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ABSTRACT 

There are parameter variation effects that would reduce the 
performance of missile terminal guidance system, e.g., target 
maneuverability, missile autopilot time constant, turning rate 
time constant as well as radome slope error effects.  To solve this 
problem this research proposed a novel neural-fuzzy missile ter- 
minal guidance law by applying three different neural network 
optimization algorithms alternatively in each step, such as the 
Gradient Descent (GD), SCG (Scaled Conjugate Gradient), and 
Levenberg-Marquardt (LM) methods.  Moreover, the missile 
turning rate time constant, autopilot time delay, target maneu-
verability, glint and fading noises, radome slope error, missile 
initial heading error as well as acceleration limits were taken 
into consideration.  On the other hand, performance comparisons 
with the proportional navigation (PN) method for not only the 
lower and higher altitudes but the lateral and head-on intercep- 
tions were also made.  One can see that the miss distances, acce- 
leration commands and engagement times by using the proposed 
guidance law are lower than the other methods for the encoun-
tered engagement conditions. 

I. INTRODUCTION 

In general, the terminal guidance laws of tactical missiles are 
derived on some classical and optimal control techniques (Nesline 
and Zarchan, 1983).  However, they are suffered from parameter 
variations of the system, such as target maneuverability, missile 
autopilot time constant, turning rate time constant and radome 
slope error effect (as defined in Fig. 1).  Although some neural 
and/or fuzzy methods had been proposed for the design, but they 
didn’t consider the missile turning rate time constant and radome 
slope error (Nesline and Zarchan, 1979; Pastrick et al., 1981;  
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Fig. 1.  Definitions of radome slope error. 

 
 

Hull et al., 1985).  From the missile aerodynamic requirement, 
the radome shape is very sharp to reduce the drag, and then the 
target line-of-sight (LOS) refraction error would be increased  
as in Fig. 1, so do the miss distances for larger missile turning rate 
time constants. 

Fig. 2 is the block diagram of a guidance loop, in which  
the missile autopilot time lag, turning rate time delay, initial 
heading error, and radome slope error (R) are considered.  By the 
way in general the seeker tracking and stabilization loop gain 
are 10 and 100, respectively.  To reduce the interception miss 
distance, it is important to design a suitable guidance law for the 
guidance system (Lin and Chau, 1995).  In general, the guidance 
system performances can be adjusted by using proportional 
navigation (PN) method.  In this paper the PN method for two 
cases (lower and higher altitudes) with two scenarios (lateral 
and head-on interceptions) are made in Section 2.  The Scenario 
A is a lateral interception of missile and target, to save the 
simulation time only the noise effect such as the target lateral 
maneuver is considered.  The Scenario B is a head-on inter-
ception of missile and target, since the guidance system can be 
approximated by a linear system, thus one can apply the adjoint 
technique as shown in Fig. 3 to reduce the simulation time (Perry, 
1978; Rajagopalan and Bucco, 2010), to make miss distance 
sensitivity analyses with those effects such as target maneuver, 
glint, and fading noises.  Note the PN guidance law cannot meet 
the miss distance requirement for all the cases and scenarios.  
So a PD-type fuzzy controller (Lin and Mon, 1999; Lin et al., 
2004; Yang et al., 2005) is applied in Section 3 for the guidance 
law design.  It was found that the fuzzy guidance laws cannot 
meet the miss distance requirement for some cases.  Thus a novel 
neural guidance law is proposed in Section 4, the key point to 
reduce the missile performance is to apply several neural opti- 
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Fig. 2.  Block diagram of the guidance loop for simulation. 
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Fig. 3.  Block diagram of the guidance loop for adjoint simulation. 

 
 

mization algorithms alternatively in each step (such as Gradient 
Descent (GD) (Zaheeruddin and Garima, 2006), Levenberg- 
Marquardt (LM) (Hestenes and Stiefel, 1952; 1987; Fletcher, Glunt 

et al., 1993; Gonsalves and Caglyan, 1995; Esfahanipour and 
Aghamiri, 2010) and Scale Conjugate Gradient (SCG) (Shanno, 
1978; Luengo et al., 1996; Chen et al., 2002; Rajagopalan and  
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Fig. 4.  Scenario A: Trajectories of lateral interception. 
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Fig. 5.  Scenario B: Trajectories of head-on interception. 

 
 

Bucco, 2010) methods to deal with the guidance parameter vari- 
ations aforementioned.  Performance comparisons with the PN 
and adjoint simulation method are also made in Sections 4 and 
5.  Note that the miss distances, acceleration commands and 
engagement times obtained by the proposed neural guidance 
law are lower and can meet the requirements for the encountered 
engagement conditions.  Finally, a conclusion is given. 

