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ABSTRACT 

A composite robust control scheme is proposed by combining 
a sliding mode controller with an adaptive fuzzy control algo-
rithm to control a 3-DOF underactuated underwater vehicle with 
model parameter perturbations and environmental disturbances 
based on the backstepping control method and the Lyapunov 
stability theory.  The adaptive fuzzy control algorithm is em-
ployed to compensate for model parameter perturbations and 
the sliding mode controller is adopted to eliminate the effects 
of environmental disturbances and approximation errors.  A hori- 
zontal dynamic model and tracking error equations are established 
to describe the trajectory tracking control for the underactuated 
underwater vehicle.  The relation between sliding mode control 
gains and model parameter uncertainties is derived to determine 
the error eliminating ability of the controller.  The convergence 
and stability of the composite robust controller are demonstrated 
using the Lyapunov’s direct method.  The proposed control scheme 
is simulated for a 3-DOF underactuated underwater vehicle and 
its efficiency in the error elimination is validated in numerical 
simulations.  Results confirm that the composite robust control 
law can be used to achieve a robust and preferable control per- 
formance for the horizontal trajectory tracking control of the 
vehicle. 

I. INTRODUCTION 

Many of today's underwater vehicles are underactuated ve-
hicles due to their potential benefits over full actuated AUVs.  
These include a good control scheme and a streamlined shape 
as well as a reduction in water resistance and weight (Chen  
et al., 2016).  Tracking and stabilization controls for underactuated 

underwater vehicles are difficult because of the over-possession 
of degrees of freedom beyond the controls (Khalid et al., 2014).  
Moreover, the dynamic model of an underactuated underwater 
vehicle is highly coupled and nonlinear due to the ever-changing 
nature of ocean currents and some hydrodynamic coefficients 
(Thor and Fossen, 2002).  The underactuated underwater vehicle 
is so agile that the conventional linear control methods cannot 
fully exploit its maneuverability.  Brockett’s Theorem (Brockett, 
1983) demonstrates that any feedback control law of a continuous 
time-invariant system could not stabilize the underactuated ve- 
hicle asymptotically according to the null solution. 

Over the last few years, a large number of studies were con- 
ducted in the area of motion control of underactuated underwater 
vehicles.  Control algorithms reported in the literatures can be 
classified into two categories: model-based control and non- 
model-based control.  The non-model based control approach is 
based on the PID controller (Koh et al., 2006; Khodayari and 
Balochian, 2015), the neural network controller (Park, 2014) 
and the fuzzy controller (Raimondi and Melluso, 2010), in which 
each propulsive motor is controlled independently.  In general, 
this kind of approach provides the simplest control structure but 
often results in poor transient performance sometimes resulting 
in overshoot and underdamped responses.  The model-based ap- 
proach, however, requires the dynamic model of underwater 
vehicles to define the control law and has excellent performance 
in quick error convergence and accuracy.  The sliding model con- 
trol method, a well-known model-based approach, was used to 
resolve the trajectory tracking control problem for underactuated 
underwater vehicles (Xu et al., 2015; Yan et al., 2015).  However, 
the drag force in the model was established using a linear func- 
tion of the velocity and thus was valid only at low velocities.  
Moreover, this kind of control method resulted in an undesired 
high frequency variation in the steady state.  Another well-known 
model-based control approach is the backstepping method, which 
can provide a satisfactory control performance in the presence 
of an accurate dynamic model.  Some backstepping methods were 
presented by some researchers (Ghommam and Saad, 2013; Li 
et al., 2015; Qi, 2015) for trajectory tracking control of un- 
deractuated underwater vehicles.  The retainment of an accurate 
dynamic model, however, is a tricky task due to inevitable sim- 
plifications and other tangible factors such as backlash or friction.  
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Some robust backstepping controllers (Jia et al., 2012) or adap- 
tive backstepping control approaches (Ghommam and Saad, 
2013) were proposed to guarantee the control performance in pre- 
sence of model parameter uncertainties.  Although the effects of 
small parameter uncertainties on the control performances were in- 
vestigated by those researchers, the relationship between the 
control gains and parameter uncertainties was not considered in 
their studies.  A vehicle under the role of these controllers may lose 
the ability to quickly and accurately track the desired trajectories.  
In addition, those backstepping methods did not consider the in- 
fluence of environmental disturbances and mass uncertainties 
in their models, which may affect their transient responses, con- 
vergence, control efforts and robustness. 

In this paper, a composite robust control scheme is proposed 
to combine the sliding mode controller with the adaptive fuzzy 
control algorithm.  This control scheme is used to control a 3-DOF 
underactuated underwater vehicle with model parameter per-
turbations and environmental disturbances based on backstep-
ping control method and Lyapunov stability theory.  Adaptive 
fuzzy control algorithm is employed to compensate for model 
parameter perturbation and the sliding mode controller is adopted 
to eliminate the effects of environmental disturbances and approxi- 
mation errors.  The horizontal dynamic model and tracking error 
equations are established for the trajectory tracking control of 
the underactuated underwater vehicle.  The relation between the 
sliding mode control gains and model parameter uncertainties 
is derived to determine the controller’s error eliminating ability.  
The proposed control scheme is simulated and its efficiency is 
tested and validated using numerical simulations of a 3-DOF 
underactuated underwater vehicle. 

