith and
Cheeseman, 1986a; Smith and Cheeseman, 1986b; Thompson
et al., 2011; Tong et al., 2013). There are four common algo-
rithms for SLAM: EKF, SEIF, FastSLAM, and GraphSLAM.

Sensor

Robot
Actuator

Robot
Control A*

Main Frame

ICP

Map &
Robot Pose

Sensory
Data

Read

Map Exploration
Logic

Re
ad

Local View

Path Finding

Lo
ca

l V
ie

w

Fig. 1. System architecture.

Here we use another much simpler approach-Iterative Closest

Point (ICP) (Besl and Mckay, 1992) for building map and local-
ization. Together with efficient path finding and map exploration
algorithms to be discussed, an autonomous robot capable of na-
vigating an unknown indoor environment with random obstacles
can be developed.

Block diagram of the developed robot system is illustrated
in Fig. 1. There are three major algorithms in this system-ICP,
A* and map exploration logic. A* is for path finding, and map
exploration logic is for robot navigation (Kurabayashi et al.,
1996; Koenig et al., 2001; Fang et al., 2005). In this paper,
each of these three algorithms will be addressed in detail in the
following sections. Finally, experiments will be carried out to
show effectiveness of the algorithms for a 2-D environment
navigation.

II. LOCALIZATION AND MAPPING

1. Data Representation

The first step of building an autonomous robot is to decide
the representation method of its map data (Elfes, 1989; Kuipers
and Byun, 1991; Bandera et al., 2001; Guivant et al., 2002;
Schroter et al., 2004). In this paper, we use occupancy grid map.
It presents maps in grids. Each grid keeps the probability of
being occupied by obstacles, as illustrated in Fig. 2. All grids
initialize its probability to be 0.5, and

Paper submitted 10/03/14; revised 02/15/16; accepted 07/19/16. Author for
correspondence: Nien-Yu Chen (e-mail: optimal_uu@hotmail.com).
1 Institute of Mechatronic Engineering, National Taipei University of Tech-
nology, Taipei City, Taiwan, R.O.C.

2 Institute of Automation Technology, National Taipei University of Technology,
Taipei City, Taiwan, R.O.C.

 N.-Y. Chen et al.: Exploration Method Improvements of Autonomous Robot for a 2-D Environment Navigation 35

…

…

m

n

Fig. 2. A 2-D occupancy grid map.

8.00
Y

6.00

4.00

2.00

-2.00

ref_map

robot pose

-1.00

-4.00

-6.00

-8.00

8.00

Y

6.00

4.00

2.00

-2.00

0.00
5.00

ref_map

robot pose

11.00 17.00-1.00

-4.00

-6.00

-8.00

0.00
5.00

11.00
17.00

Fig. 3. Rigid alignment.

 If probability < LOW: occupied (black area in Fig. 2)
 If probability > HIGH: empty (white area)
 If LOW  probability  HIGH: uncertain cell (gray)

where LOW and HIGH  (0, 1) are prescribed thresholds.

2. ICP

Once we know how to represent a map. The next step is to

(b)(a)
Fig. 4. Meshes with features.

construct our environment map from sensory data. This con-
structing problem can be considered as a rigid alignment (point set
registration) problem. For example, suppose we have two sets of
sensory data P and Q. The data in P and Q are partially the same,
which means they have some identical points, as illustrated in
Fig. 3. We can match these two data sets as long as we can find
the rotation and translation between P and Q.

ICP takes six stages to find the rotation and translation:

 Down sampling
 Matching
 Weighting
 Rejection
 Building error function
 Minimizing the error function

1) Down Sampling

When Besl proposed the very first ICP, he used all available
points in both meshes. However, the performance hits its limit
when the number of points grows. So, another two common
sampling strategies were proposed:

 Random sampling (Masuda et al., 1996)
 Uniform subsampling (Turk and Levoy, 1994)

Radom sampling reduces the number of point simply by ran-

dom selection. And Uniform subsampling selects points uniformly
across the buckets. Although these two strategies reduce the num-
ber of points, they donʼt consider the feature of meshes. For ex-
ample, Fig. 4(b) has fewer features than in Fig. 4(a), random
and uniform sampling methods might fail in Fig. 4(b) by missing
features. And this is why normal-space sampling (Rusinkiewicz,
2001) and intensity sampling (Weik, 1997) were proposed.