III. PROBLEM FORMULATION AND 
PERFORMANCE ANALYSES OF 

PROPORTIONAL NAVIGATION LAW 

In general, the two-degree-of-dimension (2D) terminal en- 
gagement geometry of target and missile can be as shown in 
Fig. 4.  The target (missile) initial coordinate and velocity are 
respectively (XTo, YTo), and VTo, ((XMo, YMo) and VMo).  Let the 
target (missile) initial heading angle relative to the initial Line- 
of-Sight (LOS) and maneuver acceleration be respectively as 
To (Mo) and ATo (AMo), respectively.  The velocity of missile 
and target are 600 and 400 m/sec, respectively.  The initial range 
of missile to target is 10 km.  As shown in Fig. 5 the target 
maneuver is assumed to be a unit-step lateral acceleration with 
amplitude AT turning in a direction toward the missile to re-
duce the period of engagement.  The miss distance requirement 
is less than 20 m. 

This paper considers two cases of target maneuverability AT, 
autopilot time constant , missile turning rate time constant 
(A31), and missile acceleration limit (Glim) as follows: 
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Fig. 6. Miss distances by using PN guidance law for all the engagement 

conditions. 

 
 

(1) Case 1: AT = 6 G,  = 0.2 sec, A31 = 0.2 sec, Glim = 24 G. 
(2) Case 2: AT = 4 G,  = 0.5 sec, A31 = 0.5 sec, Glim = 15 G. 

 
Besides, two scenarios are also includes for comparison: 

1. Scenario A: Lateral Interception 

The lateral interception scenario is as shown in Fig. 4.  The 
initial aspect angles (relative to the initial LOS) of target and 
missile are respectively as To (30) and Mo (135). 

2. Scenario B: Head-On Interception 

The head-on interception scenario is as shown in Fig. 5.  The 
initial aspect angles of target (To) and missile (Mo) are respec-
tively 0 and 180, and with 10 m offset distance in the y-axis 
perpendicular to the line-of-sight. 

Fig. 6 shows the miss distances vs. R by using the tradi-
tional PN guidance law for Cases1 and 2 of Scenarios A and B.  
Note that the traditional PN guidance law cannot meet the miss 
distance requirement for all the conditions.  Moreover, the ac- 
celeration commands at sometimes are much larger than the 
acceleration limits as shown in Fig. 7 of Scenario B for Case 2. 

III. PD-TYPE FUZZY CONTROLLER DESIGN 

This section applies an intelligent PD-type fuzzy controller 
for the guidance system design (Gonsalves and Caglayan, 1995; 
Lin and Mon, 1999; Akbari amd Menhaj, 2001; Chen et al., 
2002; Lin et al., 2004).  The fuzzy logic is modeled by human 
linguistic thinking/reasoning and rule-based structure, it is able 
to deal with inexact information in system modeling, identifi- 
cation, and control (Shanno, 1978; Shi and Mizumoto, 2000a, 
2000b).  One of the major advantages of fuzzy logic is that it 
does not require mathematical model.  Its performance, however, 
strongly depends on the selection of the membership functions 
and fuzzy rules, which conventionally are determined by experts 
knowledge or experiences.  But for those systems with practical 
complexity and/or uncertainty, it is often quite difficult to deter- 
mine the adequate fuzzy logic structure, membership functions, 
and logic rules. 
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Fig. 7. Acceleration commands of Scenario B for Case 2 by PN controller. 

 

 
Some algorithms had been proposed to optimize the mem- 

bership functions and fuzzy logic rules of neuro-fuzzy model 
(Zaheeruddin and Garima, 2006; Esfahanipour and Aghamiri, 
2010).  A Takagi-Sugeno-Kang (TSK) type of fuzzy rule and an 
adaptive neuro-fuzzy model for vehicle control was applied for 
stock market analysis (Chen, 2011, 2013; Chen and Wang, 2011).  
The cross reference rules and the membership functions for the 
seeker tracking error E, error rate E (deviations of present E and 
the previous E), and U (control input) are respectively defined 
and listed in Tables 1-4 (Holder and Sylvester, 1990; Jinho and 
Jungsoon, 1995; Zaheeruddin and Garima, 2006) and Fig. 8, the 
outputs of PD-type fuzzy controllers are defined in Table 4, 
where NB, NM, NS, ZE, PS, PM, and PB respectively stand for 
negative big, negative middle, negative small, zero, positive small,  

Table 1.  Cross reference rules of E, ΔE and U in tabular form. 