In this paper, dynamic modelling is briefly introduced in sec- 
tion 2 and a kinematic error model is presented in section 3.  The 
design of the composite robust controller and its parameter se- 
lection and stability analysis are provided in sections 4 and 5, 
respectively.  Finally, the numerical simulations and conclusions 
are presented in sections 6 and 7, respectively. 

II. DYNAMICAL MODELING AND  
PROBLEM FORMULATION 

The dynamic model is established in this section to describe 
an underactuated underwater vehicle moving in the horizontal 
plane.  The corresponding vehicle’s trajectory tracking control 
problem is then formulated. 

1. Dynamic Modeling of an Underactuated Underwater 
Vehicle 

The dynamic model of an underactuated underwater vehicle 
in the horizontal plane is first introduced.  Fig. 1 illustrates an 
underactuated underwater vehicle and its reference frame.  The 
inertial frame {OIXIYI} is considered to be fixed, in which axis 
Z is in the gravitational direction and the other two axes (X and Y) 
are perpendicular to it.  In contrast, the body reference frame, 
also known as the moving frame, is set at the geometric center 
of the underwater vehicle (namely, the center of gravity).  The  
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Fig. 1.  The underactuated underwater vehicle and its reference frames. 

 

 
longitudinal axis (xB) points in the direction from the tail to the 
nose while the horizontal axis (yB) points from the left side to 
the right side.  According to Fossen (Thor and Fossen, 2002), the 
nonlinear dynamic model of the 3-DOF underactuated under- 
water vehicle can be written in the form of the following uni- 
form matrix: 

 
 
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M C D w
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     
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
 (1) 

where  = [x, y, ]T denotes the displacement (x, y) and the 
yaw angle  of the underwater vehicle in the inertial frame;  
 = [u, v, r]T represents the surge, sway, and yaw velocities of 
the underwater vehicle in the body reference frame while the 
vector  = [Fu, 0, r]

T including the surge force of Fu and the 
yaw torque of r.  The external disturbances of the ocean cur-
rent in Eq. (1) are expressed as w = [w1, w2, w3]

T and matrices 
J(), D(), C(), and M are defined as follows: 
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in which u um m X   , v vm m Y   , r z rm I N   .  In the 

above matrices, uX , u uX , vY , v vY , rN , r rN  denote the 

quadratic and linear drag coefficients defined in the reference 
(Geranmehr and Nekoo, 2015); m denotes the underwater 
vehicle mass and uX  , vY , rN   are the added masses and Iz is 

the inertia with respect to the vertical axis. 
The nominal values of drag coefficients uX , u uX , vY , v vY , 

rN , r rN  are generally not accurate enough.  The relation among 

the actual value Q, the nominal value Qn, and the perturbed 
value Q* of every drag coefficient can be expressed as Q =  
Qn  Q*.  In practical applications, the perturbed value Q* 

 
is 

always bounded.  According to the reference (Atrp et al., 2015), 
the nominal value of an underwater vehicleʼs mass and its added 
mass can be easily obtained and the difference between the 
nominal value and the actual value is usually very small.  Thus, 
it is assumed that the vehicle mass and the added mass satisfy 

the following inequality: *
u um m  and *

r rm m , namely 

* n
u um m  and * n

r rm m , where -0.5 <  < 0.  When the actual, 

the nominal, and the perturbed parameters are incorporated into 
the dynamic model in Eq. (1), the dynamic equation is rewritten 
as: 
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where 

 ' * *
1 1u vw m u m vr w    ; ' * *

2 2v uw m v m ur w    ;  

  ' * * *
3 3-u v rw m m uv m r w   ; * *

1 u u uX u X u u    ;  

 * *
2 v v vY v Y v v     and * *

3 r r rN r N r r    . 

2. Ocean Current Disturbances and Problem Formulation 

The performance of an underwater vehicle is greatly affected 
by the ocean current under the ocean surface.  However, this kind 
of disturbance is very difficult to describe accurately in the model.  
In order to better express the ocean current disturbances with a 
boundary, the disturbance w = [w1, w2, w3]

T is defined in the 
body reference frame in this paper as shown below (Thor and 
Fossen, 2002):
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Fig. 2.  The schematic diagram of horizontal path following. 
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where w = [w1, w2, w3]
T denotes the disturbance forces and 

moments in the inertial frame;   3 expresses the Gauss white 

noise with zero mean value;   3 3
iiT diag T    as a positive 

diagonal matrix and   3 3
iidiag      as a diagonal matrix 

expresses Gauss white noise. 
The control problem of the underactuated underwater vehicle 

with uncertainties can be expressed as follows: for a given de- 
sired trajectory [xR, yR, R]T, the surge control force of Fu and 
the yaw control torque of r should be found such that the tra- 
jectory tracking error vector [xe, ye, e]

T = [xR  x, yR  y, R  ]T, 
where the vector [x, y, ]T denotes the actual trajectory, converges 
to a value near the original point with a very small oscillation. 

