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ABSTRACT 

This paper presents several digital signal processor (DSP) 
based intelligent controllers for aircraft automatic landing sys- 
tems (ALSs).  Proportional-Integral-Derivative (PID) control law 
is adopted in the intelligent controller design.  A fuzzy cerebellar 
model articulation controller (CMAC) is utilized to compensate 
for the PID control signal.  Control gains are selected by evo- 
lutionary computation.  The controllers’ tracking performance of 
preset landing paths and capability to adaptively respond to dif- 
ferent disturbances are demonstrated through hardware simu- 
lations.  Different evolution methods, namely Adewuya crossover, 
arithmetical crossover, average crossover, convex crossover and 
blend crossover are utilized to analyze the controllers’ perfor- 
mances in terms of optimal parameter search.  Hardware im-
plementation of this intelligent controller is performed by a DSP 
board with a VisSim platform.  This study also compares dif-
ferent CMACs in order to improve the performance of conven- 
tional ALSs.  It is known that atmospheric disturbances affect not 
only the flight qualities of an aircraft, but also the flight safety.  
However, the proposed intelligent controllers can successfully 
expand the controllable conditions, even with severe wind dis- 
turbances. 

I. INTRODUCTION 

Evolutionary computation (EC) is the general term for several 
computational techniques based on the evolution of biological 
life in the natural world.  In computer science, evolutionary com- 
putation is a subfield of artificial intelligence involving combi- 
natorial optimization problems.  Evolutionary computation includes 
genetic algorithm (GA), evolutionary programming (EP), evo- 
lution strategies (ES), genetic programming (GP), ant colony 
optimization (ACO), particle swarm optimization (PSO), clas- 
sifier systems (CS) etc.  In aircraft flight control problems, EC 

has been applied to path planning and landing control for decades.  
PSO was applied to an integrated landing reference system, 
which guaranteed the security margin and deflection margin 
(Zhang and Wang, 2013).  Juang et al. (2004) also used GA 
without quantization to design a longitudinal control system 
based on a fuzzy controller to improve the precision of trajec-
tory tracking and the security of landing for unmanned aerial 
vehicle (UAV) flight control.  The designed automatic landing 
control system demonstrated good robust performance with 
wind disturbance, perturbation of aerodynamic parameters and 
sensor measurement errors.  Imae et al. (1999) applied GP to deal 
with the flight control problem of a passenger aircraft encoun-
tering wind shear during the landing process.  Based on GP, they 
proposed a method to construct flight controllers with pertur- 
bation performance, even when encountering wind shear, and 
demonstrated its effectiveness using Boeing-727 type aircraft.  
In Kanury and Song (2006), a flight management system that 
not only generates optimal trajectory but also produces smooth 
control action for path tracking was proposed for multiple aerial 
vehicles.  GA was used to generate the optimal flight path when 
the target positions were given with unknown obstacles.  A 
memory-based control strategy was developed to steer the ve- 
hicle along the generated trajectory, which can be dynamically 
adjusted according to varying flight conditions.  In Heimes (2001), 
EC was applied to the design of a full-envelope flight control sys- 
tem.  A generic control law structure with generic gain sche- 
dule algorithm was defined.  The EC algorithm searched for an 
optimum control law that was valid throughout the flight en-
velope.  This approach eliminated the normal manual iterative 
development methodology used to develop aircraft control laws.  
It also provided a rapid prototyping capability that allowed an 
existing flight control design to be customized for different air- 
craft with different evolutionary strategies, mutation methods, 
selection methods and recombination operators.  In Arantes et al. 
(2015), a multi-population GA for UAV path planning in emer- 
gency situations was presented.  Its objective was to minimize 
damage and increase safety during landing.  The authors proposed 
two strategies for planner systems based on a multi-population 
GA and a greedy heuristic.  The FlightGear simulator was used 
to illustrate the UAV’s behavior when landing under different 
wind velocities.  GA has been used for a wide range of appli-
cations, as well as for specific applications focused on a specific 
requirement.  Thus far many new methods have focused on mak- 
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ing GA more efficient, and on increasing the width of the para- 
meter search ability.  This study focuses on the crossover prin- 
ciple of different ECs.  Five crossover principles (Michalewicz, 
1992; Eshelman and Schaffer, 1993; Adewuya, 1996) are used 
with intelligent controllers under wind disturbances to search 
optimal control gains, and the different performances of the 
principles are compared. 