E, E NB NM NS ZE PS PM PB

NB NB NB NM NM NS NS ZE

NM NB NM NM NS NS ZE PS

NS NM NM NS NS ZE PS PS

ZE NM NS NS ZE PS PS PM

PS NS NS ZE PS PS PM PM

PM NS ZE PS PS PM PM PB

PB ZE PS PS PM PM PB PB

 

 
Table 2.  Membership functions of E in tabular form. 

Item Type Parameter 

Negative Big (NB) Trapmf [-1 -1 -0.75 -0.3] 

Negative Medium (NM) Trimf [-0.75 -0.3 -0.15] 

Negative Small (NS) Trimf [-0.15 -0.1 0] 

Zero (ZE) Trimf [-0.05 0 0.05] 

Positive Big(PB) Trimf [0 0.1 0.15] 

Positive Medium (PM) Trimf [0.15 0.3 0.75] 

Positive Small(PS) Trapmf [0.3 0.75 1 1] 

 

 
Table 3.  Membership functions of ΔE in tabular form. 

Item Type Parameter 

Negative Big (NB) Trapmf [-4.5 -4.5 -3.375 -1.35]

Negative Medium (NM) Trimf [-3.375 -1.35 -0.72] 

Negative Small (NS) Trimf [-1 -0.5 0] 

Zero (ZE) Trimf [-0.25 0 0.25] 

Positive Big(PB) Trimf [0 0.5 1] 

Positive Medium (PM) Trimf [0.72 1.35 3.375] 

Positive Small(PS) Trapmf [1.35 3.375 4.5 4.5] 

 

 
Table 4.  Membership functions of U in tabular form. 

Item Type Parameter 

Negative Big (NB) Trapmf [-12 -12 -9.6 -8.4] 

Negative Medium (NM) Trimf [-9.6 -8.4 -7.2] 

Negative Small (NS) Trimf [-8.4 -4.8 0] 

Zero (ZE) Trimf [-4.8 0 4.8] 

Positive Big(PB) Trimf [0 4.8 8.4] 

Positive Medium (PM) Trimf [7.2 8.4 9.6] 

Positive Small(PS) Trapmf [8.4 9.6 12 12] 

 

 
positive middle, and positive big. 

The guidance performances are obtained by simulation.  By 
trial-and-error the proportion and derivative gains are respec-
tively set to 10 and 0.115 to speed up the response of guidance.   
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Fig. 8. Membership functions of (a) fuzzy controller error (E), (b) error 

rate (ΔE), and (c) output U. 

 
 

Fig. 9 shows the performances, (miss distances vs. radome ab- 
erration error slope) by using PD-fuzzy guidance law.  Note that 
some conditions obtained by the PD-fuzzy guidance law cannot 
meet the miss distance requirement. 

IV. NEURAL CONTROLLER DESIGN 

Artificial Neural Network (ANN) is a method in computing 
where computers try to mimic biological neural networks in 
terms of how they learn and adapt.  The neuron is the building 
block of the human brain, and how they work is exactly what 
ANNs aim at simulation.  Like the network of neurons in the 
human brain, ANNs have the ability to learn through experi-
ence, and also make basic decisions.  This learning process can 
be accomplished through training.  A comprehensive introduction 
to ANNs can be found in the references (Shi and Mizumoto,  
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Fig. 9. Miss distances by using PD-type fuzzy controller for all the engage- 

ment conditions. 

 
 

2000; Cheng, 2008).  The NN is organized in a feed-forward 
manner, each neuron in a given layer is connected to all other 
neurons in the next layer.  No connections are allowed in the 
backward direction.  This type of ANN is made up of a series 
of layers including input, optional hidden and output.  The num- 
ber of input neurons depends on the task at hand.  The number 
of hidden layers is determined by the complexity of the task 
that is to be carried out by the ANN.  The values of the outputs 
are dependent on the factors such as the inputs, weights, thre- 
sholds and the error values.  The number of output neurons is 
determined by what it is intended to be used.  In the feed for-
ward process, an activation function is used to scale the output 
of the NN within the desired ranges.  Moreover, a five-layer 
neuro-fuzzy system was also developed by using Mamdani 
model for vibration control (Zaheeruddin and Garima, 2006).  
Most of the above studies were based on Mamdani or Sugeno 
fuzzy logic model with a number of IF-THEN rules and an-
tecedent/consequent linguistic terms, which may require many 
computer times for real time operations (Gerdhenson, 2003; 
Cheng, 2008). 