The idea of normal-space sampling is choosing points such
that the distribution of normals among selected points is as large
as possible. Intensity sampling, on the other hand, has the selec-
tion of points with high intensity gradient. Both of these strategies
consider the features of meshes.

No matter what strategy you use, you can choose to exert the
sampling on only one mesh, or on both meshes. Sampling on both
meshes might help a little on the performance, but not much
(Rusinkiewicz, 2001).

2) Matching

The second stage of ICP is to find the corresponding points
between meshes. In this stage, The original ICP (Besl, 1992)
simply uses the closest point as the correspondence. For in-
stance, Fig. 5(a) presents two meshes, and Fig. 5(b) shows the
result of finding closest points.

36 Journal of Marine Science and Technology, Vol. 25, No. 1 (2017)

(a) (b)
Fig. 5. Finding closest point.

p1 q1

Fig. 6. Normal Shooting.

(a) (b)
Fig. 7. Reverse calibration.

There are two issues in this closest point finding strategy.

First, the closest point is not always the real correspondence.
You can tell this from Fig. 5(b). Second, this strategy is very
time-consuming. The cost is O (NM), where N and M represents
the number of points in both meshes. Therefore, we usually use
k-d tree to accelerate the process. K-d tree separates mesh spaces
into several individual dimensions. In this way, we only find cor-
responding point in the same dimension, which increases the per-
formance to O (logN).

There are some other matching strategies:

 Normal shooting (Chen, 1991)
 Reverse calibration (Blais, 1995)

Normal shooting finds the intersection of the source point’s

normal with the destination surface. For example, in the scene
of Fig. 6, p1 finds its correspondence, q1, along its normal.

Reverse calibration, Fig. 7(a), on the other hand, projects
the source point onto the destination mesh. This method has a
remarkable performance, in constant time, because it uses pro-
jection to find correspondences. Another advantage is this me-
thod doesnʼt easily be affected by noise. For instance, Fig. 7(b)
presents a scene with noise in the middle. The original closest
point method will generate a lot of incorrect correspondences
because the noise has a shorter distance to the source points.

Any of the above strategies can also use restrictions in ad-
dition, such as:

 Angle between normals (Pulli, 1999)

For example, Fig. 8(a) is a case that uses ordinary closest point

to find correspondences. Fig. 8(b), also uses ordinary closest

(a) (b)
Fig. 8. Matching with restriction of angle between normals.

Fig. 9. Rejection of boundaries.

point strategy, but it only matches correspondence when the
source and the destination have normals within 20 degrees.

3) Weighting

After matching, we might also assign different weights to
corresponding point pairs. There are some available weighting
strategies:

 Constant weight
 Weighting based on distance
 Weighting based on normals

The second weighting strategy uses the following formula to

calculate the weights:

 max

max

(,)Dist Dist p q
Weight

Dist




And the third strategy uses:

 1 2Weight n n 

where n1 and n2 represent the normals of the source point and
destination point.

The idea of these two strategies is: The greater distance (or dif-
ference between normals), the less accuracy. However, weighting
doesn’t affect the speed of convergence that much. The choice
of a weighting strategy should be based on the accuracy.

4) Rejection

The purpose of this stage is to eliminate the impact of noise
and incorrect corresponding pairs. An easy way to do this is to
reject pairs that have distance more than a given threshold. Or,
you can reject the worst n% of pairs based on the distance (Pulli,
1999). However, this stage doesn’t improve the speed of con-
vergence either. The affection of this stage is majorly on the ac-
curacy.

An interesting strategy of this stage is to reject boundaries
on meshes (Turk, 1994). Since boundaries usually cause lots of
incorrect pairs, as in Fig. 9, this strategy is usually recommended.

 N.-Y. Chen et al.: Exploration Method Improvements of Autonomous Robot for a 2-D Environment Navigation 37

5) Building and Minimizing Error Function

The classic ICP has the following error function:

 (1) 2

1

| ()
N

i i
i

E Q RP T


   |

where R denotes the rotation matrix, and T denotes the trans-
lation matrix.