III. KINEMATIC ERROR MODEL OF AN  
UNDERACTUATED UNDERWATER VEHICLE 

In this section, a kinematic error model is established to de- 
scribe the trajectory tracking control for the underactuated under- 
water vehicle and is used to guide the design of controllers.  In 
Fig. 2, {OBXBYB}, {OXY} and {OFXFYF} represent the actual 
body-fixed frame, the inertial frame and the desired path 
constitute frame respectively, where Q is an arbitrary point on 
the desired tracking path to be followed.  The coordinates of 
virtual point Q on the desired tracking path of QR = [xR, yR, 
R]T can be described as a function of time and thus the posi-
tion of point Q in the inertial frame on the actual path can be 
expressed as: 

  , ,
T

Q x y   (5) 
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The desired horizontal velocity vR of the underwater vehicle 
is far smaller than its desired longitudinal velocity uR when no 
extremely large external disturbances exist.  Moreover, the in- 
fluence of the horizontal velocity on the tracking performance 
is also not significant.  In order to ensure the smoothness of track- 
ing curves, xR and yR are required to be continuously differenti-
able.  Thus, the desired velocity at virtual point Q in the inertial 
frame can be defined as: 

 2 2
Q R R Rv u x y     (6) 

The intersection angle of R between the desired velocity vec- 
tor of vQ and the horizontal axis in the inertial frame is defined 
as the rotational angle from frame {OBXBYB} to frame {OXY} 
and can be expressed as: 
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
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

 (7) 

By defining Q = [x, y, ]T as the actual position vector of the 
underwater vehicle in the inertial frame and QR = [xR, yR, R]T 
as the desired position vector of the point, the tracking error 
vector,  = [xe, ye, e]

T,
 
can be expressed in the actual body- 

fixed frame by the following equation: 

   RR Q Q    (8) 

where R() is the rotation transformation matrix from the iner- 
tial frame to the body-fixed frame and is parameterized locally 
by angle  with the following relationship:  

  
cos sin 0

= sin cos 0
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By taking the derivative of ɛ, Eq. (8) becomes 
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Eq. (10) can be rewritten as 
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Symbol e in Fig. 2 denotes the intersection angle between 
the desired velocity vQ and the longitudinal axis in the actual 
body-fixed frame and can be calculated from the difference be- 
tween the actual yaw angle () and the desired yaw angle (R) 
as e =   R.  The second term of  cos sin ,R Rx y    

sin s ,
T

R R Rx y co       in Eq. (11) represents the velocity 

components in the actual body-fixed frame for the desired ve- 

locity vector  , ,
T

R R Rx y    in the inertial frame.  When two 

velocity components Rx  and Ry  are synthesized into the de- 

sired velocity vQ as defined by 2 2
Q R Rv x y   , the two terms 

cos sinR Rx y    and sin sR Rx y co     in Eq. (11) can 

be thus expressed as cosQ ev   and sinQ ev   respectively.  With 

a few manipulations, Eq. (11) becomes 
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 (12) 

IV. CONTROLLER DESIGN 

In this section, surge force Fu and yaw moment r are derived 
according to the backstepping control method and Lyapunov 
theory.  Based on the error model in Eq. (12) in the body-fixed 
frame, a nonlinear backstepping method is adopted to design 
the controller following a desired path.  The controller design 
process is outlined in the following steps: 

 

Step 1: Define the Lyapunov function as  2 2
1

1
=

2 e eV x y  and 

take the time derivative of V1.  Substituting the first 
two terms in the error model of Eq. (12) into the time 
derivative equation of V1 results in the following time 
derivative of V1: 

    1 cos +y sine Q e e Q eV x v u v v     (13) 
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 Now, let us introduce two virtual control functions u 
and v with their desired values ur and vr designed as 

cosr x e Q eu k x v    and sinr y e Q ev k y v   , where 

kx and ky are two positive constants.  Substituting the 

two desired values of ur and vr into Eq. (13) yields 1=V  
2 2

x e y ek x k y  .  Since ur and vr are not the actual con-

trol functions of the underwater vehicle, the two error 
variables ue and ve can be expressed as ue = u  ur and 
ve = v  vr.  Consequently, the time derivative equation 
of V1 becomes 

 2 2
1= x e y e e e e eV k x k y u x v y     (14) 

Step 2: For the consideration of the stabilization of the error 
variable ue and ve, the following Lyapunov function is 
used: 

 2 2
2 1

1 1
= +

2 2e eV V u v  (15) 

 The time derivative of V2 becomes  

    2 2
2 x e y e e e r e r eV k x k y v y v v u u u x              (16) 

 The actual control force Fu is then obtained as follows: 

 
 

 

1

1
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ˆ
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u u v eu u

n
u r e u e

F X u X u u m vr u

m u x k u

   

   
 (17) 

 where ku and 1 are two positive constants and ur is 
the desired surge acceleration along the longitudinal 
direction.  The following adaptive fuzzy control signal 

1̂  and its adaptive control law are designed to elimi- 

nate the uncertainty * *
u u uX u X u u   of 1  in Eq. (2). 