In practice, using only one hidden layer and a reasonable 
number of neurons would be able to estimate the problem at 
hand.  For continuous functions, two hidden layers may be suf- 
ficient, but they may slow down the training process, it also 
has the potential to worsen the problem of local minima (Shi 
and Mizumoto, 2000a).  However, using fewer hidden neurons 
than required will result in under-fitting (Shi and Mizumoto, 
2000b); this is a bad situation where it becomes difficult to ac- 
curately detect the signals in a complicated data set.  On the other 
hand, using more hidden neurons than required will result in 
over-fitting and prolong training time.  So researchers have pro- 
posed a compromise (Cheng, 2008); the number of hidden neu-
rons can be set as according to either two-thirds for the sum of 
the sizes for the input the output layers, or less than twice the 
size of the input layer. 

In this paper a neuro-fuzzy system with a three-layer feed 
forward NN Mamdani model is applied as shown in Fig. 10 to 
determine the fuzzy logic rules and optimize the membership 
functions of the guidance system as shown in Fig. 1.  Layers 1 
and 3 define the input and output nodes, respectively.  Layer 2  
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Fig. 10.  Structures of neural controller. 

 
 

defines the nodes to represent the fuzzy rules.  Each input to the 
NN represents a variable that has influence on the output of the 
network in one way or the other. 

The activation function Aj of the artificial neurons in ANNs 
implementing the j th back propagation algorithm is a weighted 
sum as follows (Gershenson, 2003): 

  
0

,
n

j i ji
i

A x x 


   (1) 

If the output functions would be the identity equations i.e., 
(output = activation), then the neuron would be called linear.  But 
these have severe limitations.  The most common output func- 
tion is the sigmoid function: 

    ,

1
,

1 j
j A x

O x
e


 


 (2) 

The sigmoid function is very close to one (zero) for large po- 
sitive (negative) numbers, and 0.5 at zero.  This allows a smooth 
transition between the outputs of the neurons (close to zero or 
close to one).  One can see that anyone of the output is limited 
by the activation function, which in turn depends on the values 
of the inputs and their respective weights. 

Now, the goal of the training process is to obtain a desired 
output when certain type of inputs are given.  Since the error 
for the j th channel is the difference between the actual Oj and 
the desired output dj defined as follows: 

    , , ,j jE x d O x d  j  (3) 

It is necessary to take the square of the difference between 
the output and the desired target to make it always positive, so 
the error for the whole network can be defined as the sum of 
the errors for all the neurons in the output layer: 

     2

, , ,j
j

E x d O x d  j  (4) 

Thus the error depends on the weights, and one should adjust 

the weights to minimize the error.  The back propagation algo- 
rithm now calculates how the error depends on the output, inputs, 
and weights, and then one can adjust the weights using the me- 
thod of gradient descendent as follows: 

 ji
ji

E 


    (5) 

The meaning of this formula can be interpreted in the fol-
lowing way: the adjustment of each weight (ωi j) is equal to the 
negative of a constant () multiplied by the previous weight on 
the error of the network, which is the derivative of E in respect 
to  ji.  The value of the adjustment depends on , and on the 
contribution of the weight to the error of the function.  This is, 
if the weight contributes a lot to the error, the adjustment will 
be greater than if it contributes in a smaller amount.  Eq. (5) is 
used iteratively until one finds appropriate weights (the error 
is minimal). 

So, the next is to find the derivative of E in respect to  ji.  
This is the goal of the back propagation algorithm.  First, one 
must calculate how much the error depends on the output, which 
is the derivative of E in respect to Oj by Eqs. (3) and (4): 

 2 j j
j

E
O d

O




   (6) 

And then, how much the output depends on the activation, 
which in turn depends on the weights by Eqs. (1) and (2): 

 (1 )j j j
j j i

ji j ji

O O A
O O

A

  
  

   x  (7) 

And from Eqs. (6) and (7) one has: 

   2 1j j j j j
ji j ji

OE E
O d O O x

O

 
  

    i  (8) 

Finally, by Eqs. (5) and (8) the adjustment to each weight is 
obtained as: 

    2 1ji j j jO d O O x      j i  (9) 

Therefore, one can use Eq. (9) to train an ANN. 
Thus the neural-fuzzy (PD) controller is applied for the 

guidance system design with three inputs and one hidden layer 
as show in Fig. 9.  Moreover, the optimization algorithms such 
as GD, LM, and SCG are applied to train the neural network 
parameters, such as weighting factors and biases.  These methods 
are briefed as follows: 

