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ABSTRACT 

A mixed performance control problem of discrete-time linear 
stochastic systems is discussed and investigated subject to H2 
and passivity performances in this paper.  Based on Itô model-
ing approach, stochastic systems can be represented as deter-
ministic difference equation with multiplicative noise term.  For 
the stochastic systems, H2 minimization problem and passivity 
constraint are simultaneously considered to achieve minimum 
output energy and attenuation performance.  Applying Lyapunov 
theory, some sufficient conditions are derived into extended 
Linear Matrix Inequality (LMI) form to apply convex optimi-
zation algorithm.  Moreover, a mixed H2/Passivity performance 
controller can be designed such that asymptotical stability and 
required performances of closed-loop system are guaranteed in 
the mean square.  Finally, some simulations are proposed to de- 
monstrate effectiveness and applicability of the proposed design 
method. 

I. INTRODUCTION 

System stability and control performance are two important 
issues in control engineering.  For stability issue, Lyapunov func- 
tion provides a powerful tool for linear systems and nonlinear 
systems.  On the other hand, various schemes have been employed 
to achieve the required performance.  For example, H2 scheme 
(Peres and Geromel, 1993; Du, 2006; Ma and Chen, 2006) is 
applied to minimize a quadratic control performance index.  The 
H scheme (Mahmoud, 2000; Li and Ugrinovskii, 2007; Will-
mann et al., 2007) proposes performance index to achieve ro- 
bustness of systems.  Moreover, some mixed H2/H performance 
schemes were developed by Kim (2001), Yang et al. (2002), 
Qiu (2008), Fioravanti et al. (2014) and Orihuela et al. (2015) 

through combining the merits of optimal H2 and robust H 
control schemes.  Usually, the purpose of mixed H2/H perfor- 
mance scheme is to minimize upper bound of H2 performance 
under a desired H norm bound constraint.  Thus, the mixed 
H2/H performance scheme is a more attractive design method 
in engineering practice because sole control performance is a 
worst case design that leads conservative.  In order to extend the 
application of mixed performance controller design method, 
its generality and flexibility are an interesting issue. 

To propose a general and flexible mixed performance con-
trol criterion, the passivity theory (Jiang and Hill, 1998; Xie  
et al., 1998; Lozano et al., 2000; Tan et al., 2010) is considered 
for achieving optimal performance in this paper.  Referring to 
(Lozano et al., 2000), Willems developed power supply function 
expressing passivity theory based on conservation, dissipation 
and transport of system energy.  In general, passivity theory pro- 
vides useful tool to analyze stability of linear systems and non- 
linear systems.  Based on the energy concept, the passivity theory 
was furtherly applied to deal with attenuation performance for 
fuzzy control (Li et al., 2005; Ku et al., 2010), observer-based 
control (Mathiyalagan et al., 2015), filter design (Wang et al., 
2016) and so on.  Through setting power supply function (Lozano 
et al., 2000; Ku et al., 2010), it is easily found that the passivity 
theory provides a formulation including H constraint, posi-
tive real theory and passive types.  It should be noted that the 
H scheme is a special case of passivity theory.  According to 
the above description, the passivity theory is applied to con-
strain the effect of external disturbance on the system in this 
paper.  Thus, a mixed H2/Passivity performance control crite-
rion is proposed to ensure H2 performance under the desired 
disturbance attenuation performance.  The similar mixed H2/ 
Passivity performance controller design method was developed 
by Ku and Li (2015) and Ku (2016) for continuous-time de-
terministic systems.  To extend the applicability of Ku and Li 
(2015) and Ku (2016), mixed performance control problem of 
the discrete-time linear stochastic system is discussed and solved 
in this paper. 

