
Volume 25 Issue 4 Article 10

INTELLIGENT COMPUTATION AND DSP-BASED LANDING CONTROL INTELLIGENT COMPUTATION AND DSP-BASED LANDING CONTROL

Jih-Gau Juang
Department of Communications, Navigation and Control Engineering, National Taiwan Ocean University, Keelung,
Taiwan, R.O.C.

Hou-Kai Chiou
Department of Communications, Navigation and Control Engineering, National Taiwan Ocean University, Keelung,
Taiwan, R.O.C.

Chia-Ling Lee
Department of Communications, Navigation and Control Engineering, National Taiwan Ocean University, Keelung,
Taiwan, R.O.C.

Follow this and additional works at: https://jmstt.ntou.edu.tw/journal

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Juang, Jih-Gau; Chiou, Hou-Kai; and Lee, Chia-Ling (2017) "INTELLIGENT COMPUTATION AND DSP-BASED LANDING
CONTROL," Journal of Marine Science and Technology: Vol. 25: Iss. 4, Article 10.
DOI: 10.6119/JMST-017-0329-2
Available at: https://jmstt.ntou.edu.tw/journal/vol25/iss4/10

This Research Article is brought to you for free and open access by Journal of Marine Science and Technology. It has been
accepted for inclusion in Journal of Marine Science and Technology by an authorized editor of Journal of Marine Science and
Technology.

https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/vol25
https://jmstt.ntou.edu.tw/journal/vol25/iss4
https://jmstt.ntou.edu.tw/journal/vol25/iss4/10
https://jmstt.ntou.edu.tw/journal?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol25%2Fiss4%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol25%2Fiss4%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jmstt.ntou.edu.tw/journal/vol25/iss4/10?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol25%2Fiss4%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages

442 Journal of Marine Science and Technology, Vol. 25, No. 4, pp. 442-457 (2017)
DOI: 10.6119/JMST-017-0329-2

INTELLIGENT COMPUTATION AND
DSP-BASED LANDING CONTROL

Jih-Gau Juang, Hou-Kai Chiou, and Chia-Ling Lee

Key words: PID control, evolutionary computation, DSP, automatic
landing control, fuzzy CMAC, turbulence.

ABSTRACT

This paper presents several digital signal processor (DSP)
based intelligent controllers for aircraft automatic landing sys-
tems (ALSs). Proportional-Integral-Derivative (PID) control law
is adopted in the intelligent controller design. A fuzzy cerebellar
model articulation controller (CMAC) is utilized to compensate
for the PID control signal. Control gains are selected by evo-
lutionary computation. The controllers’ tracking performance of
preset landing paths and capability to adaptively respond to dif-
ferent disturbances are demonstrated through hardware simu-
lations. Different evolution methods, namely Adewuya crossover,
arithmetical crossover, average crossover, convex crossover and
blend crossover are utilized to analyze the controllers’ perfor-
mances in terms of optimal parameter search. Hardware im-
plementation of this intelligent controller is performed by a DSP
board with a VisSim platform. This study also compares dif-
ferent CMACs in order to improve the performance of conven-
tional ALSs. It is known that atmospheric disturbances affect not
only the flight qualities of an aircraft, but also the flight safety.
However, the proposed intelligent controllers can successfully
expand the controllable conditions, even with severe wind dis-
turbances.

I. INTRODUCTION

Evolutionary computation (EC) is the general term for several
computational techniques based on the evolution of biological
life in the natural world. In computer science, evolutionary com-
putation is a subfield of artificial intelligence involving combi-
natorial optimization problems. Evolutionary computation includes
genetic algorithm (GA), evolutionary programming (EP), evo-
lution strategies (ES), genetic programming (GP), ant colony
optimization (ACO), particle swarm optimization (PSO), clas-
sifier systems (CS) etc. In aircraft flight control problems, EC

has been applied to path planning and landing control for decades.
PSO was applied to an integrated landing reference system,
which guaranteed the security margin and deflection margin
(Zhang and Wang, 2013). Juang et al. (2004) also used GA
without quantization to design a longitudinal control system
based on a fuzzy controller to improve the precision of trajec-
tory tracking and the security of landing for unmanned aerial
vehicle (UAV) flight control. The designed automatic landing
control system demonstrated good robust performance with
wind disturbance, perturbation of aerodynamic parameters and
sensor measurement errors. Imae et al. (1999) applied GP to deal
with the flight control problem of a passenger aircraft encoun-
tering wind shear during the landing process. Based on GP, they
proposed a method to construct flight controllers with pertur-
bation performance, even when encountering wind shear, and
demonstrated its effectiveness using Boeing-727 type aircraft.
In Kanury and Song (2006), a flight management system that
not only generates optimal trajectory but also produces smooth
control action for path tracking was proposed for multiple aerial
vehicles. GA was used to generate the optimal flight path when
the target positions were given with unknown obstacles. A
memory-based control strategy was developed to steer the ve-
hicle along the generated trajectory, which can be dynamically
adjusted according to varying flight conditions. In Heimes (2001),
EC was applied to the design of a full-envelope flight control sys-
tem. A generic control law structure with generic gain sche-
dule algorithm was defined. The EC algorithm searched for an
optimum control law that was valid throughout the flight en-
velope. This approach eliminated the normal manual iterative
development methodology used to develop aircraft control laws.
It also provided a rapid prototyping capability that allowed an
existing flight control design to be customized for different air-
craft with different evolutionary strategies, mutation methods,
selection methods and recombination operators. In Arantes et al.
(2015), a multi-population GA for UAV path planning in emer-
gency situations was presented. Its objective was to minimize
damage and increase safety during landing. The authors proposed
two strategies for planner systems based on a multi-population
GA and a greedy heuristic. The FlightGear simulator was used
to illustrate the UAV’s behavior when landing under different
wind velocities. GA has been used for a wide range of appli-
cations, as well as for specific applications focused on a specific
requirement. Thus far many new methods have focused on mak-

Paper submitted 11/10/14; revised 04/27/16; accepted 03/19/17. Author for
correspondence: Yuchen Wang (e-mail: wobushiwangyuchen@live.cn).
Department of Communications, Navigation and Control Engineering, Na-
tional Taiwan Ocean University, Keelung, Taiwan, R.O.C

 J.-G. Juang et al.: Intelligent Computation Landing Control 443

ing GA more efficient, and on increasing the width of the para-
meter search ability. This study focuses on the crossover prin-
ciple of different ECs. Five crossover principles (Michalewicz,
1992; Eshelman and Schaffer, 1993; Adewuya, 1996) are used
with intelligent controllers under wind disturbances to search
optimal control gains, and the different performances of the
principles are compared.