Since Eq. (1) has two unknowns (R and T, it is impossible
to solve an equation with two unknowns). So we have to re-
write Eq. (1) by the following steps:

First, find the centers of P and Q:

 1

1

1

1

N

i
i

N

i
i

p P
N

q Q
N










 




 (2)

and then shift P and Q to the origin of coordinates:

 i i

i i

p P p

q Q q

  
   

 (3)

after shifting P and Q to the origin, we can rewrite Eq. (1):

 (4) 2

1

|
N

i i
i

E q Rp


   |

')t





i

Compare Eq. (1) to Eq. (4), we can see the new Eq. (4) has
only one (rotation) unknown in it, which is solvable:

 (5)

1

1

1

() ()

('

(2)

N
t

i i i i
i

N
t t t t t t

i i i i i i i i
i

N
t t t

i i i i i i
i

E q Rp q Rp

q q p R Rp q Rp q R p

q q p p q Rp







     

        

       







To minimize this error function (5), we only have to maxi-

mize the later part () after minus sign. t
iq Rp

In order to maximize in Eq. (5), let t
iq Rp

 (6)
1

()
N

t
i

i

Trace RH q Rp


 

where

1

N
t

i i
i

H p q


   (7)

(a) (b)
Fig. 10. Situation 1.

In this way, we switch the original minimizing problem to

another question: “How to maximize Trace (RH)?”
Thus, let us find R so that RH is symmetric positive define.

Then we know for sure that Trace (RH) is maximal. If H =
tU V is the SVD (Singular Value Decomposition), we define

 . (8) tR VU

Now let us check RH:

 (9) ()()t tRH UV U V V V    ,t

which is a symmetric matrix and its eigenvalues are positive,
meaning that RH is symmetric positive define.

Consequently, we can find the translation matrix T in Eq. (1),
because:

 T q Rp  (10)

After matching P and Q, we have a basic map on our own.
Moreover, by calculating the rotation and translation, we get
the position and orientation of the robot too, which means we
solved the mapping and localization problems simultaneously.

III. MAP EXPLORATION

Using ICP gives the robot the ability to draw a map and
localize itself. But the robot still doesnʼt know how to navigate
through the environment yet. This is why we need a map ex-
ploration logic.

To explore a map, we first assume the robot is located in a 2-D
occupancy grid map. Each grid in the map has three possible
statues:

(1) Occupied by obstacle. (Black area in Fig. 10)
(2) Not occupied (Empty). (White area in Fig. 10)
(3) Uncertain. (Gray area in Fig. 10)

Of course, all the grid cells in the map are initialized to be

“Uncertain”, and the robot has at least one sensor (such as
camera or infrared, Fig. 15) to “see”.

38 Journal of Marine Science and Technology, Vol. 25, No. 1 (2017)

(a) (b)
Fig. 11. Situation 2.

Fig. 12. Situation 3.

Now, to explore this map, we constantly make the robot search

for the nearest “Uncertain” cell. If an uncertain cell is found, we
use a path-finding algorithm to find a valid path, and then make
the robot move along the path.

As long as we repeatedly do the “search-path finding-move”
action, the robot will eventually explore the whole environment.
However, there are three possibilities for finding a path:

1. Path found  Robot move  Move successfully.
2. Path found  Robot move  Robot can’t move (obstacle

found)
3. No available path.

1. Situation 1

Suppose the robot is in the middle of a map, illustrated as
Fig. 10(a). The nearest cell (denoted by a red cross) is on the
upper-left of the robot, and there is a path to this target cell.
Moving the robot will be able to update the map on the upper-
left corner, illustrated as Fig. 10(b).

2. Situation 2

Illustrated as Fig. 11. When robot is moving, there is a chance
we might find a new obstacle on the way. If so, we have to stop
the robot and rearrange a new path for the robot.

3. Situation 3

In this situation, the target cell is unreachable to the robot.
As illustrated in Fig. 12, the hatched area is isolated to the
robot, there is no path for the robot to move.

As we can see, this exploration method is simple. As long
as we handle these three situations carefully, the robot will be
able to explore the whole environment eventually.

