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ABSTRACT 

Restricted by observation instruments and methods, the meas- 
ured turbulence signals in the open ocean are inevitably affected 
by noise.  To maximum eliminate the noise caused by the vibra- 
tion of the instruments and improve the accuracy of the measured 
turbulence signals, an improved turbulence signal denoising al- 
gorithm based on least mean square (LMS) adaptive filter is pro- 
posed in this paper.  The key point of the improved algorithm 
is to obtain the optimal weight value by the adaptive adjustment 
and remove the vibration noise from the measured shear signals 
in frequency domain.  Through taking the Nasmyth theoretical 
spectrum as the desired signal to update the weight value, we 
can obtain the optimal estimation of the observation spectrum, 
especially at the shedding frequency.  Sea data obtained from a 
moored turbulence measuring instrument (MTMI) deployed in 
the South China Sea is used to verify the feasibility and validity 
of the improved algorithm.  The results show that the corrected 
spectra agree well with the Nasmyth theoretical spectra and the 
calculated dissipation rates of turbulent kinetic energy (TKE) 
drop near an order of magnitude compared with the raw meas-
ured data, which indicate that the improved turbulence denois-
ing algorithm can effectively eliminate the vibration noise and 
provide accurate data for studying the characteristics of turbu-
lence mixing. 

I. INTRODUCTION 

Turbulence mixing is one of the main physical processes that 
control the ocean overturning circulation at a wide range of tem- 
poral and spatial scales because of its influences on climate.  At 
small scales, turbulence affects the ocean circulation and eco-

systems by enhancing the transport of heat and nutrients within 
the water column.  The ocean turbulence has become an impor- 
tant subject in the marine science research (Fer and Paskyabi, 
2013). 

Conventionally, ocean turbulence is measured by shear probes 
and/or fast response thermistors, sampling the dissipation sub- 
range of the turbulence spectrum.  However, to measure a few 
centimeters of turbulence microstructure in the open sea is quite 
difficult due to its inherent characteristics of chaotic, unsteady 
and unpredictable.  Noise is inevitable in the actual turbulence ob- 
servation process and it mainly includes natural noise (usually 
due to the probes encountering plankton or other detritus in the 
water column), vehicle motion and vibration, and the high fre- 
quency electronic system noise (Lueck et al., 1997).  The noise 
distributes at different frequency bands and leads to different 
effects on the observed signals.  As an advanced turbulence 
observation platform, the mooring system can meet the require- 
ments of long time and fixed-point ocean turbulence measure- 
ment.  However, this kind of observation platform is susceptible 
to vortex-induced vibration at the shedding frequency, which may 
lead to the error estimation of the dissipation rate of turbulent 
kinetic energy (TKE).  So, the noise caused by vibration should 
be removed from the measured turbulence shear signals to ac- 
quire high-precision data. 

To get rid of the noise, many methods have been proposed, 
such as low-pass filter based on Fourier transform, the spatial 
power-response transfer function (Lueck et al., 1977).  These me- 
thods aim at removing the contamination in the high frequency 
and have no denoising effect on removing the vibration noise dis- 
tributed in the low frequency.  Cross-spectrum denoising method 
(Goodman et al., 2006) is proposed to remove the noise caused 
by the instrument vibration.  Through calculating the weight 
value, the coherence of the measured shear related to the de-
tected acceleration can be obtained and the vibration noise can 
be eliminated at some extent.  However, this denoising method 
treats all the wavenumbers as the same and lacks the optimal es- 
timation of the weight value, so, the obtained corrected spectrum 
is not the optimal state. 