According to a report by Boeing (Boeing Publication, 2000),
the primary cause of 67% of all air accidents is human error,
and 5% are caused by weather factors. By flight phase, 47% ac-
cidents occur during final approach or landing. It is therefore
desirable to develop an intelligent automatic landing system
(ALS) that expands the operational envelope to include safer
responses under a wider range of conditions. In this study, the
robustness of the proposed controller is obtained by choosing
optimal control gains that allow a wide range of disturbances
to the controller. The goal of this paper is to show that the pro-
posed intelligent ALS can reduce reliance on human operators
and guide the aircraft to a safe landing in severe turbulence en-
vironments. This study first uses a conventional automatic land-
ing control system that uses a PID controller with EC as the
adjustment mechanism in order to improve the performance of
the conventional ALS and guide the aircraft to a safe landing.
Wind disturbances are also included in the flight simulations.
Many researchers have applied intelligent concepts to the pro-
blem of intelligent landing control, but some studies are not adap-
tive to various wind disturbance conditions (Nho and Agarwal,
2000; Heimes et al., 2001; Ionita and Sofron, 2002; Kanury and
Song, 2006). In past decades, most improvements to the ALS
system have been for the guidance instruments, such as Global
Navigation Satellite System (GNSS) Integrity Beacons, Global
Positioning Systems, Microwave Landing Systems, and Auto-
matic Land Position Sensors (Cohen et al., 1995; DDC-I, 1995;
Kaufmann and McNally, 1995; Asai et al., 1997). By using im-
provement calculation methods and high accuracy instruments,
these systems provide more accurate flight data to the ALS,
allowing a smoother landing. However, these researches do
not include weather factors such as wind turbulence. Recently,
intelligent concepts such as neural networks, fuzzy systems,
genetic algorithm, and hybrid systems have been applied to
flight control to increase the flight controller’s adaptive capabil-
ity to different environments (Jorgensen and Schley, 1991; Izado
et al., 1998; Juang and Lin, 2008; Juang et al., 2008). In studies
preceding this paper (Juang and Chin, 2004; Juang and Lin, 2008;
Juang et al., 2008; Juang et al., 2011), the authors applied a multi-
layered fuzzy modeling neural network as a controller (Juang
and Chin, 2004). Control gains of pitch autopilot were selected
by GA. The linguistic fuzzy controller was tuned by back pro-
pagation through a time learning scheme, which could over-
come turbulence of up to 75 ft/sec. In (Juang and Lin, 2008),
the authors used an intelligent control scheme that integrated a
cerebellar model articulation controller (CMAC) and genetic
algorithms (GA) in automatic landing control, to make auto-
matic landing systems more intelligent. The fuzzy CMAC was
applied as a compensator for the PID control. GA was also used

in searching optimal control gains of the pitch autopilot. The per-
formance of the fuzzy-CMAC was demonstrated to be more ro-
bust than a conventional CMAC, and it was able to safely guide
an aircraft through turbulence of up to 90 ft/sec. In Juang et al.
(2011), different neural network controllers were applied to auto-
matic landing control design. The back propagation network,
multi-functional link network, counter propagation network, im-
proved back propagation network and radial basis function net-
work, were able to overcome turbulence of up to 65 ft/sec, 65
ft/sec, 30 ft/sec, 55 ft/sec and 30 ft/sec, respectively. An adap-
tive resource allocating network (ARAN) was also proposed
to improve the performance of conventional ALS. Adaptive
learning rates were obtained through analysis of Lyapunov sta-
bility in order to guarantee the learning convergence. The ARAN
controller was able to overcome turbulence of up to 75 ft/sec.
In Juang et al. (2008), the authors proposed an intelligent auto-
matic landing controller that uses recurrent neural networks
(RNN) with genetic algorithms (GAs) to improve the perfor-
mance of conventional ALS. The conventional PID controller
was replaced by the RNN controller with optimal control gains
in an environment with atmospheric turbulence. Real-time re-
current learning (RTRL) was applied to train the RNN, which
used gradient-descent of the error function with respect to the
weights to perform the weights updates. The control scheme
utilized five crossover methods of GAs to search optimal feed-
forward and feedback control gains of the pitch autopilot, with
different turbulence strengths. For the Adewuya, Arithmetical,
Average, Convex and Blend GAs, maximal turbulences were
90 ft/sec, 85 ft/sec, 85 ft/sec, 85 ft/sec and 85 ft/sec, respec-
tively Here, a type-2 FCMAC (Liu et al., 2007; Wang et al.,
2004; Liang and Mendel, 2000) was used to improve the per-
formance of conventional ALS. Comparisons of conventional
CMAC (Albus, 1975) and conventional (type-1) FCMAC (Juang
and Lin, 2008) were also given. The performance of the intel-
ligent ALS in extreme environmental conditions can be improved
by the advantages of the CMAC, which include local gener-
alization and a rapid learning process. Meanwhile, this study also
utilizes VisSim software and TI C2000 Rapid Prototyper to de-
velop an embedded control system that uses a DSP controller.
Thus, hardware-in-the-loop control can be achieved.

II. LANDING SYSTEM

At the aircraft landing phase, the pilot descends from the
cruise altitude to an altitude of approximately 1200 feet above
the ground. The pilot then positions the aircraft so that the air-
craft is on a heading towards the runway centerline. When the
aircraft approaches the outer airport marker, which is about 4
nautical miles from the runway, the glide path signal is inter-
cepted, as shown in Fig. 1 (Juang et al., 2011). As the airplane
descends along the glide path, its pitch, attitude and speed must
be controlled. The descent rate is about 10 ft/sec, and the pitch
angle is between -5 to 5 degrees. Finally, as the airplane de-
scends to 20 to 70 feet above the ground, the glide path control
system is disengaged and a flare maneuver is executed. The

444 Journal of Marine Science and Technology, Vol. 25, No. 4 (2017)

~~

0 ft
50 ft

touch down

1200 ft
glide path

flare path
Runway position

Altitude

Fig. 1. Glide path and flare path.

vertical descent rate is decreased to 2 ft/sec so that the landing
gear is able to dissipate the energy of the impact at landing.
The pitch angle of the airplane is then adjusted, to between 0 to
5 degrees for most aircraft, which allows a soft touchdown on
the runway surface.

A simplified model of a commercial aircraft that moves only
in the longitudinal and vertical plane is used in the simulations
for implementation ease (Jorgensen and Schley, 1991). The
motion equations of the aircraft are given as follows:

 0() () () cos()
180u g w g q

E E T T

u X u u X w w X q g

Z Z

  

 

       

 


 (1)

0

0

() () ()
180

()sin()
180

u g w g q

T

w Z u u Z w w Z U q

g



  

      




 (2)

 () ()u g w g q E E Tq M u u M w w M q M M        (3)

 q  (4)

 0180
h w U

    (5)

where u is the aircraft’s longitudinal incremental velocity (ft/sec),
w is the aircraft’s vertical incremental velocity (ft/sec), q is the
pitch rate (rate/sec),  is the pitch angle (deg), h is the aircraft’s
altitude (ft), E is the incremental elevator angle (deg), T is the
throttle setting (ft/sec), o is the flight path angle (-3deg), and g
is the gravity (32.2 ft/sec2). The parameters Xi, Zi and Mi are
the stability and control derivatives.

In order to make the ALS more intelligent, reliable wind pro-
files are necessary. Two spectral turbulence form models by
von Karman and Dryden are mostly used for aircraft response
studies. In this study the Dryden form (Jorgensen and Schley,
1991) was used for its demonstration ease. The model is given by:

21

(0, 1) u u
g gc

u

a
u u N

t s a

 
  
   

 (6)

0 5 10 15 20 25 30 35 40 45
-50

-40

-30

-20

-10

0

10

20

Time (sec.)

ft.
/s

ec
.