 Dijkstra A*

N
o

ob
st

ic
al

e

W
it

h
ob

st
ic

al
es

Fig. 13. Dijkstra vs. A*.

However, there are two other problems here. First, this me-

thod needs a path finding algorithm for arranging the moving
path. Second, there might be an efficiency issue, because it simply
arranges path for every undiscovered grid. These two prob-
lems are to be dealt with in the following section.

IV. PATH FINDING

1. Path Finding Algorithms

There are three well-known algorithms that can be used to
find an optimal path: Dijkstra, Ant and A* algorithm.

Dijkstra is a greedy algorithm that solves a single-source
shortest-path problem when all edges have non-negative weights.
It starts at the source vertex, S. And grows a tree, T, that ulti-
mately spans all vertices reachable from S. Vertices are added to
T in order of distance i.e., first S, then the vertex closest to S, then
the next closest, and so on. The original Dijkstra runs in time
O(V2), where V is the number of nodes in the tree. This algo-
rithm can be improved by min-priority queue (implemented by
a Fibonacci heap) and running in O(E  VlogV), where E
is the number of edges. This algorithm guarantees to find the op-
timal path, However, the performance is poorer than A* algorithm
(next section), which has the worst case O(E). Fig. 13 illustrates
the search path of Dijkstra and A*.

On the other hand, the original idea of ant algorithm comes
from observing the exploitation of food resources among ants,
in which antsʼ individually limited cognitive abilities have col-
lectively been able to find the shortest path between a food source
and the nest. The first ant finds the food source, via any way, then
returns to the nest, leaving behind a trail pheromone. Ants in-
discriminately follow any possible ways, but the strengthening of
the runway makes it more attractive as the shortest route. Ants
take the shortest route; long portions of other ways lose their
trail pheromones. According to LW Santoso’s study, ant algo-
rithm is less stable and requires a long time to do a search.

2. Conventional A* Algorithm

A* uses the following function to estimate the cost of a

 N.-Y. Chen et al.: Exploration Method Improvements of Autonomous Robot for a 2-D Environment Navigation 39

possible path:

 (10) f(n) = g(n) + h(n)

It divides the path into two parts, and evaluates these two
parts separately:

1. g(n): The cost from the start point to current node.
2. h(n): The estimated cost from current node to the goal.

The separating point is called a node, we now keep the total

estimated cost f(n) on this node.
The conventional A* has the following pseudo-code. We usu-

ally use OPEN and CLOSED list to record nodes. The OPEN
list contains those nodes that are candidates for examining.
Initially, the OPEN list contains only one element: the starting
point. The CLOSE list contains those nodes that have already
been examined. Initially, the CLOSE list is empty.

1 Add START to OPEN list
2 while (OPEN is not empty)
3 {
4 Get node n from OPEN that has the lowest f(n)
5 move n to CLOSED
6
7 if (n is GOAL)
8 return path
9
10 for (each n' == CanMove (n, direction))
11 {
12 g(n') = g(n) + MOVECOST
13 h(n') = Manhattan(n')
14 f(n') = g(n') + h(n')
15
16 if (n' in OPEN || CLOSED list)
17 if (new n' is not better)
18 continue
19 remove n' from OPEN
20 remove n' from CLOSED
21
22 add n' to OPEN
23 set n as a parent of n'
24 }
25 }
26 if we get to here, then there is No Solution.

According to the pseudo-code, when GOAL is moved to

CLOSED list, A* returns the path. But what is this “path” ? To
understand this “path”, let us take a look on line 23. Here we
learned each node in A* has its parent. When GOAL is moved
to CLOSED list, it means we can find GOAL’s parent (and the
parent of GOAL’s parent, and so on). Just move along with par-
ents in CLOSED list, we eventually have the whole return path.

Use A* algorithm, we should be able to find a valid path for the
robot. This solves the first problem we have mentioned earlier.

To solve the second problem, we look closer to the pseudo-
code again. That “No Solution” on the last line means: “To make
sure there is no valid path for the robot, we have to walk through
the whole algorithm”.