As an advanced signal processing technology, LMS adaptive 
filter is widely used in effective signals extraction, such as eli- 
minate the noise in the communication system and extract the 
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effective signals from strong background noise (Dixit and Na- 
garia, 2016), vehicle vibration signal denoising (Zhang et al., 
2013).  In time domain, LMS adaptive filter has presented good 
performance in non-stationary signal analysis and processing 
(Widrow et al., 1976; Deborah et al., 2016).  In the turbulence 
research, The quality of the observed velocity fluctuations sig- 
nals are evaluated through comparing the observed wavenum- 
ber spectrum with an empirical spectrum that is used as standard 
spectrum and derived by Nasmyth.  Furthermore, the dissipa-
tion rate of TKE as a key parameter to describe the turbulence 
characteristic is also calculated in wavenumber domain using the 
measured turbulence velocity fluctuations (Levine and Lueck, 
1999; Lueck and Huang, 1999). 

Based on the above analysis, an improved turbulence denois-
ing algorithm based on LMS adaptive filter is proposed and de- 
signed to conduct in frequency domain, which can achieve the 
optimal estimation of the observation spectrum and the dissi- 
pation rate of TKE.  Through taking the Nasmyth theoretical 
spectrum as the desired signal, we can obtain more accurate 
estimation of the error function than traditional denoising in time 
domain.  In addition, the weight value adaptively adjusts at dif- 
ferent wavenumbers, which can more effectively eliminate the 
vibration noise at the shedding frequency.  The sea data collected 
in the South China Sea with a moored turbulence measuring in- 
strument (MTMI) is used to evaluate the validity of the improved 
turbulence denoising method. 

The outline of this paper is as follows.  The turbulence obser- 
vation and the correlation of the measured signals are introduced 
in Section 2.  Section 3 mainly presents the improved turbulence 
denoising algorithm based on LMS adaptive filter in detail and 
gives the process to calculate the TKE dissipation rate.  Sea data 
results to verify the validity of the improved denoising algorithm 
are shown and discussed in Section 4 and conclusion remarks 
are finally given in Section 5. 

II. TURBULENCE OBSERVATION  
AND PROCESS ANALYSIS 

1. Deployment 

The sea data used to verify the validity of the turbulence 
denoising algorithm is collected in the South China Sea 
(2109.900N 11742.031E) with a moored turbulence meas-
uring instrument (MTMI) designed by OUC.  In this experiment, 
the instrument had been deployed in about 250-m-deep water, 
and it successfully collected turbulence data for 110 days.  The 
collected data includes shear voltage data, platform vibration 
data and attitude data, which lays the foundation for further ana- 
lysis of the turbulence characteristics of the South China Sea.  
Throughout the observation period, the instrument responded 
to the ambient currents and the speed of the current measured by 
the Aanderaa current meter RCM11 was ranging from 0.05 to 
0.48 m/s. 

The MTMI is designed to collect abundant turbulence data 
from deep sea for a long time at a fixed level.  The core compo-
nent of MTMI is the turbulent observing part, which contains 

two orthogonal shear probes and three orthogonal accelerome-
ters.  The shear probes embedded in the middle of the nose are 
used to measure the cross-stream velocity fluctuations.  In the de- 
sign of the instrument, one probe is oriented to sense horizontal 
velocity fluctuations (w) and the other responds to the athwart- 
ships velocity fluctuations (v).  The voltage output of the shear 
probes are converted to shear (w/x, v/x) using the electronic 
constants, the sensitivity of the shear probes and the velocity per- 
pendicular to the shear probes.  The output voltage of the two shear 
probes were sampled at 1024 Hz, digitized by 16-bit A/D con- 
version and finally stored in the storage card.  To monitor the 
status of the instrument under the seawater, three orthogonal 
accelerometers are housed in the instrument cabin by a right- 
hand cartesian coordinate, which can provide information on at- 
titude by Heading (rotation around the z axis and ranging from 
-180 to 180), Pitch (rotation around the y axis and ranging 
from -90 to 90) and Roll (rotation around the x axis and 
ranging from -180 to 180).  Meanwhile, the accelerometers 
can measure the instrument vibration of the accelerations in 
three directions: x, which is along the instrument axis and is 
positive forward (denoted as Accx ); y, which points athwart- 
ship positive to the starboard side (denoted as Accy ); and z, 
which is directed positive upward (denoted as Accz ).  With the 
sampling frequency set to 120 Hz, the output signal were digi- 
tized with a 16-bit A/D converter and stored in the storage card.  
The observation platform has good characteristics of stability 
and flexibility of current direction tracking, which is described 
by Xin Luan (Luan et al., 2016). 