Wind Gust velocity components:
Longitudinal (Solid) & Vertical (Dashed)

Fig. 2. Turbulence profile.

2

3 ()1
(0, 1)

()
w w w

g
u

a s b
w N

t s a

 
 
   

 (7)

where 510

ln(/ 510)
[1]

ln(51)gc wind

h
u u   , o

u
u

U
a

L
 , wL h ,

o
u

u

U
a

L
 , o

w
w

U
a

L
 ,

3
o

w

w

U
b

L
 , 1/ 3100uL h for 230h  ,

600uL  for 230h  ,  0.2 0.5 0.00098w gcu h    for

0 500h  , 0.2w gcu  for 500h  . The parameters are:

gu is the horizontal wind velocity (ft/sec), wg is the vertical

wind velocity (ft/sec), 0U is the nominal aircraft speed (ft/sec),

510windu is the wind speed at 510 ft altitude, uL and wL are

scale lengths (ft), u and w are RMS values of turbulence

velocity (ft/sec), t is the simulation time step (sec), N(0, 1) is
the Gaussian white noise with zero mean and unity standard
deviation, gcu is the constant component of gu , and h is the

aircraft altitude (ft). Fig. 2 shows a turbulence profile with a
wind speed of 30 ft/sec at 510 ft altitude (Juang et al., 2011).

III. CONTROL SCHEME

A conventional aircraft landing system uses PID-type con-
trol, as shown in Fig. 3 (Juang et al., 2011). Controller inputs
consist of altitude and altitude rate commands along with air-
craft altitude and altitude rate. The pitch command c is obtained
from the PID controller. Then, the pitch autopilot is controlled
by pitch command. The pitch autopilot is shown in Fig. 4 (Juang
et al., 2011). In order to enable aircraft to land more stably once
they have entered the flare path, a constant pitch angle will be
added to the controller. In general, the PID controller is simple
and effective, but there are some drawbacks such as apparent

 J.-G. Juang et al.: Intelligent Computation Landing Control 445

s
wh1

pitchup
pitchup

c

θ

+
+

+

+

+

+

−

−

θ

θ

θ

h

hc

h

hc

kh

kh

applied only during flare

Typical value : pitchup = 4 wh = 0.1kh = 0.25kh = 0.3

⋅⋅

⋅

Fig. 3. PID-controller.

++

− −

θ
θ θ δ Aircraft

Response
c θk

kq

Typical value-Glide Slope:

q

e E

Rate loop

Position loop

k = 2.8 kq = 2.8

k = 11.5 kq = 6.0Flare:

Disturbances

θ

θ

Fig. 4. Pitch autopilot.

Altitude
Altitude rate
Altitude command
Altitude rate command

PID
Controller

Pitch
Autopilot

Aircraft
Model

Wind
disturbance
generator

S

Pitch angle
Pitchrate

Altitude Altitude rate

CMAC

+ ++

UCMAC

UPt U

Fig. 5. The CMAC control scheme.

overshoot and sensitivity to external noise and disturbance.
When severe turbulence is encountered the PID controller may
not be able to guide the aircraft to a safe landing. With the CMAC
compensator, the proposed controller can overcome these dis-
advantages. It uses a traditional PID controller to stabilize the
system and train the CMAC to provide precise control. The
original gains of the PID controller are adjusted based on ex-
perience, and what it provides are tolerable solutions, rather than
desired solutions. The CMAC can effectively ameliorate these
conditions.

The overall control scheme is described in Fig. 5 (Juang and
Lin, 2008), in which the control signal U is the sum of the PID
controller output and the CMAC output. The inputs for the CMAC
and PID controller are: altitude, altitude command, altitude rate
and altitude rate command. In each time step k, the CMAC in-
volves a recall process and a learning process. In the recall pro-
cess, it uses the desired system output of the next time step and

Σ
x1

x2

xn

Σ

+

_

Actual output

Desired output

Y

Yd

U: Set of input
 vector

A: Associative
memory cell Y: Actual output

Fig. 6. Conceptual diagram of CMAC.

the actual system output as the address to generate the control
signal UCMAC. In the learning process, the control signal of the
pitch autopilot U is treated as a desired output. It is used to
modify the weights of CMAC stored at a location addressed by
the actual system output and the system output of the next time
step. The output of the CMAC is the compensation for pitch
command. When the wind turbulence is too strong, the ALS
cannot achieve a safe landing. Here, CMAC, type-1 FCMAC,
and type-2 FCMAC control schemes are used to improve the
turbulence resistance of the ALS.

1. Cerebellar Model Articulation Controller (CMAC)

CMAC is a type of artificial neural network proposed in
(Albus, 1975). It could be considered an associative memory learn-
ing structure based on the performance of the human cerebellum.
The function of CMAC is akin to a lookup-table technique which
represents complex and nonlinear systems. The fundamental con-
cept of CMAC is to store information into overlapping regions
in an associative approach so that stored information can be easily
recalled using less storage space (memory cell). The structure
of CMAC is shown in Fig. 6 (Juang and Lin, 2008). Manipu-
lation of the CMAC divides the algorithm into two segments.

First is the output generating stage. The output of CMAC
can be obtained by the mapping process U  A  Y, where A
represents the M-dimensional memory cell, the a  A  RM is
the binary associative vector, as an address indexes in coher-
ence with the input vector x. Let the input x address N (N < M)
memory cells; the mapping A  Y represents the chosen weights
stored in memory cells are added together to compute the out-
put as:

1

() ()
N

j j
j

y x w a x


  (8)

where wj is the weight of the jth storage hypercube and)(xa j
is a binary factor indicating whether the jth storage hypercube
is addressed by the input x.

446 Journal of Marine Science and Technology, Vol. 25, No. 4 (2017)

T-norm

T-norm

T-norm

T-norm

+

_

Fuzzy Encoding

Firing
Strength

Fuzzy Reasoning
rule

Associated
Memory Weights

Σ

Σ

Yd

x1

x2

xn

Fig. 7. conventional FCMAC structure.

The second stage is the CMAC network learning stage, which

serves to update the addressed memory cell weights according
to the error between the desired output and the real output. Its
weight updating rule is:

 () (1) (1)

1

()
N

i i i

j j d j j

j

w w y w a
m

 



   (9)

where yd is the desired output, m is the number of addressed
memory cells and  is the learning rate.

When the CMAC input vector is processed, it is simply di-
vided into certain blocks. The relation between the input vector
and these blocks is a crisp relation. The relation between the in-
put condition and the association intensity is simply “activated”
or “not activated”. Furthermore, an important CMAC identity
is local generalization derived from where nearby input vectors
overlap and share some associative memory cells.