    1
1 1

ˆ
ˆ ˆ tanh

T
sT

s
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 
 



 
     

 
 (18) 

  1 1
ˆT T

e su e    (19) 

 where es = [ue, ve, re]
T consists of the velocity error 

vector of the surge, sway, and yaw velocities in the 
body reference frame; (es) represents the adaptive 

fuzzy base function; 1̂
T  is the adaptive control para- 

meter; 1  R is a positive constant and  is an arbitrary 
small positive constant. 

 Let    1
1 tanh

T
sT

s

e
e

 
 



 
  
 

 be a close approxima-

tion of * *
u u uX u X u u   of 1 in Eq. (2).  Substituting 

Eq. (17) into the first term of Eq. (2) yields  

 
      

   
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1 1 1
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1
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  
       

 
. 

 Then, Eq. (16) can be rewritten as 
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e
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e
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 (20) 

 where 
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' 1 *
1 1
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sgnu u e

n
u u r e u e v

w m m u

m m u x k u m vr w



       
(21) 

Step 3: To stabilize the error variables e  and 1 , the follow-

ing Lyapunov function is employed: 

   12 1
3 2 1 1 1

1 1
= +

2 2
n T

e uV V m   
    (22) 

 and its corresponding time derivative is then expressed 
as 
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=

sgn

ˆ
ˆ tanh

tanh

x e y e e e r

n
u e u e e e e

T
sn T

u e s

T
sn T

u e s

n T
u

V k x k y v y v v

k u m u w u

e
m u e

e
m u e

m

  

 
 



 
 



  









    
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 (23) 
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 To eliminate the uncertainty of * *
v v vY v Y v v   or 2 

in Eq. (2), the adaptive fuzzy control signal 2̂  and 

its adaptive control law are adopted and expressed as 

   2
2 2

ˆ
ˆ ˆ tanh

T
sT

s

e
e

 
 



 
     

   

and  2 2
ˆT T

e sv e   , 

in which 2
ˆT  is the adaptive control parameter; (es) 

is the adaptive fuzzy base function; 2  R is a positive 
constant and  is an arbitrary small positive constant. 

 Substituting the adaptive fuzzy control signal of 2 
and 

' * *
2 2v uw m v m ur w   

 
into the second term of Eq. (2) 

with a few manipulations yields  

   
   
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2
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11
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2
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             

  
       


. 

 The virtual control rr can be expressed in the form of
 

r R er k   .  Therefore, Eq. (23) can be re-written 

using the above expressions for v  and rr with e   

R r   
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 (24) 

 where 

  1
2e v v e v v r u Rv vv m m y Y v Y v v m v w m u         . 

 Because variable rr is not an actual control parameter, 
it can be replaced

 
with an error expression of re = r  rr.  

Then, substituting the adaptive control law of 1 1̂
T T    

in Eq. (19) into Eq. (24) yields 
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 (25) 

Step 4: In this step, a controller for error vectors re and 2  sta- 

bilization is introduced using the following Lyapunov 
function: 

   12 1
4 3 2 2 2

1 1
= +

2 2
n T

e vV V r m  
    (26) 

 By taking the time derivative of V4 and substituting 
the term of e rr r r     and the adaptive control law of 

2 2
ˆT T    into the time derivative of V4, the time de-

rivative of V4 can be expressed as 
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 (27) 

 The actual control law of the yaw torque of r is obtained 
as follows: 
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 (28) 

 To eliminate the uncertainty of * *
r r rN r N r r   or  

3 in Eq. (2), the adaptive fuzzy control signal 3̂  in 

Eq. (28) and its adaptive control law are defined as 
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 and  3 3

ˆT T
e sv e   , 

in which 3
ˆT  is the adaptive control parameter; (es) 

is the adaptive fuzzy base function; 3  R is a positive 
constant and  is an arbitrary small positive constant. 

 Substituting r in Eq. (28) into the third term of Eq. (2) 
with a few manipulations results in  
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 Then, Eq. (27) becomes 
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  (29) 

 where 
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Step 5: To stabilize the error variables of 3 , the following 
Lyapunov function is selected: 

   11
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 The corresponding time derivative of V5 becomes by 

substituting the adaptive control law of 3 3
ˆT T    

 3
T

e sr e   into Eq. (31): 

 

         
 

         

       

2 2 2 2 1
5

1 1' '
1 1 3 3

2 1

1 11
1 1

1 11
1 2

= x

sgn sgn

ˆ
ˆ tanh

tanh

x e y e u e e e v u e

n n
u e e r e e

r e v u e R

T
sn T n T

u e s u e s

T
sn T n T

u e s v e

V k k y k u k k m m uv

m u w u m r w r

k r m m uv r

e
m u e m u e

e
m u e m v e

  

 

 

 
   



 
   





 



 

 

    

   

   

 
   

 

 
   

 







  

           
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 
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 

 



   
       

   

   
       

   

 

 

  (32) 

V. CONTROL PARAMETER SELECTION  
AND STABILITY ANALYSIS 

The relation between sliding mode control gains and model 
parameter uncertainties is obtained in this section to assess the 
error eliminating ability of the controller.  In the meantime, the 
asymptotic stability of the overall system is also demonstrated 
based on Lyapunov stability theory. 