2. Analysis of the Signals Correlation 

The microstructure turbulence is detected by the shear probe.  
The shear probe consists of a piezoelectric ceramic beam that 
can sense the turbulence shear force and produce a charge in 
response to the force.  When use the turbulence observation in- 
strument installed with the shear probe to conduct measurement 
in the open sea environment, the vehicle motion and vibration 
may cause large effect on the shear force.  Then the output charge 
of the shear probe responds to the shear force and combines the 
true environmental turbulence shear with the vibration noise.  
So, the shear signals measured by the shear probe are always 
polluted by the vehicle body motion and vibration and we 
should minimize the contamination of the shear signals in the 
post-processing.  In this paper, we estimate the vehicular motions 
and vibrations with the signals collected by the accelerometers. 

The accelerations measured by the accelerometers include an 
inertial component and a gravitational component.  Thus, the iner- 
tial component of the signals (denoted as dynamic accelerations) 
used to describe the vibration of the instrument can be sepa-
rated from the gravity signals with independent pitch and roll 
information: 

 ˆAccz cos cosza g     (1) 

where the angles  and  are the vehicle pitch and roll, g is the 
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acceleration of gravity, and ˆza  is the vertical inertial accel-

eration in the body frame.  Similarly, the signals from the axial 
and athwartship are 

 ˆAccx sinxa g    and ˆAccy sinya g    (2) 

respectively. 
The core of the denoising is to remove the contamination to 

the shear signals by subtracting all coherent signals from the dy- 
namic accelerations. 

We assume the measured shear signals consist of the true en- 
vironmental turbulence shear plus the contribution measured by 
the accelerometers due to the body motion and vibration, which 
can be expressed as: 

 ˆs s h a    (3) 

where, ŝ  is the measured shear from the probe, s is the true un- 
contaminated environmental shear and a is the component of 
acceleration corresponding to the shear.  The weight value h 
represents the “transfer” of accelerations into the shear signals 
and the asterisk (*) denotes a convolution.  Also, we assume that 
vehicular motions and vibrations are statistically independent 

of the environmental turbulence ( sa 0 ).  According to the 
above definition, our objective is to obtain the portion of the 
measured shear that is not coherent with the measured accel-
erations. 

III. METHODOLOGY 

Real and effective turbulence signals are the basis to analyze 
turbulence mixing characteristics.  So, separating the desired sig- 
nals from the environment background noise is an important and 
common problem in turbulence signal processing.  In this paper, 
we use the acceleration measurements to minimize the conta- 
mination of the shear probe measurements by vehicular motions 
and vibrations of the probe mounts. 

We remove the vibration noise in the measured shear with the 
model expressed in Eq. (3).  To take advantage of the signals’ 
spectral shape to assess the noise, we transform the signals from 
time domain into Fourier transform domain: 

 ˆS S HA   (4) 

where, the uppercase symbols represent the Fourier transforms 
of the corresponding lowercase symbols.  In cross spectrum de- 
noising method, the correlation between the shear signals and the 
acceleration signals is denoted by the cross-power spectral den- 
sity function. 

 ˆ ( )/ ( )aasaH C f C f  (5) 

where, f denotes the frequency and H is the frequency weight 
value (transfer function) relating the shear signals to the acce- 

leration signals.  ˆ ( )saC f  is the cross-spectrum of the contami- 

nated signal ŝ  and signal a.  ˆ ( )saC f  reflects the correlation be- 

tween the two kinds of signals.  The double subscript denotes 
the auto-spectrum. 