According to a report by Boeing (Boeing Publication, 2000), 
the primary cause of 67% of all air accidents is human error, 
and 5% are caused by weather factors.  By flight phase, 47% ac- 
cidents occur during final approach or landing.  It is therefore 
desirable to develop an intelligent automatic landing system 
(ALS) that expands the operational envelope to include safer 
responses under a wider range of conditions.  In this study, the 
robustness of the proposed controller is obtained by choosing 
optimal control gains that allow a wide range of disturbances 
to the controller.  The goal of this paper is to show that the pro- 
posed intelligent ALS can reduce reliance on human operators 
and guide the aircraft to a safe landing in severe turbulence en- 
vironments.  This study first uses a conventional automatic land- 
ing control system that uses a PID controller with EC as the 
adjustment mechanism in order to improve the performance of 
the conventional ALS and guide the aircraft to a safe landing.  
Wind disturbances are also included in the flight simulations.  
Many researchers have applied intelligent concepts to the pro- 
blem of intelligent landing control, but some studies are not adap- 
tive to various wind disturbance conditions (Nho and Agarwal, 
2000; Heimes et al., 2001; Ionita and Sofron, 2002; Kanury and 
Song, 2006).  In past decades, most improvements to the ALS 
system have been for the guidance instruments, such as Global 
Navigation Satellite System (GNSS) Integrity Beacons, Global 
Positioning Systems, Microwave Landing Systems, and Auto- 
matic Land Position Sensors (Cohen et al., 1995; DDC-I, 1995; 
Kaufmann and McNally, 1995; Asai et al., 1997).  By using im- 
provement calculation methods and high accuracy instruments, 
these systems provide more accurate flight data to the ALS, 
allowing a smoother landing.  However, these researches do 
not include weather factors such as wind turbulence.  Recently, 
intelligent concepts such as neural networks, fuzzy systems, 
genetic algorithm, and hybrid systems have been applied to 
flight control to increase the flight controller’s adaptive capabil-
ity to different environments (Jorgensen and Schley, 1991; Izado 
et al., 1998; Juang and Lin, 2008; Juang et al., 2008).  In studies 
preceding this paper (Juang and Chin, 2004; Juang and Lin, 2008; 
Juang et al., 2008; Juang et al., 2011), the authors applied a multi- 
layered fuzzy modeling neural network as a controller (Juang 
and Chin, 2004).  Control gains of pitch autopilot were selected 
by GA.  The linguistic fuzzy controller was tuned by back pro- 
pagation through a time learning scheme, which could over-
come turbulence of up to 75 ft/sec.  In (Juang and Lin, 2008), 
the authors used an intelligent control scheme that integrated a 
cerebellar model articulation controller (CMAC) and genetic 
algorithms (GA) in automatic landing control, to make auto-
matic landing systems more intelligent.  The fuzzy CMAC was 
applied as a compensator for the PID control.  GA was also used 

in searching optimal control gains of the pitch autopilot.  The per- 
formance of the fuzzy-CMAC was demonstrated to be more ro- 
bust than a conventional CMAC, and it was able to safely guide 
an aircraft through turbulence of up to 90 ft/sec.  In Juang et al. 
(2011), different neural network controllers were applied to auto- 
matic landing control design.  The back propagation network, 
multi-functional link network, counter propagation network, im- 
proved back propagation network and radial basis function net- 
work, were able to overcome turbulence of up to 65 ft/sec, 65 
ft/sec, 30 ft/sec, 55 ft/sec and 30 ft/sec, respectively.  An adap- 
tive resource allocating network (ARAN) was also proposed 
to improve the performance of conventional ALS.  Adaptive 
learning rates were obtained through analysis of Lyapunov sta- 
bility in order to guarantee the learning convergence.  The ARAN 
controller was able to overcome turbulence of up to 75 ft/sec.  
In Juang et al. (2008), the authors proposed an intelligent auto- 
matic landing controller that uses recurrent neural networks 
(RNN) with genetic algorithms (GAs) to improve the perfor- 
mance of conventional ALS.  The conventional PID controller 
was replaced by the RNN controller with optimal control gains 
in an environment with atmospheric turbulence.  Real-time re-
current learning (RTRL) was applied to train the RNN, which 
used gradient-descent of the error function with respect to the 
weights to perform the weights updates.  The control scheme 
utilized five crossover methods of GAs to search optimal feed- 
forward and feedback control gains of the pitch autopilot, with 
different turbulence strengths.  For the Adewuya, Arithmetical, 
Average, Convex and Blend GAs, maximal turbulences were 
90 ft/sec, 85 ft/sec, 85 ft/sec, 85 ft/sec and 85 ft/sec, respec-
tively Here, a type-2 FCMAC (Liu et al., 2007; Wang et al., 
2004; Liang and Mendel, 2000) was used to improve the per- 
formance of conventional ALS.  Comparisons of conventional 
CMAC (Albus, 1975) and conventional (type-1) FCMAC (Juang 
and Lin, 2008) were also given.  The performance of the intel- 
ligent ALS in extreme environmental conditions can be improved 
by the advantages of the CMAC, which include local gener-
alization and a rapid learning process.  Meanwhile, this study also 
utilizes VisSim software and TI C2000 Rapid Prototyper to de- 
velop an embedded control system that uses a DSP controller.  
Thus, hardware-in-the-loop control can be achieved. 

II. LANDING SYSTEM 

At the aircraft landing phase, the pilot descends from the 
cruise altitude to an altitude of approximately 1200 feet above 
the ground.  The pilot then positions the aircraft so that the air- 
craft is on a heading towards the runway centerline.  When the 
aircraft approaches the outer airport marker, which is about 4 
nautical miles from the runway, the glide path signal is inter-
cepted, as shown in Fig. 1 (Juang et al., 2011).  As the airplane 
descends along the glide path, its pitch, attitude and speed must 
be controlled.  The descent rate is about 10 ft/sec, and the pitch 
angle is between -5 to 5 degrees.  Finally, as the airplane de- 
scends to 20 to 70 feet above the ground, the glide path control 
system is disengaged and a flare maneuver is executed.  The  
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Fig. 1.  Glide path and flare path. 

 
 

vertical descent rate is decreased to 2 ft/sec so that the landing 
gear is able to dissipate the energy of the impact at landing.  
The pitch angle of the airplane is then adjusted, to between 0 to 
5 degrees for most aircraft, which allows a soft touchdown on 
the runway surface. 