2. Type-1 FCMAC

The structure of type-1 FCMAC is shown in Fig. 7. FCMAC
is a kind of associative memory network. It not only has a faster
self learning rate than normal neural networks by quantities with
a few adjustments of memory weights, but also has good local
generalization ability. The function of FCMAC is similar to a
look-up table, and the output of CMAC is figured from a linear
combination of weights stored in memory. The concept of FCMAC
is to store data (knowledge) in overlapped storage hypercubes
(remembering the region) in an associative manner such that the
stored data can easily be recalled. Two kinds of operations are
included in the FCMAC: one is the calculation of the output
result and the other is learning and adjusting the weight. The
output of FCMAC can be obtained by the mapping process
X  S  C  W  Y as follows.

Step 1: Quantization (X  S): X is n-Dimension Input Space.

For the given x = [x1 x2, , xn]
T, s = [s1 s2, , sn]

T represents
the quantization vector of x . The corresponding state of each
input variable is specified before fuzzification.

Step 2: Associative Mapping Segment (S  C):

This step fuzzifies the quantization vector quantized from x.
FCMAC uses the fuzzification method of the fuzzy theorem as
its addressing scheme. After the input vector is fuzzified, the
input state values are transformed to “firing strength”, which is
based on corresponding membership functions.

Step 3: Memory Weight Mapping (C  W):

After fuzzifying block regions, the ith rule’s firing strength
in FCMAC could be computed as:

 1 1 2 2 1
1

() ()* ()* () ()
n

j j j jn n j i
i

C x c x c x c x c x


   (10)

where cji(xi) is the jth membership function of the ith input
vector, and n is the total number of states. The asterisk “*” de-
notes a fuzzy t-norm operator. There are several kinds of t-norms,
such as the max, min and product operators. This study chooses
the product inference method as the t-norm operator because it
is easy to implement.

Step 4: Output Generation with Memory Weight Learning (W  Y):

Because of the partial proportional fuzzy rules and overlap
situation, multiple fuzzy rules are fired simultaneously. The
consequences of these multi-rules are merged by a defuzzifi-
cation process. The defuzzification approach applied in this
study sums the assigned weights of the activated fuzzy rules
based on their firing strengths, denoted as cj(x). The network
output is:

1 1
(() / ())

N N

j j i
j i

y w C x C x
 

   (11)

The FCMAC learning serves to update the memory weight
according to the error between the desired output and the actual
output. The weight update rule for FCMAC is as follows
(Juang and Lin, 2008):

 () (1)

1
() () / ()

N
i i

j j d j i
i

w w y y C x C x
m




    (12)

where  is the learning rate, m is the floor size (called gener-
alization) and yd is the desired output.

3. Type-2 Fuzzy CMAC

The type-2 fuzzy theorem is used in the CMAC structure in
order to promote more accurate resolution than conventional
FCMAC. The mapping procedure of type-2 FCMAC is similar
to that of conventional FCMAC. The diagram structure of type-2
FCMAC is shown in Fig. 8. Each mapping phase is described as
follows. X is an n-dimensional input space, as shown in Fig. 9.
For a given X = [x1 x2, , xn], S = [s1 s2, , sn] represents the
quantization vector of x. The corresponding state of each input
variable is specified before fuzzification. Type-2 FCMAC uses

 J.-G. Juang et al.: Intelligent Computation Landing Control 447

1 2 3 4 5 6 7 8 9 10

3
4 5

6 7
8 9

10

1
2

A

B

C

D

E
F

G

H

I
J

K

L

b
c

f

g

h

j

k

l

a

i
e

d

State (5, 6)

S1

S2

Layer 1

Layer 1

Layer 2

Layer 2

Layer 3

Layer 3

11 12

11
12

1

13

1

Fig. 8. Diagram of type-2 FCMAC in 3-D.

+

_

Upper Firing
Strength

low
er

Fi
rin

g
St

ren
gth

Type
reduced

Type
reduced

yr

y1

Σ

Σ

Σ

Σ

Yd

T-norm

T-norm

T-norm

T-norm

Fuzzy Encoding Fuzzy Reasoning
rule

Associated
Memory Weights

x1

x2

xn

Fig. 9. Architecture of type-2 FCMAC network.

the interval type-2 fuzzification method of the fuzzy theorem
as its addressing scheme. After the input vector to the interval
type-2 fuzzy set is fuzzified, the input state values are transformed
to upper firing strength and lower firing strength, which is based
on corresponding interval type-2 membership functions. This
study chooses the product inference method as the t-norm op-
erator. The jth rule’s upper firing strength jc and lower firing
strength cj in type-2 FCMAC could be computed as:

1 21 2

1

() ()* ()* () ()
n i

n
j

j j j n j i
i

c x c x c x c x c x


  (13)

1 21 2

1

() ()* ()* () ()
n i

n
j

n ij j j j
i

c x c x c x c x c x


  (14)

The type-reduced set of the type-2 FCMAC using the center
of sets type reduction is:

1 11 1 1 1

1
cos [,] [,] [,] [,]

1

[,] 1/
M MN N M N

n
j j

j
l r nw w w w w w c c c c c c

j

j

c w

y y y

c



   



 


   


   .

 (15)

448 Journal of Marine Science and Technology, Vol. 25, No. 4 (2017)

This is an interval type-1 set determined by its left and right
end points yl and yr, which can be written as follows (Liang
and Mende, 2000):

 1 1 1

1 1 1

N R N
jj j j j j

j j j R
r N R N

jj j

j j j R

c w c w c w

y

c c c

   

   


 



  

  
 (16)

 1 1 1

1 1 1

N L N
j j j j jj

j j j L
l N L N

j jj

j j j L

c w c w c w

y

c c c

   

   


 



  

  
 (17)

where w and w are the corresponding weights of c and c, re-
spectively. L and R can be obtained from (Liang and Mendel,
2000):

Step 1: Assume that the pre-computed jw are arranged in

ascending order, i.e.,

 1 2 Nw w w   .

Step 2: Compute yr by initially setting () / 2jj jc c c  for

j = 1  N and let r ry y  .

Step 3: Find (1 1)R R N   such that 1R R
rw y w   .

Step 4: Compute yr with jjc c for j R and j jc c for

j R , and let r ry y  .

Step 5: If r ry y  then go to step 6. If r ry y  then stop and

set r ry y  .

Step 6: Set r ry y  and return to Step 3.

The procedure for computing yl is very similar to the one

just given for yr. In Step 3 find (1 1)L L N   such that
1L L

lw y w   . Additionally, in Step 2 compute yl initially

setting () / 2j jjc c c  for j = 1  N and in Step 4 compute

yl with j jc c for j L and j jc c for j L .

The defuzzified output is simply the average:

 r ly y y  (18)

Type-2 FCMAC learning serves to update the memory weight
according to the error between the desired output and the actual
output. The learning rule for type-2 FCMAC is as follows:

 () (1)

1

() () / ()
N

i i
j j d j j

j

w w y y c x c x
m





    (19)

 () (1)

1

() () / ()
N

i i
dj j j j

j

w w y y c x c x
m





    (20)

where  is the learning rate and m is the floor size (called
generalization).