Multiply Eq. (4) by its complex conjugate, ensemble average 
and use the fact that sa 0 , then the cleaned spectrum is ob- 

tained according to the below equation (Goodman et al., 2006): 

 
2

ˆˆ( ) ( ) - ( ) ( )ss aassC f C f H f C f  (6) 

After obtaining the weight value, the vibration noise coher-
ent with the measured acceleration can be estimated through 
multiplying the acceleration frequency spectrum by the weight 
value (Eq. (6)).  So, the frequency spectrum of the shear can be 
corrected. 

In Eq. (5), the weight value has to be calculated at each sam- 
pling point in frequency domain.  Based on the analysis of Sec- 
tion 2, the contamination caused by the accelerations are mainly 
concentrate on the shedding frequency.  In this paper, we pro- 
pose to use the denoising method based on LMS adaptive filter 
to remove the contamination in every 3-min burst. 

Let the weight value of the first pair of spectra calculated ac- 
cording to Eq. (5) as the initial weight value H.  As H represents 
the “transfer” of accelerations into the shear signals, so, the ac- 
celeration auto-spectrum multiplied by the weight value denotes 
all coherent signals of accelerations corresponding to the shear: 

 ˆ ˆ ( ) ( )T
aaaaC f H C f  (7) 

We can obtain the true environmental shear spectrum by sub- 
tracting the noise component from the measured shear auto- 
spectrum: 

 ˆˆ ˆ ˆ ˆˆ( ) ( ) ( ) ( ) ( )T
ss aass aa ssC f C f C f C f H C f     (8) 

All theoretical work on turbulence is based on its spatial and 
wavenumber structure.  So, the cleaned spectrum is converted 
from frequency domain into a space-series (wavenumber do- 
main) by multiplying the speed of the sensor using the Taylor’s 
frozen turbulence hypothesis (Fer and Paskyabi, 2013): 

 ( ) ( )ss ssC k C f U  (9) 

where, f denotes the frequency, U is the speed of the sensor 
through the water, /k f U  denotes the wavenumber.  Typically, 
the Nasmyth theoretical spectrum is used as the standard spec- 
trum to evaluate the quality of the observed spectrum.  Through 
the comparison between the cleaned shear spectrum and the 
Nasmyth theoretical spectrum, we can obtain the difference be- 
tween the two spectra, namely, the error function e(k) in wave- 
number domain.  Using the Taylor’s frozen turbulence hypo- 
thesis can transform the error function into frequency domain: 
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 ( ) ( ) ( )tt sse k C k C k   (10) 

 ( ) ( )/e f e k U  (11) 

where, Ctt(k) is the Nasmyth theoretical spectrum in wave- 
number domain and e(f) denotes the error function in frequency 
domain. 

According to the LMS adaptive theory, the weight value con- 
stantly adjusts with the increase of the iterative number based 
on the error function.  The next weight value is the sum of the 
current weight value and the acceleration auto-spectrum mul-
tiplied by the error function (Widrow et al., 1976): 

 1( ) ( ) 2 ( ) ( )M M aaH f H f e f C f    (12) 

where,  is the adaptation constant controlling the rate of con- 
vergence of the adaptive filter and M is the iteration number.  
After the constant adjustment of the weight value, the cleaned 
spectrum approximately equals to the desired spectrum and the 
noise component is removed effectively. 

Assuming isotropic turbulence, the dissipation rate of turbu-
lent kinetic energy (TKE) for each segment is calculated with 
the corrected shear spectra using the spectral integration (Oakey, 
1982; Wolk et al., 2002): 

 
2

1

7.5 ( ) 7.5 ( )
k

k
k dk  

  
 2w

x
 (13) 

where,  is the kinematic viscosity, the overbar denotes a spa- 
tial average and (k) uses the corrected shear spectra Css(k).  
The lower integration limit k1 is set to 1 cpm (circle per meter) 
and the upper limit k2 is the Kolmogorov wavenumber that re- 
presents the upper limit of the effective signals. 