First, the following Lemma is introduced on a bounded 
property: 

 
Lemma 1. The following inequality holds for any  > 0 and 
any   R (Polycarpou and Ioannou, 1996): 

 0 tanh
  


    
 

 (33) 

where  is a positive constant that satisfies  1e    , i.e.,  
 = 0.2785. 

The two robust control terms of 1 sgn (ue) in the control 
force of Fu in Eq. (17) and 3 sgn (re) in the yaw control torque 
of r in Eq. (28) are used to eliminate the two uncertainties  
of w1' and w3'  in Eqs. (21) and (30) respectively.  The two po- 
sitive constants of 1 and 3 in the two robust control terms 
directly determine the error eliminating ability for the control- 
ler.  The two uncertainties in Eqs. (21) and (30) can be rewritten 
as 

  ' 1 * 1
1 1 sgn n

u u e u u uw m m u m m     (34) 

  ' 1 * 1
3 3 sgn n

r r e r r rw m m r m m     (35) 
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where 

  * *
1u v u r e u em vr w m u x k u       and  

     1* * *
3

n n
r u v r r e v u e r em m uv w m r m m uv k r 


       . 

It is known that a b a b    when a and b are two real 
numbers, Thus, taking the absolute value on both sides of the 
equation for Eqs. (34) and (35) results in the following two in- 
equalities 

 ' 1 * 1
1 1

n
u u u u uw m m m m     (36) 

 ' 1 * 1
3 3

n
r r r r rw m m m m     (37) 

It can be seen from inequality (36) that when *
u um m , the 

uncertainty
 
cannot be guaranteed to be eliminated by the surge 

control force of Fu.  Similarly, as seen from Eq. (37), when 
*
r rm m , the uncertainty cannot be guaranteed to be eliminated 

by the yaw control torque of r.  In other words, the uncertainties 

of '
1w  and '

3w  may be greater than the two robust positive con- 

stants of 1 and 3.  Thus, the two uncertainty masses of *
um  

and *
rm  must be assumed to satisfy *

u um m  and *
r rm m , 

namely * n
u um m  and * n

r rm m  for -0.5 <  <0.  Let 1   

  1
*max n

u u u um m m 
  

 
 and   1

*
3 max n

r r r rm m m 
   

 
.  

The following inequalities hold true: 

    1 *
1

n
u u u um m m 


   (38) 

    1 *
3

n
r r r rm m m 


   (39) 

Substituting inequalities (38) and (39) into inequalities (36) 

and (37) respectively yields '
1 1w   and '

3 3w  .  Thus, the 

uncertainties can be eliminated by the surge control force of Fu 
and the yaw control torque of r if the mass and robust control 
parameters satisfy conditions of 

 

1. *
u um m  and *

r rm m ; 

2.   1
*

1 max n
u u u um m m 

   
 

 and   1
*

3 max n
r r r rm m m 

   
 

. 

 

When * 0um   and * 0rm  ,  * 1n
u u um m m   and 

 * 1n
r r rm m m  .  When * 0um   and * 0rm  , the maximum 

value of both  *n
u u um m m  and  *n

r r rm m m  is equal to 

 1 1+2 .  Thus, the boundary conditions for 1 and 3 be-

come 1 or    3 max 1+2u   .  For a given value of 

 max u  and uncertainty value of *m , the following con-

ditions must hold: the control parameters of 1 and 3 need to 

satisfy the following inequality 1 or  3 max u   when 

*
um  and *

rm  are positive values and to meet the boundary 

conditions of 1 or    3 max 1+2u    when *
um  and *

rm  

are negative values.  The boundary values for negative values 

of *
um  and *

rm  are larger than that for positive values of *
um  and 

*
rm .  In other words, the control cost for * 0um   and * 0rm   

is more than that for positive values of *
um  and *

rm . 

Since  ˆ
tanh 1

T
i se 


 
  

 
, thus      

tanh
T
i sT T

i s i s

e
e e

 
   



 
   

 
  

 ˆT
i se  .  Let  1 1̂

T
se   ,  2 2

ˆT
se    and  3 3

ˆT
se   .  