In practical control, stability analysis and controller synthesis 
of stochastic systems are always challenging problems according 
to characteristics as unmeasurable and unpredictable dynamics.  
Since the development of Itô stochastic modelling approach 
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(Chung and Chang, 1990; Karatzas and Shreve, 1991; Ghaoui, 
1995; Lu and Skelton, 2002; Xu et al., 2004; Liu et al., 2008), 
a term multiplying noise and state in stochastic difference 
equation (Karatzas and Shreve, 1991) is proposed to describe 
stochastic behaviors.  Because the multiplicative noise is more 
practical and realistic than traditional additive noise, stochastic 
difference equation was widely applied to describe stochastic 
systems such as communication systems, aerospace systems and 
image processing systems.  Many control fundamentals of deter- 
ministic systems were extended to analyze the stability of sto-
chastic systems (Chung and Chang, 1990; Ghaoui, 1995; Xu  
et al., 2004; Liu et al., 2008; Wang and Zhu 2015; Zhu and Cao, 
2015).  Based on the description of stochastic system, the sta- 
bility of Markovian jump neural networks has been discussed 
(Zhu and Cao 2012 a, b; Zhu et al., 2017).  However, some 
extra limits are required to deal with stochastic processes.  One 
of the extra limits is the sense of mean square (Lu and Skelton, 
2002) which is applied to define stability concept of stochastic 
systems.  To the best of our knowledge, the mixed H2/Passivity 
performance control problem of discrete stochastic systems has 
not been solved in the literature.  Moreover, it is an interesting 
and worth control issue to be discussed and investigated. 

Motivated by the above illustration, a mixed H2/Passivity per- 
formance controller design method is proposed for the discrete- 
time linear stochastic systems.  Based on the proposed design 
method, the minimum H2 performance is achieved under the 
desired passivity constraint in the mean square.  To provide the 
design method, some sufficient conditions are derived via ap- 
plying Lyapunov function.  According to discussions (Boyd et al., 
1994; Boyd and Vandenberghe, 2004), one knows that convex 
optimal algorithm is an effective tool to solve optimal control 
problem involving LMI.  Moreover, some further LMI problems 
were discussed and investigated by Scherer (2006) and Pipeleers 
et al. (2009).  Referring to (Pipeleers et al., 2009), an extended 
LMI form provides less conservative property than standard 
LMI form in searching sufficient solutions with applying the 
convex optimal algorithm.  Therefore, the derived conditions 
are converted into extended LMI form to design a mixed H2/ 
Passivity performance controller to guarantee the minimum H2 
performance under the desired passivity of linear stochastic sys- 
tems.  At last, some simulation results are used to show effec-
tiveness and applicability of the proposed design method. 

II. SYSTEM DESCRIPTIONS AND  
PROBLEM STATEMENTS 

In this paper, a discrete-time linear stochastic system is de- 
scribed as follows: 

       

        

1

+

x k x k u k v k

x k u k v k w k

   

 

A B E

A B E
 (1a) 

      1 1y k x k v k C D  (1b) 

      2 2z k x k u k C D  (1c) 

where   nx k R  is the state vector,   my k R  is the meas-

ured output vector,   pz k R  is the controlled output vector, 

  qu k R  is the control input vector,   mv k R  is the distur- 

bance input vector, and w(k) is a scalar discrete type Brownian 

motion.  A , A , B , B , 1C , 2C , 1D , 2D , E  and E  are 

constant matrices with compatible dimensions.  Referring to 
(Karatzas and Shreve, 1991), one can find the independent incre- 
ment properties of w(k), such as E{w(k)} = 0, E{w(k) w(k)} = 0 
and E{w(k) w(k)} = 1, where  E   denotes the expected value 

of  .  Besides, it should be noted that the pair (A, B) is known 
and controllable. 

For dealing with stabilization problem of (1), the following 
state feedback controller is considered in this paper. 

    u k x k F  (2) 

where R q nF  is a feedback gain and is needed to be de-
signed.  Substituting (2) into (1), the following closed-loop 
system is inferred. 

            1 +f fx k x k v k x k v k w k   A E A E  (3a) 

      1 1y k x k v k C D  (3b) 

    2fz k x k C  (3c) 

where f  A A BF , f  A A BF  and 2 2 2f  C C D F . 

In this paper, the passivity theory is substituted for the H 
scheme to constrain the effect of external disturbance on the 
closed-loop system (3).  Referring to Lozano et al. (2000), the 
passivity theory can be introduced in the following definition. 