IV. OPTIMAL CONTROL PARAMETERS

GA was first proposed by John Holland in 1962 (Holland,
1962), and is an optimization and search technique based on
the principles of genetics and natural selection. In 1975, Holland
mentioned the most basic principle of GA in Adaptation in Natural
and Artificial Systems (Holland, 1962). In the same year, De
Jong showed the usefulness of GA for function optimization,
and made the first concerted effort to find optimized GA para-
meters. GA generally only involves techniques of implementing
mechanisms, such as reproduction, crossover, mutation, fittest
function, etc. via reproduction, crossover, and mutation steps, and
is able to generate consequent generations to reach the purpose
of the evolution. Based on a population’s degree of fitness value,
GA retains the fittest and eliminates inferior populations. GA
has therefore been widely used to solve optimization problems.
GA can search many points at the same time and is not prone
to falling into local optima. In recent years, many researchers
have improved the crossover and mutation mechanisms in GA
in order improve its performance. In a previous study (Juang
et al., 2008), the authors used different crossover methods in
recurrent neural network controller designs, and obtained better
performance than that achieved with the original control para-
meters. In this study, these crossover methods are applied to
the ALS control scheme with fuzzy CMAC controller. Roulette
wheel selection is applied in the reproduction process. Different
crossover operations are given as follows.

1. Adewuya Crossover Method

The operation is divided into three steps, as shown below
(Adewuya, 1996).

Step 1

Randomly choose a gene from each individual of a matching
pair in parent generation, mP  and nP , as crossover site.

 1 1 2m m m mspattern p p p p     (21)

 2 1 2n n n nspattern p p p p     (22)

Step 2

Calculate new values of these selected genes as follows,
where  is a random number and 0    1.

  1 1new m np p p       (23)

  2 1new m np p p       (24)

 J.-G. Juang et al.: Intelligent Computation Landing Control 449

Step 3

Replace mP  and nP with 1newP and 2newP , respectively.

The genes in the right side of the crossover site exchange with
each other, which will result in new offspring.

 1 1 2 1m m new nsNewpattern p p p p     (25)

 2 1 2 2n n new msNewpattern p p p p     (26)

2. Arithmetical Crossover Method

The arithmetical crossover makes the mating pair move apart
or draw together (Michalewicz, 1992).

 Move apart
 

 

'
1 1 1 2

'
2 2 1 2

x x x x

x x x x





   

   
 (27)

 Draw together
 

 

'
1 1 2 1

'
2 2 2 1

x x x x

x x x x





   

   
 (28)

where x1 and x2 are the parents, x1
’ and x2

’ are the new offspring,
and  is a random and positive small real value. In addition,
either (27) or (28) can be used with -1 <  < 1, which will
determine whether the mating pair moves apart or draws together
by the sign of .

3. Average Crossover Method

The average crossover method uses a simplified model with
(23) and (24) where  is 1/2. It can be obtained as follows:

   nmnew ppp 
2

1
 (29)

where mP  and nP are the parents and newP is the new offspring.

4. Convex Crossover Method

The convex crossover is shown below:

  1new j kx x x      (30)

where xj and xk are the parents, xnew is the new offspring and 
is a random and small real value.

5. Blend Crossover Method

The blend crossover (BLX-) was proposed by Eshelman
and Schaffer (Eshelman and Schaffer, 1993). It is a prominent
crossover operator for GA, and excels in optimization of a
number of standard separable functions with multimodality.
The BLX- crossover generates offspring using the following
operation:

 1 1 2min(,)i i i iX x x d   (31)

 2 1 2max(,)i i i iX x x d   (32)

 1 2
i i id x x  (33)

where x1 and x2 are chosen randomly from the population, 1
ix

and 2
ix are the ith elements of x1 and x2, respectively. The

value of each element c
ix of the offspring vector cx is uni-

formly sampled from the interval  21 , ii XX .  is a positive

parameter, with a suggested value of 0.5.
Finally, the mutation in GA is a very important process, as it

permits the introduction of extra variability into the population.
This study chooses a population at random, and changes its gene
information. However, the new offspring must be in the range
established after adding gene information. The real number mu-
ation process is applied as follows:

 _new oldx x s rand noise   (34)

where s is the random value between 0 to 1. The fitness func-
tion that was used in this control scheme is:

Fitness = number of successful landings with

different turbulence strengths
. (35)

V. HARDWARE REALIZATION

VisSim is a Windows-based program for the modeling and si-
mulation of complex nonlinear dynamic systems (Visual Solution,
2002). VisSim combines an intuitive drag & drop block diagram
interface with a powerful simulation engine. The visual block
diagram interface offers a direct method for constructing, modi-
fying and maintaining system models. The simulation engine
provides fast and accurate solutions for linear, nonlinear, con-
tinuous time, discrete time, time varying and hybrid system de-
signs. This study used ViSim to build a dynamic aircraft model,
and realized the conventional PID controller by the same manner.
The intelligent controller design using C language and its re-
alization by DSP are also presented (Juang et al., 2011).

Since the invention of the transistor and integrated circuit,
digital signal processing functions have been implemented on
many hardware platforms ranging from special-purpose archi-
tectures to general-purpose computers. It was not until all of
the functionality (arithmetic, addressing, control, I/O, data stor-
age and control storage) could be realized on a single chip that
DSP could become an alternative to analog signal processing
for the wide range of applications seen today. This study uses
a TI TMS320LF2407 chip to perform the desired tasks. The
2407A devices offer the enhanced TMS320DSP architectural
design of the C2xx core CPU for low-cost, low-power and high-

450 Journal of Marine Science and Technology, Vol. 25, No. 4 (2017)

EX
PA

N
SIO

N
 P6

PA
R

A
LLEL P9

A
N

A
LO

G
 EX

PA
N

SIO
N

 P1-P7
IJO

 EX
PA

N
SIO

N
 P2-P8

DATA ANALOG TO
 DIGITAL
 CONVERTER
ADDRESS

JMS320LF2407

JTAG

SRAM
64 K × 16

Program/Data

PARALLEL
PORT/JTAG

CONTROLLER

JTAG P10

Fig. 10. Working process of the eZdspTMLF2407A board.

Fig. 11. Externals of the eZdspTMLF2407A board.

Construct DSP
control blocks

The control gains
adjusting and
demonstrating

Compiling and
linking Generating C code

Fig. 12. Flow chart of VisSim/DSP procedure development.

performance processing capabilities. Moreover, it offers a suit-
able array of memory sizes and peripherals tailored to meet the
specific performance points required by various applications.
The TMS320LF2407 operates at 40 MHz (40 MIPS), has 4
to16 PWM output channels and has serial communication ca-
pabilities. In addition, the TMS320LF2407 contains a 10-bit
analog-to-digital converter (ADC), with a minimum conversion
time of 500 ns and up to 16 channels of analog input. Further-
more, the working process and externals of the eZdspTMLF2407A
board are shown in Figs. 10 and 11, respectively.

There are three basics steps in the development of a DSP al-
gorithm:

(1) Create the system to be executed on the target DSP;
(2) Generate the C source code from the system;
(3) Compile and link the C source code to produce an execut-

able file.

If step 1 is performed using available blocks from VisSim
software, steps 2 and 3 are automatically performed by VisSim.
The core of the VS-ECD2407 is the TI TMS320LF2407A,
which is a 16-bit fixed-point DSP. When designing the con-
troller of an aircraft, the problem of the fixed point must be
taken into account, because VisSim are molds all have floating-
point operation. Thus, the VisSim/Fixed-Point software must be
matched to the design molds of the fixed-point flight controller.
Fig. 12 shows DSP development of the procedure entirely, which
is divided into the following steps.