Then the following inequalities can be obtained based on Lemma 1: 

tanh i
i i i


   


   
 

.  Additionally, by using the two inequali-

ties     1 '
1 1 sgn 0n

u e em u w u


   and     1 '
3 3 sgn 0n

r e em r w r


  , 

Eq. (32) can be rewritten as: 

 
 

2 2 2 2 1
5

2 1

xx e y e u e e e v u e

r e v u e R

V k k y k u k k m m uv

k r m m uv r

  

 





     

   




 (40) 

Taking the time derivative of sinr y e Q ev k y v    and then 

substituting the second term of Eq. (12) into the derivative 
equation yields 

 
 

 

sin cos

sin

r Q e Q R e

y Q e e

v v v r

k v v rx

  



  

   

 
 (41) 

Substituting Eq. (41) into  in Eq. (24) gets 

 

 1

2

sin cos

sin

Q e Q R e

v e v vv v

e v y Q e e

u R

v v r
m y Y v Y v v m

v m k v v rx

w m u

  

 





   
              
 
   





 

  (42) 

And then substituting Eq. (42) into Eq. (40) yields 
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 1
5 max max max max

2 2 2 2 1 2x

y e e Q Q v u e e e e

x e y e u e e e v u e r e e

V k r v x v k v k m m u v v y

k k y k u k k m m uv k r v

 

 



  





    

      

 
 

  (43) 

where the subscript “max” denotes the maximum value and 

the value of  can be expressed  1

maxv v Q Rm m v r     

  2
2max max maxmaxu v v y v vm ur Y m k v Y v w   

. 
Based on Young’s inequality, the first three uncertainty 

terms in Eq. (43) are less than the following functions for 

positive constants i  (i = 1, 2, 3):  2 1 2
1 1max

1

2 y e ek r v x   , 

  1 2 1 2
2 2max max max

1

2 Q y Q v u e ev k v k m m u v        and  2 1 2
3 3

1

2 e ev y   .  

Let us examine the last three uncertainties terms in Eq. (43) 
using a worst case analysis by assuming all of them are positive.  
In this case, Eq. (43) becomes 

2 2 2 2 2 2
5 xx e y e u e e r e v e eV y u r v v                (44) 

where 

 1
1 max

0.5x x yk k r    ; 1
30.5y yk    ; u uk  ’ r rk  ;  

  1 1
2 max max max

0.5 Q Q v uk v k v k m m u           and  

 1
1 3 2max max max max

0.5 0.5 0.5v Q y Q v uk r v k v k m m u           . 

Under various different conditions, the appropriate values of 
kx, ky, ku, k, 1, 1 and 3 can be selected to ensure a positive 
value for x, y and u.  By taking x(t) = [xe, ye, e, ue, ve, re]

T

 and  = min {x, y, u, , r, v}, inequality (44) becomes 

5 5-2 + eV V v  , which results in     2 1
5 5 0 e +0.5t

eV t V v     

for 0, finalt t   using the Comparison Lemma (Khalil, 1996).  

Thus, the following conclusion can be drawn: 

     10 , 0,t
e finalx t x e v t t         (45) 

Eq. (45) indicates that the state errors remain in a bounded 
setting near zero and can be reduced by increasing the gains in 
Eq. (44).  Since cosr x e Q eu k x v   , sinr y e Q ev k y v   , 

and r R er k   , the velocity tracking errors of ue, ve and re 

can also be kept in a bounded setting near zero when the state 

errors of  x t  converge to a value with a small neighborhood 

near zero, which would ensure the global stability of the control 
system. 

VI. NUMERAL SIMULATION RESULTS  
AND DISCUSSIONS 

Numerical simulations were conducted to evaluate the pro- 
posed controller performances in model’s smooth transient re- 
sponses, quick convergence, low control effort, and robustness.  
To verify the validity of the proposed controller, an underactuated 
underwater vehicle was taken as an example to evaluate its ability 
in the trajectory tracking control.  For the vehicle considered in 
this example, the following vectors are used  = [u, v, r]T,  = 
[x, y,]T and  = [Fu, 0,r]

T.  In the following simulations, the 
same controller structure is applied for the surge force of Fu and 
the yaw torque of r using the same gain values in the controller 
equations.  In that way, the controller design would be indepen- 
dent of the tracked trajectory.  The mass (m) of the underactuated 
underwater vehicle is 185 kg and its rotational inertia around z 
axis (Iz) is 50 kgm2.  The added masses in the directions of u 
and v and the added moment of inertia in the direction of r are 

given as 30 kguX   , 80 kgvY    and 230 kg mrN    , re- 

spectively.  The surge, sway and yaw linear drag coefficients 
have values of Xu = 70 kg/s, Yv = 100 kg/s and Nr = 50 kgm2/s.  
The surge, sway, and yaw quadratic drag coefficients are at 
Xu|u| = 100 kg/m, Yv|v| = 200 kg/m and Nr|r| = 100 kgm2.  Also, 
the constants of mu , mv, mr representing the added mass and com- 
bined inertia are given as 215 kgu um m X   , mv = vm Y   

265 kg, and 280 kg mr z rm I N    . 

All values mentioned above were used as the nominal values 
in the controller’s dynamic model.  In the following simulation 
cases, the model parameters in the plant’s dynamic model in- 
cluding physical parameters of the underwater vehicle and hy- 
drodynamic coefficients are determined based on the following 
two assumptions: 

 
(1) the actual values are not known; 
(2) the actual values vary within 10% from the nominal 

values. 