A simplified model of a commercial aircraft that moves only 
in the longitudinal and vertical plane is used in the simulations 
for implementation ease (Jorgensen and Schley, 1991).  The 
motion equations of the aircraft are given as follows: 
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where u is the aircraft’s longitudinal incremental velocity (ft/sec), 
w is the aircraft’s vertical incremental velocity (ft/sec), q is the 
pitch rate (rate/sec),  is the pitch angle (deg), h is the aircraft’s 
altitude (ft), E is the incremental elevator angle (deg), T is the 
throttle setting (ft/sec), o is the flight path angle (-3deg), and g 
is the gravity (32.2 ft/sec2).  The parameters Xi, Zi and Mi are 
the stability and control derivatives. 

In order to make the ALS more intelligent, reliable wind pro- 
files are necessary.  Two spectral turbulence form models by 
von Karman and Dryden are mostly used for aircraft response 
studies.  In this study the Dryden form (Jorgensen and Schley, 
1991) was used for its demonstration ease.  The model is given by: 
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Fig. 2.  Turbulence profile. 
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0 500h  , 0.2w gcu   for 500h  .  The parameters are: 

gu  is the horizontal wind velocity (ft/sec), wg is the vertical 

wind velocity (ft/sec), 0U  is the nominal aircraft speed (ft/sec), 

510windu  is the wind speed at 510 ft altitude, uL  and wL  are 

scale lengths (ft), u  and w  are RMS values of turbulence 

velocity (ft/sec), t  is the simulation time step (sec), N(0, 1) is 
the Gaussian white noise with zero mean and unity standard 
deviation, gcu  is the constant component of gu , and h  is the 

aircraft altitude (ft).  Fig. 2 shows a turbulence profile with a 
wind speed of 30 ft/sec at 510 ft altitude (Juang et al., 2011). 

III. CONTROL SCHEME 

A conventional aircraft landing system uses PID-type con-
trol, as shown in Fig. 3 (Juang et al., 2011).  Controller inputs 
consist of altitude and altitude rate commands along with air- 
craft altitude and altitude rate.  The pitch command c is obtained 
from the PID controller.  Then, the pitch autopilot is controlled 
by pitch command.  The pitch autopilot is shown in Fig. 4 (Juang 
et al., 2011).  In order to enable aircraft to land more stably once 
they have entered the flare path, a constant pitch angle will be 
added to the controller.  In general, the PID controller is simple 
and effective, but there are some drawbacks such as apparent  
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overshoot and sensitivity to external noise and disturbance.  
When severe turbulence is encountered the PID controller may 
not be able to guide the aircraft to a safe landing.  With the CMAC 
compensator, the proposed controller can overcome these dis- 
advantages.  It uses a traditional PID controller to stabilize the 
system and train the CMAC to provide precise control.  The 
original gains of the PID controller are adjusted based on ex- 
perience, and what it provides are tolerable solutions, rather than 
desired solutions.  The CMAC can effectively ameliorate these 
conditions. 

The overall control scheme is described in Fig. 5 (Juang and 
Lin, 2008), in which the control signal U is the sum of the PID 
controller output and the CMAC output.  The inputs for the CMAC 
and PID controller are: altitude, altitude command, altitude rate 
and altitude rate command.  In each time step k, the CMAC in- 
volves a recall process and a learning process.  In the recall pro- 
cess, it uses the desired system output of the next time step and  
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xn

Σ

+

_

Actual output

Desired output

Y

Yd

U: Set of input
 vector

A: Associative 
memory cell Y: Actual output

 
Fig. 6.  Conceptual diagram of CMAC. 

 

 
the actual system output as the address to generate the control 
signal UCMAC.  In the learning process, the control signal of the 
pitch autopilot U is treated as a desired output.  It is used to 
modify the weights of CMAC stored at a location addressed by 
the actual system output and the system output of the next time 
step.  The output of the CMAC is the compensation for pitch 
command.  When the wind turbulence is too strong, the ALS 
cannot achieve a safe landing.  Here, CMAC, type-1 FCMAC, 
and type-2 FCMAC control schemes are used to improve the 
turbulence resistance of the ALS. 

1. Cerebellar Model Articulation Controller (CMAC) 

CMAC is a type of artificial neural network proposed in 
(Albus, 1975).  It could be considered an associative memory learn- 
ing structure based on the performance of the human cerebellum.  
The function of CMAC is akin to a lookup-table technique which 
represents complex and nonlinear systems.  The fundamental con- 
cept of CMAC is to store information into overlapping regions 
in an associative approach so that stored information can be easily 
recalled using less storage space (memory cell).  The structure 
of CMAC is shown in Fig. 6 (Juang and Lin, 2008).  Manipu- 
lation of the CMAC divides the algorithm into two segments. 

First is the output generating stage.  The output of CMAC 
can be obtained by the mapping process U  A  Y, where A 
represents the M-dimensional memory cell, the a  A  RM  is 
the binary associative vector, as an address indexes in coher-
ence with the input vector x.  Let the input x address N (N < M) 
memory cells; the mapping A  Y represents the chosen weights 
stored in memory cells are added together to compute the out- 
put as: 

 
1

( ) ( )
N

j j
j

y x w a x


   (8) 

where wj is the weight of the jth storage hypercube and )(xa j  
is a binary factor indicating whether the jth storage hypercube 
is addressed by the input x. 
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The second stage is the CMAC network learning stage, which 

serves to update the addressed memory cell weights according 
to the error between the desired output and the real output.  Its 
weight updating rule is: 

 ( ) ( 1) ( 1)
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i i i

j j d j j
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w w y w a
m
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where yd is the desired output, m is the number of addressed 
memory cells and  is the learning rate. 