“No Solution” is the worst case of A*. In Fig. 12, The grids
in the hatched area are all instances of A* worst case. They are
the reason why our exploration method encounters an efficiency
problem. So, the idea of solving this efficiency problem is to
reduce the incidence of A* worst case.

3. Isolated Area & Flood-Fill Algorithm

To reduce the incidence of A* worst case. We look care-
fully at Fig. 12 again, the hatched area is isolated to the robot.
If we visit all the grid cells in hatched area one by one, it will
be a time-consuming task. For example, if there are 1000 grid
cells in hatched area, the robot will use A* algorithm on all
1000 cells, which takes a lot of time.

In order to solve this problem, we find , in Fig. 12, all the
grid cells in hatched area are all adjacent to each others. If we
can apply flood-fill algorithm (George Law, 2013) on this area,
it will be able to gather all the cells in the same area together.
And then, no matter how many cells in the hatched area are,
the robot only has to use A* algorithm once, which takes time
O(1).

Therefore, whenever the robot find an unreachable (No So-
lution) grid, flood-fill algorithm is applied to mark all grids in
the same area. In this way, no extra cost on these grids is spent.

4. Lazy Evaluation

In addition to flood-fill algorithm, the A* can also be improved
by using lazy evaluation. Consider the situation in Fig. 14(a),
the robot is in a room, and the moving target is marked with a
cross. Now, is it efficient to evaluate the whole path? The an-
swer is obviously not. The latter part of the path has a good chance
to be located behind a wall. If we can cut short the path, it will
speed up the A* path-finding process.

Consequently, we modify the A* pseudo-code as follows:


4 Get node n from OPEN that has the lowest f(n)
5 move n to CLOSED
6
7 if (n is GOAL  UNCERTAIN_CELL encountered)
8 return path


The difference between the conventional A* and the modified

A* is the UNCERTAIN_CELL, which means whenever A*
encounters an “Uncertain cell”, the A* evaluating process stops.

But why? According to the pseudo-code of A*, the time com-
plexity of A* increases with the length of the path. The longer
the path, the more time A* takes. In the case of Fig. 14(a), the
latter part of the path has a good chance to be located behind a
wall. Return path on the half way such as Fig. 14(b) is a time-
saving strategy. Even if the latter part of the path is not located

40 Journal of Marine Science and Technology, Vol. 25, No. 1 (2017)

(a) (b)
Fig. 14. Lazy evaluation of A*.

wifi

U
SB

Fig. 15. Robot hardware setting.

Fig. 16. Indoor space and initial condition of the robot.

behind a wall, we can always call another A* process and con-
struct another path.

V. EXPERIMENTAL RESULTS

In this section, the above-mentioned algorithms are imple-
mented to create an autonomous robot. The hardware of the
robot system, as shown in Fig. 15, includes a Festo Robotino
robot, a Hokuyo laser rangefinder (sensor), and a laptop com-
puter (controller). Note that the Robotino is an omnidirectional
robot, itʼs easier to move in all directions; and the rangefinder
can scan an angle of 240 with detection distance between 2 cm
to 4 m.

This experiment took place in a room with obstacles, as shown
in Fig. 16. The room is about 35 square meters. The cross sign
marks the initial position of the robot. The robot was facing to
the right from the beginning, it could only see a small area in
the front initially.

According to the map exploration logic, The robot searched
for the nearest uncertain cell, which was located behind the robot
(denoted by a yellow plus sign). The robot turned over, as shown
in Fig. 17, and discovered some extra area.

The second step, the robot searched for the next uncertain
cell in the map. This time, the uncertain cell was located on the
south of the robot. So the robot used A* algorithm, and found a
valid path to the cell. As shown in Fig. 18. In the first two steps,

Fig. 17. First step of robot navigation.

Fig. 18. Second step of robot navigation.

Fig. 19. Third step of robot navigation.

Fig. 20. Fourth step of robot navigation.

Fig. 21. Fifth step of robot navigation.

there was no obstacles in the way.
Next step (see Fig. 19), the robot found an uncertain cell on

the right. However, according to lazy evaluation logic, the
latter part of the path was located on the unknown area, we donʼt
have to complete the whole A* process. So the path was cut in
half to save time.

The lazy evaluation speed-up strategy also affected the next
two steps, as shown in Figs. 20 and 21.