 
For example, the nominal values of the five parameters in 

the controller’s dynamic model  ˆ ˆ ˆˆ , , ,z u u um I X X  are equal to 

{185 kg, 50 kgm2, -30 kg, 100 kg/m} and their corresponding 
actual values in the plant’s dynamic model can be selected 
within the following ranges: m  [166.5 kg, 203.5 kg], Iz  
[49.5 kgm2, 50.5 kgm2], uX    [-30.3 kg, -29.7 kg], X|u|u  

[90 kg/m, 110 kg/m].  Numerical simulations were carried out 
using the fourth-order Runge-Kutta formula with a constant time 
step at 0.002 s.  The initial conditions and control parameters 
were given as follows: kx = 15, ky = 65, ku =2, k = kr = 1.5, 1 = 
40, 3 = 8, 1 = 2 = 0.8. 

Three adaptive fuzzy terms in the form of Eq. (18) were 

used to approximate the three uncertainties of *
1 uX u     

*
u uX u u , * *

2 v v vY v Y v v    , and * *
3 r r rN r N r r     in  
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Fig. 3.  Circular tracking control comparison between the actual and desired trajectories using nominal model parameters. 

 

 
Eq. (2).  The input vector of the three adaptive fuzzy terms is 
defined as es = [ue, ve, re]

T.  According to the errors caused by 
uncertainties, the universe of discourse of each fuzzy input vec- 
tor is divided into five fuzzy labels and their corresponding mem- 

bership functions are defined as    2 2exp 2
iA si si i iu e e c      , 

where ci has the values of -1, -0.5, 0, 0.5 and 1 and 1 is equal 
to 0.2124.  The fuzzy basis function (es)

 
in Eq. (18) was selected 

as  (es) = [1(es), , M(es)], where the l-th fuzzy basis func- 

tion was designed as      
12 12

11 1

l l
i i

M

l s si siA A
li i

e e e  
 

    

with  l
i

siA
e  as the membership function of the i-th input 

vector in the l-th fuzzy rule and M as the number of rules.  

Based on the above approximations, we have ˆ
i   

   ˆ
ˆ tanh

T
i sT

i s

e
e

 
 



 
   

 
.  The constant of 1 in the para- 

meter adaptive law (19) was selected as 1 = 100. 
To evaluate the trajectory tracking control performances of 

the proposed controller, two different responses were obtained 
under the following two conditions: 

 
(a) The actual model parameters are known and 
(b) The actual model parameters have values within 10% of 

its corresponding nominal values. 
 
The proposed controller was forced to track a desired circular 

path of xR(t) = 10 sin (0.01t) m, yR(t) = 10 cos (0.01t) m.  In this 
case the second derivatives of the path are required since the cir- 
cular tracking of the vehicle is achieved by a constant angular 

velocity of rR and linear velocities of uR and vR.  It is found that 
vQ = 0.1 m/s and 0Qv  from Eq. (6) and -0.01 rad / s  from 

Eq. (7), which indicates that the vehicle travels along a constant 
clockwise path. 

Case 1: 

The case focuses on the trajectory tracking control for a cir- 
cular path based on the nominal model parameter.  In this case, 
the underactuated underwater vehicle moves from the initial po- 
sition  = [-5 m, 15 m, 0 rad]T at an initial velocity of v = [0.01 
m/s, 0 m/s, 0 rad/s]T, which has initial position and orientation 
errors at xe = 5 m, ye = -2 m and e = 0 and initial velocity 
errors at ue = 0.09 m/s, ve = 0 m/s and re = -0.01 rad/s.  The 
total simulation time was set as 640 s.  For the purpose of bet- 
ter observation of the transient and steady state responses, the 
trajectory tracking errors were displayed for the first 100 se- 
conds and for the entire duration of 640 seconds.  The trajectory 
of the underactuated underwater vehicle is displayed in the 
inertial frame plane, as shown in Fig. 3.  The solid line is the 
desired path while the dashed line represents the actual path cal- 
culated by the proposed controller.  It can be seen from Fig. 3 
that a large difference exists between the desired path and the 
simulation datum during the transient state response. 

The surge control force of Fu and the yaw control moment 
of r are illustrated in Fig. 4.  It is observed from Fig. 4 that the 
surge control force of Fu and yaw control moment of r are 
very high at the initial 20 s and gradually converge to their de- 
sired values after a short of period of time.  During the steady 
state response after the convergence, both the surge force and 
the yaw moment exhibit a favorable steady performance without 
any significant big overshoot. 
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Fig. 4.  Responses of the surge control force and the yaw control moment. 
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Fig. 5.  Velocity tracking errors in the body-fixed frame. 
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Fig. 6.  Position and orientation tracking errors in the inertial frame. 

 
 
The velocity tracking errors in the body-fixed frame are shown 

in Fig. 5, in which the left figures display the errors for the first 
100 s of the simulation time to observe the transient response 
and the right figures display the errors for the entire duration of 
640 s to provide an overall view of the errors.  It can be seen from 
Fig. 5 that the velocity tracking errors converge to a value near 
zero with an oscillation the order of 10-3 m/s or rad/s without 
any large overshoot and then slowly converge to a steady response 
toward zero after 30 s.  Once the velocity tracking errors reach 
the steady state, the variation in errors is very limited.  The maxi- 
mum absolute velocity errors of ue, ve, re calculated from the data 
shown in Fig. 5 are 0.0035 (m/s), 0.0013 (m/s), 0.0061 (rad/s), 

respectively and their corresponding standard deviations are 
0.98367  10-3 (m/s), 0.16537  10-3 (m/s) and 0.62076  10-3 
(rad/s). 