1. Gradient Descent (GD) Algorithm 

In this method all data samples are processed at each step of 
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iteration to determine the steepest descent vector h.  If the data 
samples are linearly separable, then the global minimum point 
can be reached.  If not, it will never converge to the optimum 
point.  This method has another weakness of computational 
complexity; it requires all data samples to process at each step 
of iteration.  It starts from an initial point, and moving in the 
direction defined by h vector, the relatively gain of the ob-
jective function should follow (Song, 2013): 

 

   

   

0
lim

|| ||

1
' || ' || cos

|| ||
T

F x F x h

h

h F x F x
h










 


  

 (10) 

where () is the step size of iterative interval and   is the angle 
of vector.  F′(x) (means gain) would be maximum if  = , 
then the descent vector is: 

  'sdh F  x

||

n

 (11) 

Furthermore, if  is adjusted according to the exact line 
search method, then the objective function can be converged 
toward the minimum value.  Since the tuning direction is along 
the negative direction of the function slope, that the convergent 
rate would be very slow near the local minimum.  On the other 
hand, it couldn’t avoid the saddle point problem. 

2. Newton Method 

The main point of Newton method is to reduce the iteration 
times by using the characteristic property near the optimal point, 
i.e., if x* is the optimal point, then F′(x*) = 0, so the descending 
vector can be obtained by using Taylor series expansion: 

  (12) 
       
   

2' ' '' 0 ||

' ''

F x h F x F x h h

F x F x h

   

 

For Eq. (12) to be true, the descending vector of Newton 
method (or Hhn) must be very small, and then one has: 

    ' ,  '' ,  nHh F x if H F x x x h      (13) 

So that one can find the value of x for the next iteration.  In 
the final stage of iteration, Newton method is a better choice. 

3. Gauss-Newton Method 

Gauss-Newton Method is generally the basis to derived other 
more effective algorithms, it is based on the first order Taylor 
series expansion of f(x), i.e., to solve the problem by using the 
linear model of f(x), the convergent rate of this method would 
be in quadratic manner for some special cases.  The detail steps 
are as follows.  If ||h|| is very small, then one can make Taylor 

series expansion of f(x  h): 

      ( )f x h h f x J x h     (14) 
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And then: 
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 (16) 

The purpose of this algorithm is to find the best descending 
vector of Gauss-Newton method hgn to make L(h) be minimum, 
i.e., 

  (17)  arg mingn hh  L h

By Eqs. (16) and (17) one has: 

  ' T TL h J f J Jh   (18) 

Let L′(h) = 0 in Eq. (18), one can get the descending vector 
hgn of Gauss-Newton method by the following equations: 

  T
gn

TJ J h J f   (19) 

4. Levenberg-Marquardt (LM) Algorithm 

The LM algorithm is an iterative technique that locates the 
minimum of a multivariate function expressed as the sum of 
squares of non-linear functions.  It is a standard technique for 
nonlinear least-squares problems.  LM can be thought of as a 
combination of steepest descent and Gauss-Newton methods.  
When the current solution is far away from the correct one, the 
algorithm behaves like a steepest descent method.  This method 
is slow, but guaranteed to converge. 

Levenberg and Marquardt suggested to use the damped Gauss- 
Newton method for solving nonlinear least squares problems, 
that’s to change Eq. (19) to the following equation: 

   ,  ,  and 0T T
lmJ J I h g g J f       (20) 
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There are some improvements by introducing the damping 
parameter I in Eq. (20), the details are as follows: 

 
(1) Since the value of damping parameter () at the optimal 

point has the property  > 0, so the coefficient matrix in 
Eq. (20) is positive definite, and one can assure the exis-
tence for the descending vector of Levenberg-Marquardt 
(LM) algorithm defined by hlm. 

(2) If the value of damping parameter  is very large, so JTJ 
can be neglected, one has the descending vector (hlm) as 
follows: 

  1 1
'lmh g F

 
    x  (21) 

Then the function would be decreasing following the de-
scending vector by a small step hlm, so it is better and suitable 
at the initial iteration period. 

 
(3) If the value of damping parameter  is very small, then 

hlm hgn, so this case is in the final iteration period as  
x approaching x*, and this result is very reasonable.  
Moreover, if F′(x*) is equal to zero or its value is very 
small, so the decreasing speed is in quadratic manner. 