 N.-Y. Chen et al.: Exploration Method Improvements of Autonomous Robot for a 2-D Environment Navigation 41

Fig. 22. Sixth step of robot navigation.

Fig. 23. Seventh step of robot navigation.

Now, the robot found an uncertain cell on the right, but it

couldn’t find a valid path to reach it, as shown in Fig. 22. There-
fore, the flood fill was used to mark the whole isolated area,
and no more cost was spent on this area ever since.

In the final step, there was a small area on the center that was
out-of-reach too, as shown in Fig. 23. Flood fill algorithm was
employed again to mark this area as well, thus completing the
construction of the 2-D map.

VI. DISCUSSION AND CONCLUSION

In this paper, integration of different algorithms was carried
out for building an autonomous robot for navigating an unknown
environment. First of all, ICP algorithm was used for map build-
ing and localization. And then, a map exploration method was
proposed, it uses the flood fill algorithm to eliminate unreachable
area for reducing the computational time. Furthermore, the con-
ventional A* algorithm was improved by using lazy evaluation.

Without flood fill and lazy evaluation strategies, the experi-
ment took more than 30 minutes to finish. With flood fill and lazy
evaluation, the worst case was blocked out and the process was ac-
celerated. In this experiment, it took less than 3 minutes to do
the same job.

By comparing Fig. 16 and Fig. 23, the room contour is depicted
well by the robot, except for some corners that are too narrow
for the robot to get through. Compare this study with another
similar one (Bao, 2007), which uses EKF SLAM (see Fig. 24).

The room size is similar to ours. The difficulties of using EKF
SLAM come from the existence of uncertainties in a real environ-
ment such as sensor noises. Our study uses another approach-

5000

4000

3000

2000

1000

0

-1000

-2000

-3000
-2000 -1000 0 1000 2000 3000 4000 5000
Fig. 24. Map building result with EKF SLAM.

Iterative Closest Point (ICP) for building map and localization.
Together with efficient path finding and map exploration algo-
rithms, an autonomous robot capable of navigating an unknown
indoor environment with random obstacles can be developed.

ACKNOWLEDGEMENTS

This work was supported by Minister of Science and Tech-
nology, Taiwan, under grant number NSC 102-2221-E-027-039.

REFERENCES

Arun, K., T. Huang and S. Blostein (1987). Least-squares fitting of two 3-D
point sets. IEEE Trans. PAMI 9(5), 698-700.

Bandera, A., C. Urdiales and F. Sandoval (2001). An hierarchical approach to
grid based and topological maps integration for autonomous indoor navi-
gation, in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., 883-888.

Bao, J. (2007). Study on geometric map building and robot localization in
unknown indoor environments, Master Thesis, Tianjin University, China.
(in Chinese)

Besl, P. J. and N. D. Mckay (1992). A method for registration of 3-D shapes.
IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2),
239-256.

Blais, G. and M. Levine (1995). Registering multiview range data to create 3D
computer objects. IEEE Transactions on Pattern Analysis and Machine
Intelligence 17, 820-824.

Chen, Q., U. Ozguner and K. Redmill (2004). Ohio state university at the 2004
darpa grand challenge: developing a completely autonomous vehicle. IEEE
Intell. Syst. 19(5), 8-11.

Chen, Y. and G. Medioni (1991). Object modeling by registration of multiple
range images. IEEE International Conference on Robotics and Automation
3, 2724-2729.

Elfes, A. (1989). Using occupancy grids for mobile robot perception and na-
vigation, Computer 22(6), 46-57.

42 Journal of Marine Science and Technology, Vol. 25, No. 1 (2017)

Fang, G., G. Dissanayake, N. M. Kwok and S. Huang (2005). Near minimum
time path planning for bearing-only localization and mapping. In Proc.
IEEE/RSJ Int. Conf. Intell. Robot. Syst., 850-855.

Forlizzi, J. and C. DiSalvo (2006). Service robots in the domestic environment:
a study of the roomba vacuum in the home. In Proc. the 1st ACM SIGCHI/
SIGART Human-robot interact., 258-265.