When the CMAC input vector is processed, it is simply di- 
vided into certain blocks.  The relation between the input vector 
and these blocks is a crisp relation.  The relation between the in- 
put condition and the association intensity is simply “activated” 
or “not activated”.  Furthermore, an important CMAC identity 
is local generalization derived from where nearby input vectors 
overlap and share some associative memory cells. 

2. Type-1 FCMAC 

The structure of type-1 FCMAC is shown in Fig. 7.  FCMAC 
is a kind of associative memory network.  It not only has a faster 
self learning rate than normal neural networks by quantities with 
a few adjustments of memory weights, but also has good local 
generalization ability.  The function of FCMAC is similar to a 
look-up table, and the output of CMAC is figured from a linear 
combination of weights stored in memory.  The concept of FCMAC 
is to store data (knowledge) in overlapped storage hypercubes 
(remembering the region) in an associative manner such that the 
stored data can easily be recalled.  Two kinds of operations are 
included in the FCMAC: one is the calculation of the output 
result and the other is learning and adjusting the weight.  The 
output of FCMAC can be obtained by the mapping process  
X  S  C  W  Y as follows. 

Step 1: Quantization (X  S): X is n-Dimension Input Space. 

For the given x = [x1 x2, , xn]
T, s = [s1 s2, , sn]

T represents 
the quantization vector of x .  The corresponding state of each 
input variable is specified before fuzzification. 

Step 2: Associative Mapping Segment (S  C): 

This step fuzzifies the quantization vector quantized from x.  
FCMAC uses the fuzzification method of the fuzzy theorem as 
its addressing scheme.  After the input vector is fuzzified, the 
input state values are transformed to “firing strength”, which is 
based on corresponding membership functions. 

Step 3: Memory Weight Mapping (C  W): 

After fuzzifying block regions, the ith rule’s firing strength 
in FCMAC could be computed as: 

 1 1 2 2 1
1

( ) ( )* ( )* ( ) ( )
n

j j j jn n j i
i

C x c x c x c x c x


    (10) 

where cji(xi) is the jth membership function of the ith input 
vector, and n is the total number of states.  The asterisk “*” de- 
notes a fuzzy t-norm operator.  There are several kinds of t-norms, 
such as the max, min and product operators.  This study chooses 
the product inference method as the t-norm operator because it 
is easy to implement. 

Step 4: Output Generation with Memory Weight Learning (W  Y): 

Because of the partial proportional fuzzy rules and overlap 
situation, multiple fuzzy rules are fired simultaneously.  The 
consequences of these multi-rules are merged by a defuzzifi-
cation process.  The defuzzification approach applied in this 
study sums the assigned weights of the activated fuzzy rules 
based on their firing strengths, denoted as cj(x).  The network 
output is: 

 
1 1
( ( ) / ( ))

N N

j j i
j i

y w C x C x
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The FCMAC learning serves to update the memory weight 
according to the error between the desired output and the actual 
output.  The weight update rule for FCMAC is as follows 
(Juang and Lin, 2008): 

 ( ) ( 1)

1
( ) ( ) / ( )

N
i i

j j d j i
i

w w y y C x C x
m




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where  is the learning rate, m is the floor size (called gener-
alization) and yd is the desired output. 

3. Type-2 Fuzzy CMAC 

The type-2 fuzzy theorem is used in the CMAC structure in 
order to promote more accurate resolution than conventional 
FCMAC.  The mapping procedure of type-2 FCMAC is similar 
to that of conventional FCMAC.  The diagram structure of type-2 
FCMAC is shown in Fig. 8.  Each mapping phase is described as 
follows.  X is an n-dimensional input space, as shown in Fig. 9.  
For a given X = [x1 x2, , xn], S = [s1 s2, , sn] represents the 
quantization vector of x.  The corresponding state of each input 
variable is specified before fuzzification.  Type-2 FCMAC uses  
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Fig. 9.  Architecture of type-2 FCMAC network. 

 
 

the interval type-2 fuzzification method of the fuzzy theorem 
as its addressing scheme.  After the input vector to the interval 
type-2 fuzzy set is fuzzified, the input state values are transformed 
to upper firing strength and lower firing strength, which is based 
on corresponding interval type-2 membership functions.  This 
study chooses the product inference method as the t-norm op- 
erator.  The jth rule’s upper firing strength jc and lower firing 
strength cj in type-2 FCMAC could be computed as: 

 
1 21 2

1

( ) ( )* ( )* ( ) ( )
n i

n
j

j j j n j i
i

c x c x c x c x c x


   (13) 
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

   (14) 

The type-reduced set of the type-2 FCMAC using the center 
of sets type reduction is: 

1 11 1 1 1
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  (15) 
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This is an interval type-1 set determined by its left and right 
end points yl and yr, which can be written as follows (Liang 
and Mende, 2000): 

 1 1 1

1 1 1

N R N
jj j j j j

j j j R
r N R N

jj j

j j j R

c w c w c w

y

c c c
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
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  

  
 (16) 

 1 1 1

1 1 1

N L N
j j j j jj

j j j L
l N L N

j jj

j j j L

c w c w c w
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c c c
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
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

  

  
 (17) 

where w  and w  are the corresponding weights of c  and c, re- 
spectively.  L and R can be obtained from (Liang and Mendel, 
2000): 

 
Step 1: Assume that the pre-computed jw  are arranged in 

ascending order, i.e., 

 1 2 Nw w w   . 

Step 2: Compute yr by initially setting ( ) / 2jj jc c c   for  

j = 1  N and let r ry y  . 