 
Therefore, the value of damping parameter  determines 

the descending step size and direction, it also absolve to find 
the  ratio by using the original Newton’s line search method.  
The initial value of  (0) can use the maximum value of the 
diagonal elements for the matrix A0 = J(X0)

T J(X0), it is defined 
by: 

   0
0 max iia    (22) 

To set the value of  is as follows, if the initial value x0 
would be approach to the final solution x*, then  can be set 
as 10-6.  On the other hand, the suggest value is either 1 or 10-3.  
The method to update  is by computing the gain ratio  in the 
iteration process defined by Eq. (16), the gain ratio is defined 
as: 

 
   
   0

lm

lm

F x F x h

L L h


 



 (23) 

The denominator in Eq. (23) would be derived by the linear 
model as follows: 

 

   



Since hT
lm hlm and -hT

lmg in Eq. (23) are positive definite, so 
L(0) -L(hlm) is also positive definite. 

The meaning of  defined by Eqs. (23) and (24) is discussed 
as follows.  If  is a larger value, then L(hlm) is a good ap-
proximation value of F(x  hlm), so one can make  be a lower 
value for approaching hlm to hgn in both step size and direction.  
But if  is smaller or a negative value, i.e., L(hlm) is not a good 
approximation, so one would increase μ to make hlm approach 
the solution of steepest descent method.  The stop criteria de- 
pend on some choices as follows: 

 
(1) If the step is approaching the local minimum, the gradient 

value should be zero, that means F′(x*) = g(x*) = 0, so one 
can set: 

 1||g||    (25) 

In Eq. (25) 1 is a very small positive number. 
(2) Considering the condition for approaching the local mini-

mum point, x would be taken small changes, so one can 
define: 

 new 2 2|| || || ||x x x      (26) 

(3) Finally, a safety stop condition to avoid the infinite loops 
problem is: 

  (27) maxk k

5. Conjugate Gradient (CG) Method 

There is observed that the conjugate gradient iteration is one 
of the most important methods in scientific computation for ra- 
pidly solving large linear systems of equations with symmetric 
positive definite coefficient matrices (Hestenes and Stiefel, 1952; 
Song, 2013).  Since the convergence of an iterative method de- 
pends on the eigenvalues of the coefficient matrix, it is often bet- 
ter to use a preconditioner that transforms the system to one with 
a better distribution of eigenvalues.  Therefore, preconditioning 
is the key to a successful iterative solver (Gershenson, 2003). 
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 (24) 

In general, the CG algorithm to solve the system Ax = b, starts 
with an initial guess of the solution x0, with an initial residual 
r0, and with an initial search direction that is equal to the initial 
residual: p0 = r0 (Caraba, 2008).  The idea behind the conjugate 
gradient method is that the residual rk = b  Axk is orthogonal 
to the Krylov subspace generated by b, and therefore each re-
sidual is perpendicular to all the previous residuals.  The residual 
is computed at each step.  The solution at the next step is found 
using a search direction that is only a linear combination of the 
previous search directions, which for x1 is just a combination 
between the previous and the current residual. 

A more visual explanation of how the CG algorithm finds the 
approximate solution to the exact solution is as shown in Fig. 11. 
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Fig. 11.  Searching direction of the CG algorithm. 

 
 
 
The iterative formulas of CG are given below: 
 

(1) approximate solution: 

 1k k k k 1x x p  

1

 (25) 

(2) residual calculation: 

 1k k k kr r Ap    (26) 

(3) search direction: 

 1k k k kp r p    (27) 

(4) improvement at step k: 

 
1 1

T
k k

k T
k k

r r
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  (28) 

(5) step size: 

 1 1

1 1

T
k k

k T
k k

r r

p Ap
  

 

  (29) 

6. SCG (Scaled Conjugate Gradient) Algorithm 

The SCG algorithm is a scaled memoryless Broyden-Fletcher- 
Goldfarb-Shanno (BFGS) preconditioned conjugate gradient al- 
gorithm.  Had mentioned that the key point is to combine the 
scaled BFGS method and the preconditioning technique in the 
frame of conjugate gradient method (Hestenes and Stiefel, 1952).  
This method is also extended based on the above general opti- 
mization strategy, but chooses the search direction and the step 
size more carefully by using information from Taylor’s second 
order approximation (Yang et al., 2005). 

Start of
Interception

End of
Interception

GD

SCG

SCG

GD

LM

LM

Engagement

 
Fig. 12. The optimization methods such as GD, SCG and LM are applied 

alternatively in the guidance engagement. 