Law, G. (2013). Quantitative comparison of flood fill and modified flood fill
algorithms. International Journal of Computer Theory and Engineering
5(3), 503-508.

Guivant, J. E., F. R. Masson and E. M. Nebot (2002). Simultaneous localiza-
tion and map building using natural features and absolute information. J.
Robot. and Auton. System. 40(31), 79-90.

Horn, B. (1987). Closed-form solution of absolute orientation using unit qua-
ternions. JOSA A. 4(4), 629-642.

Horn, B., H. Hilden and S. Negahdaripour (1988). Closed-form solution of ab-
solute orientation using orthonormal matrices. JOSA A. 5(7), 1127-1135.

Johnson, A. and S. Kang (1997). Registration and integration of textured 3-D
data. Proc. 3DIM, 234-241.

Kurabayashi, D., J. Ota, T. Arai and E. Yoshida (1996). Cooperative sweeping by
multiple mobile robots. In Proc. IEEE Int. Conf. Robot. Autom., 1744-1749.

Koenig, S., B. Szymanski and Y. Liu (2001). Robotic exploration as graph
construction. Ann. of Math. and Artif. Intell. 31, 41-76.

Kuipers, B. and Y. T. Byun (1991). A robot exploration and mapping strategy
based on a semantic hierarchy of spatial representations. J. Robot. and
Auton. System. 8, 47-63.

Levinson, J., J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter,
D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman,
M. Werling and S. Thrun (2011). Towards fully autonomous driving: Sys-
tems and algorithms. In IEEE Intell. Vehicles Symposium (IV), 163-168.

Masuda, T., K. Sakaue and N. Yokoya (1996). Registration and Integration of
Multiple Range Images for 3-D Model Construction, Proc. CVPR 1, 879-883.

Pulli, K. (1999). Multiview registration for large data sets. Second Interna-
tional Conference on 3-D Digital Imaging and Modeling, 160-168.

Rusinkiewicz, S. and M. Levoy (2001). Efficient variants of the ICP algorithm.
Proceedings Third International Conference on 3-D Digital Imaging and
Modeling, 145-152.

Santoso, L. W., A. Setiawan and A. K. Prajogo (2010). Performance analysis
of Dijkstra, A* and ant algorithm for finding optimal path Case Study:
Surabaya City Map, MICEEI 2010, 27-10-2010-28-10-2010.

Schroter, D., T. Weber, M. Beetz and B. Radig (2004). Detection and classi-
fication of gateways for the acquisition of structured robot maps. In Proc.
of 26th Pattern Recognition Symposium (DAGM), 553-561.

Smith, R. C. and P. Cheeseman (1986). On the representation and estimation
of spatial uncertainty. The International Journal of Robotics Research
5(4), 56-68.

Smith, R. C. and P. Cheeseman (1986). Estimating uncertain spatial relation-
ships in robotics. Proceedings of the Second Annual Conference on Un-
certainty in Artificial Intelligence, 435-461.

Thompson, P., E. Nettleton and H. Durrant-Whyte (2011). Distributed large scale
terrain mapping for mining and autonomous systems. Intelligent Robots
and Systems, 4236-4241.

Tong, X., T. Furukawa and H. Durrant-Whyte (2013). Computational modeling
for parallel grid-based recursive Bayesian estimation: parallel computation
using graphics processing unit. Journal of Uncertainty Analysis and Ap-
plications, 1-15.

Turk, G. and M. Levoy (1994). Zippered Polygon Meshes from Range Images.
Proc. SIGGRAPH, 311-318.

Weik, S. (1997). Registration of 3-D partial surface models using luminance
and depth information. International Conference on 3-D Digital Imaging
and Modeling, 93-100.

Walker, M., L. Shao and R. Volz (1991). Estimating 3-D location parameters using
dual number quaternions, CVGIP: Image Understanding 54(3), 358-367.

	EXPLORATION METHOD IMPROVEMENTS OF AUTONOMOUS ROBOT FOR A 2-D ENVIRONMENT NAVIGATION
	Recommended Citation

	EXPLORATION METHOD IMPROVEMENTS OF AUTONOMOUS ROBOT FOR A 2-D ENVIRONMENT NAVIGATION
	Acknowledgements

	JMST