The flow chart of the improved denoising algorithm to cal- 
culate the dissipation rate of TKE is shown in Fig. 1.  Where, N 
denotes the first pair of the shear spectrum and the acceleration 
spectrum, M is the iteration number, which is set to 10 in this 
paper.  To remove the vibration noise coherent with the accele- 
rometers data, each 3-min burst is segmented into half-overlapping 
4-s-long portions for spectral analysis.  In the improved algorithm, 
from the second pair of spectra, we no longer calculate the weight 
value based on the cross-spectrum of the two signals.  Through 
adjusting the weight value in the adaptive process, the noise com- 
ponent will be removed effectively and the output spectrum 
will be much closer to the desired spectrum. 

IV. RESULTS 

In the filed test, the instrument collected abundant sea data 
from the deep sea for a long time at a fixed level.  The shear sig- 
nal sample processed in this paper is 3-min long and the cor-
responding velocity U = 0.26 m/s, which represents a 250-m 
velocity profile.  The unprocessed shear signal sample contains 
contamination from the instrument motions and vibrations,  
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Fig. 1.  Flow chart of the improved algorithm. 
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Fig. 3.  The power spectra of the shear signal and the acceleration signal. 

 
 

which obscures the true environmental shear signal in the time 
domain (shown in Fig. 2). 

The samples in Figs. 2(a) and (b) are the time series of the 
collected velocity shear.  The instrument samples the time de- 
rivative of the shear probe signals, which are converted to the 
along-flow gradients of velocity (w/x, v/x) using the meas-
ured current speed for this record.  The variation of the two per- 
pendicular components w/x and v/x tracks closely, which 
indicates that the turbulence measured by the two shear probes 
is close to isotropic.  Motions and vibrations of the observation 
instrument are revealed by the three-axis accelerometer records 
in Figs. 2 (c)-(e). 

It is difficult to analyze the influence of the noise on the tur- 
bulence shear signals in the time domain.  So, we transform the 
two kinds of signals into frequency domain and the frequency 
spectra can give considerable information on the quality of the 
data. 

The power spectrum for each component of velocity shear 
is computed through a fast Fourier transform (FFT).  In this pa- 
per, a FFT length of 4-s is chosen and each 3-min burst is 
segmented into half-overlapping 4-s-long portions for spectral 
analysis.  Before calculating the frequency power spectra, each 
4-s segment is detrended and Hanning windowed.  The com-
parison between the shear frequency spectra and the accelera- 
tions frequency spectra is presented in Fig. 3. 

The shear power spectra and acceleration spectra have high 
consistency near 5 Hz (vertical line).  The main reason is that 
the turbulence instrument attached to the submerged buoy and 
the deployment lines of the rotor current meters take shape 
when fluid passes the line, which caused the Karman vortex street.  
The shedding of the vortex causes shaking of the mooring line 
and the turbulence instrument follows to shake, which makes 
interference for the measurement of the turbulence shear signals 
(Song et al., 2013).  The shedding frequency can be computed 
using fshedding = 0.2U/D, where D = 0.01 m is the diameter of 
the mooring line and U is the velocity of the instrument.  In the 
segment processed in this paper, the corresponding velocity is  
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about 0.26 m/s and the shedding frequency is calculated to be 
about 5 Hz.  So, the high consistency of the power spectra at the 
shedding frequency indicates that the vibration of the instru-
ment (represented as acceleration signals) seriously affects the 
measured shear signals. 