 
Definition 1: The closed-loop system (3) with disturbance 
input v(k) and measured output y(k) is called passive if there 
exists matrices S1, S2  0 and S3 such that 

 

   

       
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0

T T
2 3

0 0
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p

p p
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k k

k k

E y k v k

E y k y k v k v k



 

  
 
  

    
  



 

S

S S

 (4) 

for any terminal time 0pk  . # 

 
From (Ku et al., 2010), power supply function (4) can be 

reduced into several cases for dealing with attenuation perfor- 
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mance of the closed-loop system (3).  For example, inequality 
(4) is reduced as a) H performance by setting S1 = 0, S2 = I 
and S3 = - 2 with positive scalar ; b) positive real performance 
by setting S1 = I, S2 = 0 and S3 = 0; c) strictly input passive 
performance by setting S1 = I, S2 = 0 and S3 = I with positive 
scalar ; d) strictly output passive performance by setting S1 = 
I, S2 = I and S3 = 0 with positive scalar ; e) strictly vary 
passive performance by setting S1 = I, S2 = I and S2 = I with 
positive scalars  and .  Thus, the passivity theory in Defini-
tion 1 proposes a general and flexible attenuation performance 
index.  Besides, in case of v(k) = 0, the H2 performance index 
defined in the following definition is applied to minimize 
output energy. 

 
Definition 2 (Kim, 2001): The controller (2) is an H2 per-
formance measure for the closed-loop system (3) with v(k) = 0, 
if one can find a  > 0 to satisfy the following inequality. 

    T

0

fT

k

E z k z k 


    
  
  (5) 

where 0fT   is terminal time of control. # 
 

Remark 1 
Based on the definitions of this paper, the mixed perform-

ance of the closed-loop system (3) is dealt with achieving 2H  
performance and passivity.  With setting S1 = 0, S2 = I and S3 = 
-2, the proposed mixed H2/Passivity performance criterion 
can be reduced as the mixed H2/H performance criterion.  In 
addition, the control issue discussed in this paper is more ge- 
neral than the design method of Fioravanti et al. (2014) accord- 
ing to the consideration of stochastic behavior.  Concluding 
the above description, the proposed design method is more ge- 
neral and flexible than the existing design methods (Kim, 2001; 
Yang et al., 2002; Fioravanti et al., 2014; Orihuela et al., 2015).
 # 

 
Through Definition 1 and Definition 2, two goals are con-

cerned to guarantee the required control performance.  One of 
the goals is to ensure the attenuation performance of the closed- 
loop system (3).  Another goal, in case of v(k) = 0, is to mini- 
mize output energy of the closed-loop system (3) with initial 
conditions.  According to the above illustrations, the mixed H2/ 
Passivity performance control problem of the closed-loop sys- 
tem (3) is discussed in the next section. 

III. MIXED H2/PASSIVITY  PERFORMANCE 
CONTROLLER DESIGN METHOD 

In this section, some sufficient conditions are derived by 
Lyapunov function to achieve the above definitions.  Through 
solving the sufficient conditions, some feasible solutions can 
be obtained to establish mixed H2/Passivity performance con-
troller (2) to stabilize closed-loop system (3). 

Theorem 1 
Given matrices S1, S2  0 and S3, if there exists a minimized 

positive scalar , positive definite matrix P and feedback gain 
F satisfying the following inequalities then the asymptotical 
stability and mixed H2/Passivity performance of the closed-loop 
system (3) are achieved in the mean square. 

 

T T T
1 2 1

T T T T
1 1 1 2 1

T T T T T
3 1 1 1 1 1 2 1

*
0

f f f f

f f

   


  




     

A PA A PA P C S C

E PA E PA S C D S C

E PE E PE S D S S D D S D

 (6) 

 T T T
2 2+ 0f f f f f f  A PA A PA P C C  (7) 

    T 0 0 0x x  P  (8) 

where * denotes the transposed elements or matrices for sym-
metric position. 

 
Proof: 

Let us choose the following Lyapunov function. 

       TV x k x k x k P  (9) 

Taking the first forward difference of (9), one has 

          

           
           

   

T T

T

T

1 1

+

+

f f

f f

V x k x k x k x k x k

x k v k x k v k w k

x k v k x k v k w k

x k x k

    

  

  



P P

A E A E P

A E A E

P

. 

  (10) 

Taking expectation of (10), the following equation can be ob- 
tained with the independent increment property of Brownian 
motion (Karatzas and Shreve, 1991). 

   
        
 
 

 
 

T T

T T T

T T T T

1 1

f f f f

f f

E V x k

E x k x k x k x k

x k
E

v k

x k

v k



   

          
      

   
  

P P

A PA A PA P

E PA E PA E PE E PE

 (11) 
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Let us define the following cost function with zero initial 
condition. 