Step 3: Find (1 1)R R N    such that 1R R
rw y w   .  

Step 4: Compute yr with jjc c  for j R  and j jc c  for 

j R , and let r ry y  . 

Step 5: If r ry y   then go to step 6.  If r ry y   then stop and 

set r ry y  . 

Step 6: Set r ry y   and return to Step 3. 

 
The procedure for computing yl is very similar to the one 

just given for yr.  In Step 3 find (1 1)L L N    such that 
1L L

lw y w   .  Additionally, in Step 2 compute yl initially 

setting ( ) / 2j jjc c c   for j = 1  N and in Step 4 compute 

yl with j jc c  for j L  and j jc c  for j L . 

The defuzzified output is simply the average: 

 r ly y y   (18) 

Type-2 FCMAC learning serves to update the memory weight 
according to the error between the desired output and the actual 
output.  The learning rule for type-2 FCMAC is as follows: 
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1
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where  is the learning rate and m is the floor size (called 
generalization). 

IV. OPTIMAL CONTROL PARAMETERS 

GA was first proposed by John Holland in 1962 (Holland, 
1962), and is an optimization and search technique based on 
the principles of genetics and natural selection.  In 1975, Holland 
mentioned the most basic principle of GA in Adaptation in Natural 
and Artificial Systems (Holland, 1962).  In the same year, De 
Jong showed the usefulness of GA for function optimization, 
and made the first concerted effort to find optimized GA para- 
meters.  GA generally only involves techniques of implementing 
mechanisms, such as reproduction, crossover, mutation, fittest 
function, etc. via reproduction, crossover, and mutation steps, and 
is able to generate consequent generations to reach the purpose 
of the evolution.  Based on a population’s degree of fitness value, 
GA retains the fittest and eliminates inferior populations.  GA 
has therefore been widely used to solve optimization problems.  
GA can search many points at the same time and is not prone 
to falling into local optima.  In recent years, many researchers 
have improved the crossover and mutation mechanisms in GA 
in order improve its performance.  In a previous study (Juang 
et al., 2008), the authors used different crossover methods in 
recurrent neural network controller designs, and obtained better 
performance than that achieved with the original control para- 
meters.  In this study, these crossover methods are applied to 
the ALS control scheme with fuzzy CMAC controller.  Roulette 
wheel selection is applied in the reproduction process.  Different 
crossover operations are given as follows. 

1. Adewuya Crossover Method 

The operation is divided into three steps, as shown below 
(Adewuya, 1996). 

Step 1 

Randomly choose a gene from each individual of a matching 
pair in parent generation, mP   and nP , as crossover site. 

 1 1 2m m m mspattern p p p p      (21) 

 2 1 2n n n nspattern p p p p      (22) 

Step 2 

Calculate new values of these selected genes as follows, 
where  is a random number and 0    1. 

  1 1new m np p p        (23) 

  2 1new m np p p        (24) 
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Step 3 

Replace mP   and nP  with 1newP  and 2newP , respectively.  

The genes in the right side of the crossover site exchange with 
each other, which will result in new offspring. 

 1 1 2 1m m new nsNewpattern p p p p      (25) 

 2 1 2 2n n new msNewpattern p p p p      (26) 

2. Arithmetical Crossover Method 

The arithmetical crossover makes the mating pair move apart 
or draw together (Michalewicz, 1992). 

 Move apart 
 

 

'
1 1 1 2

'
2 2 1 2

x x x x

x x x x





   

   
 (27) 

 Draw together 
 

 

'
1 1 2 1

'
2 2 2 1

x x x x

x x x x





   

   
 (28) 

where x1 and x2 are the parents, x1
’ and x2

’ are the new offspring, 
and  is a random and positive small real value.  In addition, 
either (27) or (28) can be used with -1 <  < 1, which will 
determine whether the mating pair moves apart or draws together 
by the sign of . 

3. Average Crossover Method 

The average crossover method uses a simplified model with 
(23) and (24) where  is 1/2.  It can be obtained as follows: 

   nmnew ppp 
2

1
 (29) 

where mP   and nP  are the parents and newP  is the new offspring. 

4. Convex Crossover Method 

The convex crossover is shown below: 

  1new j kx x x       (30) 

where xj and xk are the parents, xnew is the new offspring and  
is a random and small real value. 

5. Blend Crossover Method 

The blend crossover (BLX-) was proposed by Eshelman 
and Schaffer (Eshelman and Schaffer, 1993).  It is a prominent 
crossover operator for GA, and excels in optimization of a 
number of standard separable functions with multimodality.  
The BLX- crossover generates offspring using the following 
operation: 

 1 1 2min( , )i i i iX x x d    (31) 

 2 1 2max( , )i i i iX x x d    (32) 

 1 2
i i id x x   (33) 

where x1 and x2 are chosen randomly from the population, 1
ix  

and 2
ix  are the ith elements of x1 and x2, respectively.  The 

value of each element c
ix  of the offspring vector cx  is uni-

formly sampled from the interval  21 , ii XX .   is a positive 

parameter, with a suggested value of 0.5. 
Finally, the mutation in GA is a very important process, as it 

permits the introduction of extra variability into the population.  
This study chooses a population at random, and changes its gene 
information.  However, the new offspring must be in the range 
established after adding gene information.  The real number mu- 
ation process is applied as follows: 

 _new oldx x s rand noise    (34) 

where s is the random value between 0 to 1.  The fitness func- 
tion that was used in this control scheme is: 

 
Fitness = number of successful landings with

different turbulence strengths
. (35) 

V. HARDWARE REALIZATION 

VisSim is a Windows-based program for the modeling and si- 
mulation of complex nonlinear dynamic systems (Visual Solution, 
2002).  VisSim combines an intuitive drag & drop block diagram 
interface with a powerful simulation engine.  The visual block 
diagram interface offers a direct method for constructing, modi- 
fying and maintaining system models.  The simulation engine 
provides fast and accurate solutions for linear, nonlinear, con-
tinuous time, discrete time, time varying and hybrid system de- 
signs.  This study used ViSim to build a dynamic aircraft model, 
and realized the conventional PID controller by the same manner.  
The intelligent controller design using C language and its re- 
alization by DSP are also presented (Juang et al., 2011). 