 
 

        1
'

2

T TE w y E w E w y y E w y    ''  (30) 

If one denotes the quadratic approximation to E in a neigh-
borhood of a point w by Eqw(y), so that Eqw(y) is given by: 

        1
'

2

T T
qwE y E w E w y y E w y   ''  (31) 

In order to determine the minima of Eqw(y), the critical 
points for Eqw(y) must be found, i.e., the points where the first 
derivative of Eq. (34) with respective to w must be zero (ne-
glect the derivative of the third order term): 

      ' '' 'qwE y E w y E w 0    (32) 

SCG can yields a speed-up than the standard back propa-
gation algorithm (BP).  SCG is fully automated, the user need 
not to provide the dependent parameters and avoids a time 
consuming line-search, the conjugate gradient back propaga-
tion (CGB) and BFGS uses this SCG algorithm in each itera-
tion in order to determine an appropriate step size.  Moreover, 
neural network can often reduce the overall complexity with- 
out knowing the system exact structure.  Thus the smaller the 
complexity of the neural network, the bigger the possibility  
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Table 5.  Weighting factors and biases of neural controller. 

Input Layer to Hidden Layer Weighting Factors 

P input (W1, j) D input (W2, j) 

-7.3266 2.3793e-07 

16.7042 2.4022e-07 

-4.3741 -1.8535e-08 

Input Layer to Hidden Layer Bias (B1, B2, B3) 

2.9383 0.0102 -2.6458 

Hidden Layer to Output Layer Weighting Factors (W3, j) 

-0.3328 0.2019 -1.7852 

Hidden Layer to Output Layer Bias (B4) 

-1.43 
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Fig. 13.  The training curve of convergence for neural controller. 
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Fig. 14. Miss distances of Case 1 for Scenario A by using neural controller 

with single and multi-optimization optimization algorithms. 

 
 

that the weight space contains long ravines with sharp curvature.  
While BP is inefficient in this area, it shows that SCG handles 
them effectively. 

To speed up the guidance law design, the optimization me- 
thods such as GD, SCG and LM are applied alternatively in the 
guidance engagement as shown in Fig. 12 to consider those  
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Fig. 15. Miss distances of Case 2 for Scenario A by using neural controller 

with single and multi-optimization algorithms. 
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Fig. 16. Acceleration commands and trajectories of Scenario A for Case 1 

by using the proposed method.  (a) R = 0.02, (b) R = 0.01, (c) R = 0, 
(d) R = -0.01, (e) R = -0.02. 

 
 

guidance effects such as target maneuver, missile autopilot time 
lag, turning rate time delay, initial heading error, and radome 
slope error.  Then one can obtain the weighting factors and bi-
ases of neural controller as listed in Table 5.  The training curve  
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Fig. 17. Acceleration commands and trajectories of Scenario A for Case 2 

by using the proposed method.  (a) R = 0.02, (b) R = 0.01, (c) R = 0, 
(d) R = -0.01, (e) R = -0.02. 

 
 

of convergence for neural controller is as shown in Fig. 13, thus 
the proposed method may be applied. 

7. Simulation Results of Scenario A 

Fig. 14 shows the miss distances of Case 1 by using single 
and multi-optimization algorithms.  Note that only the proposed 
method can satisfy all the values of R.  So do the result as shown 
in Fig. 15 for Case 2.  On the other hand, the acceleration com- 
mands and trajectories for Cases 1 and 2 are also as shown in 
Figs. 16 and 17, respectively.  Note that all the acceleration com- 
mands have some oscillations, this is due to as times go by and 
at the interception times, the guidance loops would become un- 
stable (Lin et al., 1991; Zaheeruddin and Garima, 2006).  How- 
ever, the neural guidance laws can still hit the target by using the 
proposed multi-optimization algorithm for the encountered con- 
ditions.  Moreover, the accelerations as shown in Figs. 16 and 17 
are much lower than those obtained by using the PN guidance 
law as shown in Fig. 7. 

8. Simulation Results of Scenario B 

Figs. 18 and 19 show the miss distances by using single and  
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Fig. 18. Miss distances of Scenario B for Case 1 by using neural controller 

with single and multi-optimization algorithm. 

 
 

M
is

s D
is

ta
nc

e 
(m

)
5

0

10

15

20

Radome aberration error slope
-0.020.02 0.01 0 -0.01

Scenario B: case 2

GD

SCG
LM

LM + SCG + GD

 
Fig. 19. Miss distances of Scenario B for Case 2 by using neural controller 

with single and multi-optimization algorithms. 
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Fig. 20. Acceleration and trajectory of Scenario B for Case 1 by using the 

proposed method.  (a) R = 0.02, (b) R = 0.01, (c) R = 0, (d) R = -0.01, 
(e) R = -0.02. 
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Fig. 21. Acceleration and trajectory of Scenario B for Case 2 by using the 

proposed method.  (a) R = 0.02, (b) R = 0.01, (c) R = 0, (d) R = -0.01, 
(e) R = -0.02. 