The position and orientation tracking errors are depicted in 
Fig. 6, in which the left figures shows data for the first 100 s si- 
mulation time and the right figures shows the data for the en- 
tire simulation duration of 640 s.  It is observed from the left 
figures that after a short period of time, the tracking errors con- 
verge to near zero with a small oscillation in the order of 10-3 m 
or deg.  The position tracking errors of xe and ye calculated from 
the data in Fig. 6 are within the range from -0.0083 m to 0.0046 
m and the orientation tracking error varies within the range from  
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Fig. 7.  Circular trajectory comparison between the desired path and actual path using the model parameters within ±10% of the nominal values. 
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Fig. 8.  The surge control force and yaw control torque using the model parameters within ±10% of the nominal values. 

 
 

-0.0072 rad to 0.0126 rad.  The results demonstrate that the pro- 
posed controller performs extremely well in trajectory tracking 
control and quick convergence. 

Case 2: 

In this case, it is assumed that the actual model parameters 
are not known but they are within a maximal uncertainty of 10% 
of the nominal values for the previous trajectory tracking con- 
trol around a circular path.  The initial conditions are the same 
as those in Case 1.  The trajectory of the underactuated under- 
water vehicle in the inertial frame is displayed in Fig. 7.  It can 
be observed from Fig. 7 that similar errors exist between the 
desired path and the simulation datum.  When compared to the 
results from Case 1, the proposed controller in this case can also 
effectively eliminate uncertainties although it has the unknown 
model parameters. 

Fig. 8 demonstrates the surge control force of Fu and the 
yaw control torque of r resulted from the proposed controller.  
It is noteworthy that the estimated control force and torque ex- 

hibit relatively small oscillations even though the unknown mo- 
del parameters are assumed. 

The velocity tracking errors in the body-fixed frame are dis- 
played in Fig. 9, in which the left figures display the results for 
the first 100 s of the simulation time and the right figures illus-
trate the results for the entire duration of 640 s.  The velocity 
tracking errors quickly converge to a near zero value with a very 
small oscillation in the order of 10-3 m/s or rad/s and reach to the 
steady state after a short period of time.  Once the velocity track- 
ing errors reach to the steady state, the oscillation range is evenly 
bounded with the maximum absolute velocity errors of ue, ve, re 

at 0.0033 (m/s), 0.00054583 (m/s), 0.0074 (rad/s), respectively 
and the corresponding standard deviations at 0.00096979 (m/s), 
0.000095202 (m/s) and 0.00046292 (rad/s).  When compared 
to the results from Case 1, the unknown dynamic model para- 
meters in this case resulted in the similar velocity tracking errors 
to those from Case 1.  Those results confirm that the proposed 
controller is effective in uncertainty elimination. 

The position and orientation tracking errors are depicted in  
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Fig. 9.  Velocity tracking errors in the body-fixed frame using the model parameters within ±10% of the nominal values. 

 
 

Fig. 10.  They both quickly converge to a near zero value and 
stabilize at this value with an oscillation in the order of 10-3 m 
or deg.  The position tracking errors of xe and ye vary within 
the range from -0.0055 m to 0.004 m the orientation tracking 
error varies from -0.0045 rad to 0.0126 rad.  The results show 
that although some unknown model parameters are assumed in 
the second case, the proposed controller performs extremely 

well and also shows its capability of converging quickly. 

VII. CONCLUSIONS 

In this paper, the composite robust control scheme coupled 
with the sliding mode controller and the adaptive fuzzy control 
algorithm was introduced to tackle the horizontal trajectory  
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Fig. 10.  Position tracking errors in the inertial frame using the control parameters within ±10% of the nominal values. 

 
 

tracking control problem for underactuated underwater vehicles 
with model parameter perturbations and environmental distur- 
bances.  An adaptive fuzzy control algorithm was employed to 
compensate for model parameter perturbations while a sliding 
mode controller was adopted to eliminate the effects of environ- 
mental disturbances and approximation errors.  The asymptotic sta- 
bility of the overall system was demonstrated based on Lyapunov 

stability theory.  The relation between sliding mode control gains 
and model parameter uncertainties was derived to determine the 
error eliminating ability of the controller.  The horizontal dy- 
namic model and tracking error equations for the underactuated 
underwater vehicle were established for the trajectory tracking 
control of the vehicle. 

The proposed control scheme was also simulated for a circular 
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path using the nominal and non-nominal parameters and its ef- 
ficiency in eliminating the uncertainties was demonstrated and 
validated using numerical simulations of a 3-DOF underactuated 
underwater vehicle.  Numerical simulation results demonstrated 
that the proposed controller displayed excellent performances in 
its smooth transient responses, quick convergence, low control 
effort, and robustness.  The proposed controller can be used to 
analyse the control performances of the controller under various 
operational conditions. 
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