Since the invention of the transistor and integrated circuit, 
digital signal processing functions have been implemented on 
many hardware platforms ranging from special-purpose archi- 
tectures to general-purpose computers.  It was not until all of 
the functionality (arithmetic, addressing, control, I/O, data stor-
age and control storage) could be realized on a single chip that 
DSP could become an alternative to analog signal processing 
for the wide range of applications seen today.  This study uses 
a TI TMS320LF2407 chip to perform the desired tasks.  The 
2407A devices offer the enhanced TMS320DSP architectural 
design of the C2xx core CPU for low-cost, low-power and high- 
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Fig. 10.  Working process of the eZdspTMLF2407A board. 

 

 

 
Fig. 11.  Externals of the eZdspTMLF2407A board. 
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Fig. 12.  Flow chart of VisSim/DSP procedure development. 

 
 

performance processing capabilities.  Moreover, it offers a suit- 
able array of memory sizes and peripherals tailored to meet the 
specific performance points required by various applications.  
The TMS320LF2407 operates at 40 MHz (40 MIPS), has 4 
to16 PWM output channels and has serial communication ca- 
pabilities.  In addition, the TMS320LF2407 contains a 10-bit 
analog-to-digital converter (ADC), with a minimum conversion 
time of 500 ns and up to 16 channels of analog input.  Further-
more, the working process and externals of the eZdspTMLF2407A 
board are shown in Figs. 10 and 11, respectively. 

There are three basics steps in the development of a DSP al- 
gorithm: 

 
(1) Create the system to be executed on the target DSP; 
(2) Generate the C source code from the system; 
(3) Compile and link the C source code to produce an execut- 

able file. 

If step 1 is performed using available blocks from VisSim 
software, steps 2 and 3 are automatically performed by VisSim.  
The core of the VS-ECD2407 is the TI TMS320LF2407A, 
which is a 16-bit fixed-point DSP.  When designing the con-
troller of an aircraft, the problem of the fixed point must be 
taken into account, because VisSim are molds all have floating- 
point operation.  Thus, the VisSim/Fixed-Point software must be 
matched to the design molds of the fixed-point flight controller.  
Fig. 12 shows DSP development of the procedure entirely, which 
is divided into the following steps. 

 
Step 1: In VisSim software, the fixed-point controller molds of 

an aircraft are designed by VisSim/TI C2000 Rapid Pro- 
totype and VisSim/Fixed Point. 

Step 2: CCStudio can make fixed-point controller molds to per- 
form compiling, analysis, debugging and demonstration, 
and generate *.c code and *.out code. 
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Fig. 13.  DSP Hardware in-the-loop mode. 

 
 

Step 3: Generate DSP controller molds which include *.out 
code, and replace original fixed-point controller molds. 

Step 4: Download *.out code to TI TMS320LF2407A embed-
ded flash memory by JTAG. 

Step 5: Utilize DSP controller to control automatic landing sys- 
tem and show real-time relevant flight behavior. 

 
By the above DSP controller development procedure, the 

entire real-time DSP hardware in-the-loop mode is shown in 
Fig. 13.  From the VisSim development platform, it will transmit 
information, altitude, altitude rate, altitude and altitude rate com- 
mands to the VS-ECD2407 via a connecting JTAG between the 
computer and the VS-ECD2407.  After DSP processing, it passes 
the pitch command and adjusts the angle of elevation back to 
the pitch autopilot in VisSim via JTAG.  This enables an aircraft 
to follow a chosen landing trajectory.  The advantages of DSP 
are its fast operation, powerful instruction, fixed addressing 
ability at high speed, parallel processing etc.  These can signi- 
ficantly improve processing speed and accuracy, such that it 
can be applied to real-time control.  In the VisSim simulation 
selection items, one can choose “Run in Real Time”, and while 
designing fixed-point DSP controller, choose the exchange fre- 
quency of the datum between DSP and PC properly, then real- 
time control can be performed. 

VI. SIMULATION RESULTS 

The aircraft starts the initial states of the ALS as follows: the 
flight height is 500 ft, the horizontal position before touching 
the ground is 9240 ft, the flight angle is -3 degrees, and the speed 
of the aircraft is 234.7 ft/sec.  Successful touchdown landing 
conditions are defined as follows: 

 

(1) 3 1TDh     (ft/sec) 

(2) 300 ( ) 1000TDx T    (ft) 

(3) 200 ( ) 270TDV T   (ft/sec) 

(4) 10 ( ) 5TD T    (degrees) 

 

where T is the time at touchdown, TDh  is vertical speed, TDx  is 

the horizontal position, TDV  is the horizontal speed and TD  is 

the pitch angle. 