Step 1: In VisSim software, the fixed-point controller molds of

an aircraft are designed by VisSim/TI C2000 Rapid Pro-
totype and VisSim/Fixed Point.

Step 2: CCStudio can make fixed-point controller molds to per-
form compiling, analysis, debugging and demonstration,
and generate *.c code and *.out code.

 J.-G. Juang et al.: Intelligent Computation Landing Control 451

Fig. 13. DSP Hardware in-the-loop mode.

Step 3: Generate DSP controller molds which include *.out
code, and replace original fixed-point controller molds.

Step 4: Download *.out code to TI TMS320LF2407A embed-
ded flash memory by JTAG.

Step 5: Utilize DSP controller to control automatic landing sys-
tem and show real-time relevant flight behavior.

By the above DSP controller development procedure, the

entire real-time DSP hardware in-the-loop mode is shown in
Fig. 13. From the VisSim development platform, it will transmit
information, altitude, altitude rate, altitude and altitude rate com-
mands to the VS-ECD2407 via a connecting JTAG between the
computer and the VS-ECD2407. After DSP processing, it passes
the pitch command and adjusts the angle of elevation back to
the pitch autopilot in VisSim via JTAG. This enables an aircraft
to follow a chosen landing trajectory. The advantages of DSP
are its fast operation, powerful instruction, fixed addressing
ability at high speed, parallel processing etc. These can signi-
ficantly improve processing speed and accuracy, such that it
can be applied to real-time control. In the VisSim simulation
selection items, one can choose “Run in Real Time”, and while
designing fixed-point DSP controller, choose the exchange fre-
quency of the datum between DSP and PC properly, then real-
time control can be performed.

VI. SIMULATION RESULTS

The aircraft starts the initial states of the ALS as follows: the
flight height is 500 ft, the horizontal position before touching
the ground is 9240 ft, the flight angle is -3 degrees, and the speed
of the aircraft is 234.7 ft/sec. Successful touchdown landing
conditions are defined as follows:

(1) 3 1TDh    (ft/sec)

(2) 300 () 1000TDx T   (ft)

(3) 200 () 270TDV T  (ft/sec)

(4) 10 () 5TD T   (degrees)

where T is the time at touchdown, TDh is vertical speed, TDx is

the horizontal position, TDV is the horizontal speed and TD is

the pitch angle.

1. Conventional PID Controller

Table 1 shows the results from using different wind turbulence
speeds. The conventional PID controller with original control
gains can only successfully guide an aircraft through wind speeds
of 0 ft/sec to 30 ft/sec (Jorgensen and Schley, 1991). If the wind

452 Journal of Marine Science and Technology, Vol. 25, No. 4 (2017)

Table 1. Results obtained using conventional PID controller (control gains: K1 = 2.8, K2 = 2.8, K3 = 11.5, K4 = 6.0).

Wind speed Landing point (ft) Aircraft vertical speed (ft/sec) Pitch angle (degree)

0 797 -2.83 -1.41

10 910 -2.55 -0.85

20 809 -2.38 -0.59

30 844 -2.19 -0.17

48.5

32.4

16.2

0

-16.2

-32.4

-48.5
8.45

5.63

2.82

0

-2.82

-5.63

-8.45

0 49.4 98.9 148 198 247 297 346 396 445 494 544 593 643 692 742 791 841 889
Fig. 14. Turbulence profile (30 ft/sec).

2.42

1.62

0.808

0

-0.808

-1.62

-2.42
3.69

2.46

1.23

0

-1.23

-2.46

-3.69
0 49.4 98.9 148 198 247 297 346 396 445 494 544 593 643 692 742 791 841 889

Fig. 15. Aircraft pitch (top) and command (bottom).

2.42

1.62

0.808

0

-0.808

-1.62

-2.42
3.69

2.46

1.23

0

-1.23

-2.46

-3.69

0 49.4 98.9 148 198 247 297 346 396 445 494 544 593 643 692 742 791 841 889
Fig. 16. Vertical velocity (top) and command.

500

417

333

250

167

83.3

0
500

417

333

250

167

83.3

0

0 49.4 98.9 148 198 247 297 346 396 445 494 544 593 643 692 742 791 841 889
Fig. 17. Aircraft altitude (top) and command.

speed is higher than 30 ft/sec, the ALS will be unable to guide
an aircraft to land safely. An aircraft can thus only achieve a

safe landing in wind turbulence of up to 30 ft/sec, as shown in
Figs. 14-17.

 J.-G. Juang et al.: Intelligent Computation Landing Control 453

Table 2. Results obtained using CMAC controller.

Wind speed Landing point (ft) Aircraft vertical speed (ft/sec) Pitch angle (degree)

0 854 -2.55 -0.96

10 762 -2.76 -0.93

20 774 -2.51 -0.61

30 844 -2.72 -0.41

40 691 -1.93 0.21

50 586 -2.26 0.87

58 844 -2.58 0.98

Table 3. Results obtained using type-1 FCMAC control.

Wind speed Landing point (ft) Aircraft vertical speed (ft/sec) Pitch angle (degree)

10 797 -2.83 -1.41

30 938 -1.54 -0.58

50 891 -2.13 0.47

70 691 -2.21 1.41

90 926 -1.99 1.34

Table 4. Results obtained using type-2 FCMAC control.

Wind speed Landing point (ft) Aircraft vertical speed (ft/sec) Pitch angle (degree)

20 855 -2.51 -0.58

40 726 -2.44 0.03

60 996 -2.00 0.50

80 890 -1.71 1.39

100 937 -2.21 2.05

Table 5. Fixed number of generations.

 Adewuya crossover Arithmetical crossover Average crossover Convex crossover Blend crossover

CPU times
RGA/Total

2.04% 1.61% 1.51% 1.75% 1.62%

Error (%) 9.28% 9.04% 9.06% 9.00% 9.20%

Max intensity (ft/sec) 70 70 65 70 75

2. Different CMAC Controllers

The results obtained using the CMAC controller are given
in Table 2. The type-2 FCMAC control scheme can successfully
guide the aircraft flying through wind speeds of 0 ft/sec to 100
ft/sec, while the type-1 FCMAC can only offer safe guidance
below 90 ft/sec [21], as shown in Table 3. Table 4 shows the results
obtained using type-2 FCMAC. Scenarios with wind turbulence
of 100 ft/sec include a pitch angle of 2.05 degrees, vertical speed
of -2.21 ft/sec, horizontal velocity of 234.68 ft/sec, and hori-
zontal position at touchdown is 937 ft.

3. Evolutionary Computation-Based Controller

In evolutionary computation, regardless of binary-coded type

or real-valued type, many new methods have been proposed
improve the evolution, offering better parameter search ability.
This section focuses on the crossover method of real-valued ge-
netic algorithm. First of all, the relevant initial parameters of
the real-valued genetic algorithm are fixed, and evolution pro-
cedures, namely reproduction and mutation, are all unanimous.
The flow chart of a complete evolution is shown in Fig. 18. This
study uses five crossover principles to search optimal control
gains separately for an aircraft using a CMAC controller in tur-
bulence wind conditions, and compares differences between
these methods. The number of generations of evolution was fixed
in order to calculate the execution time (CPU time) required for
each crossover method.