 

 
multi-optimization algorithms for Cases 1 and 2.  One can see all 
the miss distances are smaller for this scenario.  On the other hand, 
the acceleration commands and trajectories for Cases 1 and 2 
are also as shown in Figs. 20 and 21, respectively.  Note that the 
oscillation effects in the final periods of acceleration commands 
are lower for this condition. 

9. Comparisons of Interception Times 

The interception times for the guidance laws and engagement 
conditions are listed in Table 6 for comparison.  Note that the inter- 
ception times of Scenario B for Cases 1 and 2 are respectively 
12.34 and 11.34 seconds, so there are no difference of intercep- 
tion times among the guidance laws.  However, the longest inter- 
ception times by using the proposed method of Scenario A for 
Cases 1 and 2 are respectively 9.11 and 9.37 seconds, they are 
always lower than the other methods.  So one can conclude that 
the miss distances, acceleration commands, and interception 
times of the proposed method are lower than the other methods 
for the encountered engagement condition. 

Table 6.  Times of interceptions for all Cases. 

Scenario A Scenario B Times (sec)

 
Guidance Law 

Case 1 Case 2 Case 1 Case 2

PN 9.73-9.92 10.15-10.29 12.34 11.34

PD Fuzzy 9.08-9.21 9.34-9.42 12.34 11.34

Neural GD 9.09-9.16 9.36-9.42 12.34 11.34

Neural LM 9.08-9.18 9.35-9.46 12.34 11.34

Neural SCG 9.08-9.17 9.35-9.43 12.34 11.34

Proposed 
Method 

9.09-9.11 9.35-9.37 12.34 11.34

 
 

Table 7.  Parameters of noise spectral density. 

Type of Noises Spectral Density 

Glint (1) 2 (m2/Hz) 

Fading (2) 1*10e-6 (Rad2/Hz) 

Target maneuverability of case 1 (3) 7.2 (G2/sec) 

Target maneuverability of case 2 (3) 3.2 (G2/sec) 
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Fig. 22.  Block diagram of adjoint system for neural controller. 

 

V. ADJOINT SIMULATION RESULTS 
(SCENARIO B) 

Since the adjoint method can be applied for only linear system, 
so the head-on engagement (Scenario B) is taken into considera-
tion in this section.  The advantage of the adjoint technique is 
that one can take the target glint and fading noises into simula-
tion more easily, and the computation time can be reduced.  The 
adjoint simulation block diagram of neural controller is as shown 
in Fig. 22.  The parameters of the noise spectral densities such 
as target glint, fading, and maneuverability are listed in Table 7 
(Rajagopalan and Bucco, 2010).  The results obtained by using 
PN and NC guidance laws of Cases 1 and 2 are respectively as 
shown in Figs. 23-26. 
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Fig. 23.  Miss distance for PN of Case 1 (Scenario B). 
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Fig. 24.  Miss distance of the proposed method for Case 1 (Scenario B). 
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Fig. 25.  Miss distance for PN of Case 2. 

 

 
Note that the total miss distances obtained by using the pro- 

posed method for Cases 1 and 2 are increased respectively from 
2 m and 1 m (as shown in Figs. 17 and 18) to 20 m and 11 m.  
This is true because in this section more noises are taken into 
consideration, but the proposed guidance law can still meet the 
requirement.  On the other hand, the miss distances by using PN 
of Cases 1 and 2 are largely increased respectively from 30 m 
and 400 m (as shown in Fig. 6) to 1000 m and 800 m by adding 
more noises into consideration. 
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Fig. 26.  Miss distance of the proposed method for Case 2. 

 

VI. CONCLUSION 

This research applies a novel intelligent neural guidance law 
by applying several neural network optimization algorithms 
(such GD, LM and SCG) alternatively in each step for terminal 
guidance law design of a surface-to-air missile.  Not only the 
lower and higher altitudes but the lateral and head-on inter-
ceptions are adopted for comparison.  Besides, both the missile 
autopilot delay, turning rate time constant, target maneuverability, 
glint and fading noises, radome slope error, missile initial heading 
error as well as acceleration limits were taken into consideration.  
are taken into consideration, which are scarcely considered in 
the previous literatures.  Note that the miss distances, acceleration 
commands and engagement times obtained by using the proposed 
method are lower than the other methods for the encountered 
conditions. 
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