1. Conventional PID Controller 

Table 1 shows the results from using different wind turbulence 
speeds.  The conventional PID controller with original control 
gains can only successfully guide an aircraft through wind speeds 
of 0 ft/sec to 30 ft/sec (Jorgensen and Schley, 1991).  If the wind  
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Table 1.  Results obtained using conventional PID controller (control gains: K1 = 2.8, K2 = 2.8, K3 = 11.5, K4 = 6.0). 

Wind speed Landing point (ft) Aircraft vertical speed (ft/sec) Pitch angle (degree) 

0 797 -2.83 -1.41 

10 910 -2.55 -0.85 

20 809 -2.38 -0.59 

30 844 -2.19 -0.17 
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speed is higher than 30 ft/sec, the ALS will be unable to guide 
an aircraft to land safely.  An aircraft can thus only achieve a 

safe landing in wind turbulence of up to 30 ft/sec, as shown in 
Figs. 14-17. 
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Table 2.  Results obtained using CMAC controller. 

Wind speed Landing point (ft) Aircraft vertical speed (ft/sec) Pitch angle (degree) 

0 854 -2.55 -0.96 

10 762 -2.76 -0.93 

20 774 -2.51 -0.61 

30 844 -2.72 -0.41 

40 691 -1.93 0.21 

50 586 -2.26 0.87 

58 844 -2.58 0.98 

 
 

Table 3.  Results obtained using type-1 FCMAC control. 

Wind speed Landing point (ft) Aircraft vertical speed (ft/sec) Pitch angle (degree) 

10 797 -2.83 -1.41 

30 938 -1.54 -0.58 

50 891 -2.13 0.47 

70 691 -2.21 1.41 

90 926 -1.99 1.34 

 
 

Table 4.  Results obtained using type-2 FCMAC control. 

Wind speed Landing point (ft) Aircraft vertical speed (ft/sec) Pitch angle (degree) 

20 855 -2.51 -0.58 

40 726 -2.44 0.03 

60 996 -2.00 0.50 

80 890 -1.71 1.39 

100 937 -2.21 2.05 

 
 

Table 5.  Fixed number of generations. 

 Adewuya crossover Arithmetical crossover Average crossover Convex crossover Blend crossover 

CPU times 
RGA/Total 

2.04% 1.61% 1.51% 1.75% 1.62% 

Error (%) 9.28% 9.04% 9.06% 9.00% 9.20% 

Max intensity (ft/sec) 70 70 65 70 75 

 
 

2. Different CMAC Controllers 

The results obtained using the CMAC controller are given 
in Table 2.  The type-2 FCMAC control scheme can successfully 
guide the aircraft flying through wind speeds of 0 ft/sec to 100 
ft/sec, while the type-1 FCMAC can only offer safe guidance 
below 90 ft/sec [21], as shown in Table 3.  Table 4 shows the results 
obtained using type-2 FCMAC.  Scenarios with wind turbulence 
of 100 ft/sec include a pitch angle of 2.05 degrees, vertical speed 
of -2.21 ft/sec, horizontal velocity of 234.68 ft/sec, and hori- 
zontal position at touchdown is 937 ft. 

3. Evolutionary Computation-Based Controller 

In evolutionary computation, regardless of binary-coded type 

or real-valued type, many new methods have been proposed 
improve the evolution, offering better parameter search ability.  
This section focuses on the crossover method of real-valued ge- 
netic algorithm.  First of all, the relevant initial parameters of 
the real-valued genetic algorithm are fixed, and evolution pro- 
cedures, namely reproduction and mutation, are all unanimous.  
The flow chart of a complete evolution is shown in Fig. 18.  This 
study uses five crossover principles to search optimal control 
gains separately for an aircraft using a CMAC controller in tur- 
bulence wind conditions, and compares differences between 
these methods.  The number of generations of evolution was fixed 
in order to calculate the execution time (CPU time) required for 
each crossover method. 

Tables 5 and 6 show the comparison results obtained using  
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Table 6.  Required number of generations. 

 Adewuya crossover Arithmetical crossover Average crossover Convex crossover Blend crossover 

CPU times 
RGA/Total 

1.84% 1.63% 1.61% 1.43% 1.94% 

Error (%) 9.21% 9.27% 9.09% 9.10% 9.20% 

Max intensity (ft/sec) 80 75 75 75 75 

Required generations 23 18 35 31 25 
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Fig. 18.  Evolutionary learning process of the CMAC control scheme. 
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Table 7. Results obtained using type-1 FCMAC with optimal control gains in TMS320C6713 DSP board (optimal control 
gains: K1 = 2.5409, K2 = 6.8029, K3 = 10.7398, K4 = 13.4932). 

Wind speed Landing point (ft) Aircraft vertical speed (ft/sec) Pitch angle (degree) 

10 785.2276 -2.6398 -1.0054 

20 738.2920 -2.5844 -0.6968 

30 861.7598 -2.4173 -0.2652 

40 693.1877 -2.1031 0.3418 

50 814.1143 -2.5232 0.3842 

60 820.4292 -1.8753 1.0607 

70 798.7611 -1.9576 1.3403 

80 738.2920 -1.6419 2.0949 

90 961.2381 -1.5932 1.6522 

100 849.5021 -1.4839 2.0451 

105 736.9072 -1.6998 2.5472 

 
 

Table 8. Results obtained using type-2 FCMAC with optimal control gains in TMS320C6713 DSP board (optimal con-
trol gains: K1 = 2.0738; K2 = 2.0738; K3 = 8.4802; K4 = 14.8921). 