The noise is removed with the improved turbulence denoising 
algorithm based on LMS adaptive filter described above.  The 
adaptive trajectories of the weight value and the error function 
in frequency domain are presented in Fig. 4.  The upper panel 
shows the change of the weight value and the lower panel shows 
the change of the error function obtained using Eq. (11), as the 
iteration number N = 1, 3, 5, 10 respectively.  It is easy to find 
that with the increase of the iteration number, the weight value 
constantly adjusts until reaches to the optimal value, meanwhile, 
the obtained error function gradually decreases and eventually 
reaches to a steady value.  The results prove that the improved 
turbulence denoising algorithm based on LMS adaptive filter  



440 Journal of Marine Science and Technology, Vol. 25, No. 4 (2017 ) 

 

U = 0.26 m/s

Raw ∂w/∂x  
Cross-spectrum denoising
Improved algorithm

Φ
 (k

) [
s-2

cp
m

-1
]

100

10-2

10-4

10-6

10-8

101 102 103

Wave number (cpm)
100

R = 2.2062e − 006ε

C = 3.9014e − 007ε
I = 3.2684e − 007ε

 
Fig. 6. The comparison of the raw spectrum , corrected spectrum and 

the Nasmyth theoretical spectrum. 

 
 

is reliable and efficient. 
To evaluate the validity of the improved denoising algori- 

thm, the wavenumber power spectra are computed and compared 
with the Nasmyth theoretical spectrum.  To observe the change of 
the wavenumber spectra with the increase of the iteration number, 
the wavenumber spectra and the error function in wavenumber 
domain are also presented in Fig. 5 at the iteration number N = 
1, 3, 5, 10 respectively. 

The cross-spectrum denoising algorithm is used as the com- 
parison to evaluate the effectiveness of the improved denois-
ing algorithm.  The wavenumber spectra are integrated over a 
limited range of wavenumbers to calculate the dissipation rate 
of TKE (Eq. (13)).  Here, we compare the corrected wavenumber 
spectrum using the improved denoising algorithm with the Nas- 
myth theoretical spectrum and the corrected wavenumber spec- 
trum using the cross-spectrum denoising algorithm, which are 
shown in Fig. 6. 

The above figure presents the denoising result of the im-
proved turbulence denosing algorithm.  The black dashed curve 
is the Nasmyth theoretical spectrum, and the other three solid 
curves are the observed spectra.  Among the three curves, the 
blue curve is the raw signal spectrum, the red one is the spectrum 
after being corrected with the improved algorithm proposed in 
this paper and the green one shows the spectrum after being 
processed with cross-spectrum denoising algorithm.  Compared 
with the cross-spectrum denoising algorithm, the observed spec- 
trum corrected with the improved denoising algorithm based 
on LMS adaptive filter is fairly smooth between 15 and 40 
cpm, which means the low wavenumber noise apparent in the 
raw spectrum is removed more effectively.  Also, the spectrum 
shape agrees much more close with the Nasmyth theoretical 
spectrum up to 80 cpm.  Furthermore, the dissipation rate of 
the TKE computed with the corrected shear signals using the 
improved denoising algorithm drops near an order of magni-
tude compared to the raw measured data, which provides reli- 
able and effective data for the further analysis of the turbulence 
characteristics. 

V. CONCLUSION 

Based on the analysis of the characteristics of the vibration 
noise in the observed turbulence shear signals, an improved 
turbulence denoising algorithm based on LMS adaptive filter-
ing is proposed in this work aiming at acquiring high-precision 
data.  The algorithm takes the Nasmyth theoretical spectrum as the 
desired signal and conducts the adaptive weight value estima- 
tion for different wavenumbers, which improves the denoising 
effect.  Compared with the traditional cross-spectrum denoising 
algorithm, the improved algorithm well improves the denois-
ing effect at the shedding frequency.  The sea data collected in 
the South China Sea with a moored instrument is used to verify 
the validity of the improved denoising algorithm.  The results 
show that the improved denoising algorithm can reliably and 
effectively filter the turbulence vibration noise and supply ef- 
fective turbulence signals to analyze the turbulence mixing cha- 
racteristics. 
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