Tables 5 and 6 show the comparison results obtained using

454 Journal of Marine Science and Technology, Vol. 25, No. 4 (2017)

Table 6. Required number of generations.

 Adewuya crossover Arithmetical crossover Average crossover Convex crossover Blend crossover

CPU times
RGA/Total

1.84% 1.63% 1.61% 1.43% 1.94%

Error (%) 9.21% 9.27% 9.09% 9.10% 9.20%

Max intensity (ft/sec) 80 75 75 75 75

Required generations 23 18 35 31 25

Start searching

Define the relevant parameters

Generate initial generations
and populations

Satisfy the condition of
the ending evolution

Generate different wind disturbance

All populations are tested

Aircraft landing control with
CMAC learning

Record successful times

Reproduction

Mutation

Crossover

Generate new generation

Optimal values

Stop searching

YES

NO

Fig. 18. Evolutionary learning process of the CMAC control scheme.

 J.-G. Juang et al.: Intelligent Computation Landing Control 455

Table 7. Results obtained using type-1 FCMAC with optimal control gains in TMS320C6713 DSP board (optimal control
gains: K1 = 2.5409, K2 = 6.8029, K3 = 10.7398, K4 = 13.4932).

Wind speed Landing point (ft) Aircraft vertical speed (ft/sec) Pitch angle (degree)

10 785.2276 -2.6398 -1.0054

20 738.2920 -2.5844 -0.6968

30 861.7598 -2.4173 -0.2652

40 693.1877 -2.1031 0.3418

50 814.1143 -2.5232 0.3842

60 820.4292 -1.8753 1.0607

70 798.7611 -1.9576 1.3403

80 738.2920 -1.6419 2.0949

90 961.2381 -1.5932 1.6522

100 849.5021 -1.4839 2.0451

105 736.9072 -1.6998 2.5472

Table 8. Results obtained using type-2 FCMAC with optimal control gains in TMS320C6713 DSP board (optimal con-
trol gains: K1 = 2.0738; K2 = 2.0738; K3 = 8.4802; K4 = 14.8921).

Wind speed Landing point (ft) Aircraft vertical speed (ft/sec) Pitch angle (degree)

10 713.4394 -2.7149 -1.0181

20 658.6411 -2.5085 -0.5884

30 689.9717 -2.5961 -0.3657

40 796.1005 -2.6263 0.0399

50 867.3648 -1.7812 0.6581

60 926.0343 -1.6648 0.7523

70 937.7682 -1.5684 1.0462

80 738.2920 -2.1779 1.3978

90 722.0064 -2.7847 2.5582

100 867.3648 -1.6653 2.1311

110 703.6141 -2.5363 2.2396

114 838.8158 -1.8290 2.9149

different crossover methods. All cases are tested by 10 inde-
pendent runs. The results shown in Tables 5 and 6 are averaged
values of these independent runs. This study fixed the number
of generations to 10 in order to compare CPU times, as shown
in Table 5. Table 6 shows the required number of generations until
optimal control gains are obtained. From Table 5, the CPU time
of the average crossover is the lowest. From the comparison
of the error, which is the difference between altitude command
and actual altitude under wind turbulence speeds at 70 ft/sec,
the lowest value is achieved by the convex crossover. From
Table 6, the Adewuya crossover can overcome the most intense
wind turbulence, up to 80 ft/sec, and does not need more gene-
rations in convergence. In fact, the CPU times of these five
crossover methods are similar, and only represent a very small
portion of total execution time. Furthermore, the execution speeds
of new computer technology is constantly and consistently im-
proving. The execution time of the evolution is relative to the

speed of the CPU and the amount of RAM used. Therefore, the
difference lies in the parameters that are searched. Moreover,
Tables 5 and 6 compare the results of percentage of CPU time,
exhibiting only slight differences. This study also tested other
application software for searching optimal control gains. Sharing
part of the calculation resources clearly results in differences.
In addition, by the change within unit time, wind turbulence is
more violent than wind shear. Searching optimal control gains
in wind turbulence is more difficult than in wind shear, and thus
requires more generations. Since the Adewuya crossover method
exhibited superior performance over the other methods tested,
it is used in FCMAC control scheme. Tables 7 and 8 show the
results obtained using type-1 FCMAC and type-2 FCMAC by
Adewuya crossover method, respectively. Type-2 fuzzy CMAC
with optimal control gains can enable the aircraft to automati-
cally negotiate turbulence of up to 114 ft/sec, as shown in Figs.
19-22.

456 Journal of Marine Science and Technology, Vol. 25, No. 4 (2017)

127

84.9

42.5

0

-42.5

-84.9

-127
36.2

24.1

12.1

0

-12.1

-24.1

-36.2
0 47.7 95.3 143 191 238 286 334 381 429 477 524 572 620 667 715 763 810 858

Fig. 19. Turbulence profile (100 ft/sec).

10.1

6.73

3.36

0

-3.36

-6.73

-10.1
5.61

3.74

1.87

0

-1.87

-3.74

-5.61

0 47.7 95.3 143 191 238 286 334 381 429 477 524 572 620 667 715 763 810 858
Fig. 20. Aircraft pitch (top) and command (bottom).

28.8

19.2

9.59

0

-9.59

-19.2

-28.8
12.3

8.20

4.10

0

-4.10

-8.20

-12.3
0 47.7 95.3 143 191 238 286 334 381 429 477 524 572 620 667 715 763 810 858

Fig. 21. Vertical velocity (top) and command.

500

417

333

250

167

83.3

0
500

417

333

250

167

83.3

0
0 47.7 95.3 143 191 238 286 334 381 429 477 524 572 620 667 715 763 810 858

Fig. 22. Aircraft altitude (top) and command.

VII. CONCLUSIONS

The purpose of this paper was to investigate the use of evolu-
tionary computation and DSP with CMACs in aircraft automatic
landing systems. CMAC is a non-fully connected associative
memory network with overlapping receptive fields. Unlike the
back propagation neural network which uses the global weight
updating rule, CMAC is distinguished by the constant local
weight updating rule. CMAC not only combines the advantages
of rapid convergence speed and low computation, but is also
easily realized by hardware. The conventional CMAC uses con-

stant binary or triangular receptive-field basis functions. The
characteristics of fuzzy systems are human-like reasoning and
expert knowledge. Therefore, fuzzy CMAC includes the learning
ability of neural networks and the advantages of fuzzy systems.
A fuzzy system that uses type-2 fuzzy sets and type-2 fuzzy
logic and inference is called a type-2 fuzzy system. In traditional
fuzzy system models, the structure is characterized by using
type-1 fuzzy sets. Type-1 fuzzy sets, defined on a universe of
discourse, map an element of the universe of discourse onto a
crisp number in the unit interval [0, 1]. However, type-2 fuzzy
can translate the linguistic and numerical uncertainty from