Wind speed Landing point (ft) Aircraft vertical speed (ft/sec) Pitch angle (degree) 

10 713.4394 -2.7149 -1.0181 

20 658.6411 -2.5085 -0.5884 

30 689.9717 -2.5961 -0.3657 

40 796.1005 -2.6263 0.0399 

50 867.3648 -1.7812 0.6581 

60 926.0343 -1.6648 0.7523 

70 937.7682 -1.5684 1.0462 

80 738.2920 -2.1779 1.3978 

90 722.0064 -2.7847 2.5582 

100 867.3648 -1.6653 2.1311 

110 703.6141 -2.5363 2.2396 

114 838.8158 -1.8290 2.9149 

 
 

different crossover methods.  All cases are tested by 10 inde-
pendent runs.  The results shown in Tables 5 and 6 are averaged 
values of these independent runs.  This study fixed the number 
of generations to 10 in order to compare CPU times, as shown 
in Table 5.  Table 6 shows the required number of generations until 
optimal control gains are obtained.  From Table 5, the CPU time 
of the average crossover is the lowest.  From the comparison 
of the error, which is the difference between altitude command 
and actual altitude under wind turbulence speeds at 70 ft/sec, 
the lowest value is achieved by the convex crossover.  From 
Table 6, the Adewuya crossover can overcome the most intense 
wind turbulence, up to 80 ft/sec, and does not need more gene- 
rations in convergence.  In fact, the CPU times of these five 
crossover methods are similar, and only represent a very small 
portion of total execution time.  Furthermore, the execution speeds 
of new computer technology is constantly and consistently im- 
proving.  The execution time of the evolution is relative to the 

speed of the CPU and the amount of RAM used.  Therefore, the 
difference lies in the parameters that are searched.  Moreover, 
Tables 5 and 6 compare the results of percentage of CPU time, 
exhibiting only slight differences.  This study also tested other 
application software for searching optimal control gains.  Sharing 
part of the calculation resources clearly results in differences.  
In addition, by the change within unit time, wind turbulence is 
more violent than wind shear.  Searching optimal control gains 
in wind turbulence is more difficult than in wind shear, and thus 
requires more generations.  Since the Adewuya crossover method 
exhibited superior performance over the other methods tested, 
it is used in FCMAC control scheme.  Tables 7 and 8 show the 
results obtained using type-1 FCMAC and type-2 FCMAC by 
Adewuya crossover method, respectively.  Type-2 fuzzy CMAC 
with optimal control gains can enable the aircraft to automati- 
cally negotiate turbulence of up to 114 ft/sec, as shown in Figs. 
19-22. 
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Fig. 19.  Turbulence profile (100 ft/sec). 
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Fig. 20.  Aircraft pitch (top) and command (bottom). 
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Fig. 21.  Vertical velocity (top) and command. 
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Fig. 22.  Aircraft altitude (top) and command. 
 
 

VII. CONCLUSIONS 

The purpose of this paper was to investigate the use of evolu- 
tionary computation and DSP with CMACs in aircraft automatic 
landing systems.  CMAC is a non-fully connected associative 
memory network with overlapping receptive fields.  Unlike the 
back propagation neural network which uses the global weight 
updating rule, CMAC is distinguished by the constant local 
weight updating rule.  CMAC not only combines the advantages 
of rapid convergence speed and low computation, but is also 
easily realized by hardware.  The conventional CMAC uses con- 

stant binary or triangular receptive-field basis functions.  The 
characteristics of fuzzy systems are human-like reasoning and 
expert knowledge.  Therefore, fuzzy CMAC includes the learning 
ability of neural networks and the advantages of fuzzy systems.  
A fuzzy system that uses type-2 fuzzy sets and type-2 fuzzy 
logic and inference is called a type-2 fuzzy system.  In traditional 
fuzzy system models, the structure is characterized by using 
type-1 fuzzy sets.  Type-1 fuzzy sets, defined on a universe of 
discourse, map an element of the universe of discourse onto a 
crisp number in the unit interval [0, 1].  However, type-2 fuzzy 
can translate the linguistic and numerical uncertainty from 
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original data into fuzzy rule uncertainty, while the type-1 cannot.  
Type-2 fuzzy sets provide better ability to handle uncertainty 
than type-1 fuzzy sets.  The type-2 FCMAC is a generalization 
of the feed-forward neural network, fuzzy neural network and 
FCMAC.  Under the condition of a similar number of parame-
ters, the type-2 FCMAC achieves the best performance with 
lowest computational cost.  The type-2 FCMACs are more able 
to deal with the influence of system uncertainty and external 
disturbances.  In this paper, current flight control law is adopted 
in the type-2 FCMAC controller design.  The proposed con-
trollers are implemented in a DSP.  Tracking performance and 
adaptive capability are demonstrated through hardware simu- 
lations.  Using PID, CMAC, type-1 FCMAC and type-2 FCMAC, 
the wind speed of turbulence limits are 30, 58, 90 and 100 
ft/sec, respectively.  The adaptive neural network controller and 
fuzzy neural network controller can overcome turbulence of up 
to 75 ft/s (Juang et al., 2011), and the recurrent neural network 
controller can overcome turbulence of up to 60 ft/sec (Juang  
et al., 2008).  In this study, with optimal control gains, the CMAC 
control scheme can negotiate turbulence of up to 80 ft/sec, type-1 
FCMAC can manage 105 ft/sec, and the type-2 FCMAC can 
manage 114 ft/sec.  The proposed controllers have better per- 
formance than those previously developed.  These intelligent 
controllers can be used to replace conventional controllers, and 
can act as an experienced pilot and guide aircraft to safe land-
ings in severe wind turbulence environments. 
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