 J.-G. Juang et al.: Intelligent Computation Landing Control 457

original data into fuzzy rule uncertainty, while the type-1 cannot.
Type-2 fuzzy sets provide better ability to handle uncertainty
than type-1 fuzzy sets. The type-2 FCMAC is a generalization
of the feed-forward neural network, fuzzy neural network and
FCMAC. Under the condition of a similar number of parame-
ters, the type-2 FCMAC achieves the best performance with
lowest computational cost. The type-2 FCMACs are more able
to deal with the influence of system uncertainty and external
disturbances. In this paper, current flight control law is adopted
in the type-2 FCMAC controller design. The proposed con-
trollers are implemented in a DSP. Tracking performance and
adaptive capability are demonstrated through hardware simu-
lations. Using PID, CMAC, type-1 FCMAC and type-2 FCMAC,
the wind speed of turbulence limits are 30, 58, 90 and 100
ft/sec, respectively. The adaptive neural network controller and
fuzzy neural network controller can overcome turbulence of up
to 75 ft/s (Juang et al., 2011), and the recurrent neural network
controller can overcome turbulence of up to 60 ft/sec (Juang
et al., 2008). In this study, with optimal control gains, the CMAC
control scheme can negotiate turbulence of up to 80 ft/sec, type-1
FCMAC can manage 105 ft/sec, and the type-2 FCMAC can
manage 114 ft/sec. The proposed controllers have better per-
formance than those previously developed. These intelligent
controllers can be used to replace conventional controllers, and
can act as an experienced pilot and guide aircraft to safe land-
ings in severe wind turbulence environments.

REFERENCES

Adewuya, A. A. (1996). New methods in genetic search with real-valued chro-
mosomes. M.S. Thesis, Dept. of Mechanical Engineering, Massachusetts
Institute of Technology, 1996.

Albus, J. S. (1975). A New Approach to manipulator control: the cerebellar
model articulation control (CMAC). ASME Journal of Dynamic Systems,
Measurement, and Control 97, 220-227.

Arantes, J. S., M. S. Arantes, C. F. M. Toledo and B. C. Williams (2015). A
multi-population genetic algorithm for UAV path re-planning under critical
situation. Proc. IEEE International Conference on Tools with Artificial In-
telligence. 486-493.

Asai, S., H. Onuma, T. Hata, Y. Miyazawa and T. Izumi (1997). Development
of flight control system for automatic landing flight experiment. Mitsubishi
Heavy Industries Technical Review 34(3), 125-128.

Boeing Publication (2000). Statistical Summary of commercial Jet Airplane
Accidents. Worldwide Operations 1959-1999.

Chaturvedi, D. K., R. Chauhan and P. K. Kalra (2002). Application of general-
ized neural network for aircraft landing control system. Soft Computing 6,
441-118.

Cohen, C. E., H. S. Cobb, D. G. Lawrence, B. S. Pervan, J. D. Powell and B. W.
Parkinson (1995). Automatic Landing of a 737 Using GNSS Integrity
Beacons, Proc. ISPA.

DDC-I (1995). Advanced auto landing system from swiss federal aircraft factory.
Real-Time Journal, Sprint.

Eshelman, L. J. and J. D. Schaffer (1993). Real-coded genetic algorithms and
interval-schemata. Foundations of Genetic Algorithms 2, 187-202.

Heimes, F. O., W. S. Ford and W. Land (2001). Application of evolutionary com-
putation to aircraft control law design. Proc. Congress on Evolutionary
Computation 2, 1040-1046,.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor,
MI, University of Michigan Press.

Holland, J. H. (1962). Outline for a logical theory of adaptive systems. Journal
of the Association for Computing Machinery 3, 297-314.

Iiguni, Y., H. Akiyoshi and N. Adachi (1998). An intelligent landing system
based on human skill model. IEEE Transactions on Aerospace and Elec-
tronic Systems 34(3), 877-882.

Imae, j., S. Nakatani and J. Takahashi (1999). GP based flight control in the wind-
shear. Proc. IEEE International Conference on Systems, Man, and Cyber-
netics 2, 650-653.

Ionita, S. and E. Sofron (2002). The fuzzy model for aircraft landing control.
Proc. AFSS International Conference on Fuzzy Systems, 47-54.

Izadi, H., M. Pakmehr and N. Sadati (2003). Optimal neuro-controller in longi-
tudinal autolanding of a commercial jet transport. Proc. IEEE International
Conference on Control Applications, CD-000202, 1-6.

Jorgensen, C. C. and C. Schley (1991). A neural network baseline problem for
control of aircraft flare and touchdown. Neural Networks for Control,
403-425.

Juang, J. G., L. H. Chien and F. Lin (2011). Automatic landing control system
design using adaptive neural network and its hardware realization. IEEE
Systems Journal 5(2), 266-277, 2011.

Juang, J. G. and K. C. Chin (2004). Intelligent landing control based on neural-
fuzzy-GA hybrid system. Proc. IEEE International Joint Conference on
Neural Networks 3, 1781-1786.

Juang, J. G., H. K. Chiou and L. H. Chien (2008). Analysis and comparison of
aircraft landing control using recurrent neural networks and genetic algo-
rithms approaches. Neurocomputing 71, 3224-3238.

Juang, J. G. and W. P. Lin (2008). Aircraft landing control based on CMAC
and GA techniques. Proc. of IFAC WC 2008, 1730.

Kanury, S. and Y. D. Song (2006). Flight management of multiple aerial ve-
hicles using genetic algorithms. Proc. of the Thirty-Eighth Southeastern
Symposium on System Theory, 33-37.

Kaufmann, D. N. and B. D. McNally (1995). Flight Test Evaluation of the Stan-
ford University and United Airlines Differential GPS Category III Auo-
tmatic Landing System, NASA Technical Memorandum 110355, June 1995.

Liang, Q. and J. Mendel (2000). Interval type-2 fuzzy logic systems: theory and
design. IEEE Transactions on Fuzzy Systems 8(5), 535-550.

Liu, Z., Y. Zhang and Y. Wang (2007). A type-2 fuzzy switching control system
for biped robots. IEEE Transactions on Systems, Man, and Cybernetics-
Part C 37(6), 1202-1213.

Michalewicz, Z. (1992). Genetic algorithm  data structure = evolution programs.
New York, Springer-Verlag.

Nho, K. and R. K. Agarwal (2000). Automatic landing system design using fuzzy
logic. Journal of Guidance, Control, and Dynamics 23, 298-304.

Visual Solutions, Inc. (2002). VisSim User’s Guide-Version 5.0.
Wang, C. H., C. S. Cheng and T. T. Lee (2004). Dynamical optimal training for

interval type-2 fuzzy neural network. IEEE Transactions on Systems, Man,
and Cybernetics-Part C 34(3), 1462-1477.

Zhang, F. and Y. Wang (2013). Automatic landing of unmanned aerial vehicle
using fuzzy control. Proc. IEEE International Conference on Information
and Automation, 472- 477, 2013.

	INTELLIGENT COMPUTATION AND DSP-BASED LANDING CONTROL
	Recommended Citation

	untitled