         

   

       

   

     

       

      

 

T T
2 3

0

T
1

T T
2 3

0

T
1

T T
2 3

0

T
1

0

, ,

2

2

1

2

, ,

p

p

p

p

k

k

k

k

p

k

k

k

k

x v k E y k y k v k v k

y k v k

E y k y k v k v k

y k v k

V x k V x k

E y k y k v k v k

y k v k V x k

E x v k









  




 




  

 


 

    
  









S S

S

S S

S

S S

S

 
  (12) 

where 

         

      

T T
2 3

T
1

, ,

2

x v k y k y k v k v k

y k v k V x k

  

  

S S

S
 (13) 

Substituting (3b) and (11) into (13), one has 

  
 
 

 
 

T

, ,
x k x k

x v k
v k v k

   
    
      

Λ  (14) 

where 

 

T T T
1 2 1

T T T T
1 1 1 2 1

T T T T T
3 1 1 1 1 1 2 1

*

f f f f

f f

   

   



     

A PA A PA P C S C
Λ

E PA E PA S C D S C

E PE E PE S D S S D D S D

. (15) 

Obviously, the left-hand side of condition (6) equals to .  
Thus, if condition (6) holds, then (15) is negative according to 
 < 0.  Moreover,  < 0 implies  , , 0x v k   from (14).  
Due to  , , 0x v k  , one can find  , , 0x v k   from (12).  
And then, the following inequality can be easily found. 

 

   

       

1
0

2 3
0 0

2
p

p p

k
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E y k v k

E y k y k v k v k



 

  
 
  

    
  



 

S

S S

 (16) 

Because (16) is equivalent to (4), the closed-loop system (3) 
is passive with the given S1, S2  0 and S3.  Next, the asymp-
totical stability of the closed-loop system (3) with zero dis-
turbance input is analyzed in the following derivative.  When 
the external disturbance is zero, i.e., v(k) = 0, Eq. (11) can be 
rewritten as the following relations. 

 
   

     T T T
f f f f

E V x k

E x k x k



  A PA A PA P
 (17) 

Introducing (3c) into (17), one has 

   
    
       
    
   
     

T T T

T T

T T T T
2 2

T

T T T T
2 2

f f f f

f f f f f f

f f f f f f

E V x k

E x k x k

z k z k z k z k

E x k x k

z k z k

E x k x k



  

 

   



   

A PA A PA P

A PA A PA P C C

A PA A PA P C C

. (18) 

If inequality (7) holds, then one can find E{V(x(k))} < 0 
from (18).  Referring to (Ghaoui, 1995) and E{V(x(k))} < 0, 
the closed-loop system (3) with zero external disturbance input 
is asymptotically stable in the mean square.  Besides, condition 
(7) implies the following inequality. 

        T 0E V x k z k z k    (19) 

and 

         TE V x k E z k z k    (20) 

Summarizing (20) from 0 to Tf, we have 

             T T T

0

0 0
fT

f f
k

E x T x T x x E z k z k


     
  
P P . 

  (21) 

Because condition (7) holds, one knows that the closed-loop 
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system (3) is asymptotically stable, that implies   0fx T   

and    T 0f fx T x T P  as fT  .  Therefore, inequality 

(21) can be furtherly inferred as the following inequality. 

         T T

0

0 0
fT

k

E z k z k E x x


    
  
 P  (22) 

From inequality (22), it is known that     T 0 0E x xP  is 

the upper bound of output energy.  If condition (8) holds, then 
the following inequalities can be obtained due to  E a a  

where a is scalar. 

     T 0 0 0E x x  P  (23) 

and 

     T 0 0E x x P  (24) 

From (22) and (24), the following relation can be directly found. 

    T

0

fT

k

E z k z k 


    
  
  (25) 

Because (25) is equivalent to (5), one knows that if condi-
tions (7) and (8) of this theorem are satisfied, then the H2 per- 
formance of the closed-loop system (3) is achieved.  Moreover, 
the output energy is minimized subject to .  The proof of this 
theorem is completed. # 

In Theorem 1, the sufficient conditions are derived by using 
Lyapunov function to discuss the asymptotical stability and 
mixed H2/Passivity performance of (3) in the mean square.  To 
apply convex optimal algorithm (Boyd and Vandenberghe, 2004), 
the sufficient conditions in Theorem 1 are converted into LMI 
form in the following theorem. 

 
Theorem 2 

For the given matrices S1, S2  0 and S3, the asymptotical 
stability and mixed H2/Passivity performance of closed-loop sys- 
tem (3) are achieved in the mean square if there exists positive 
scalar , positive definite matrix P, arbitrary matrix G and feed- 
back gain F such that 

T

T T
1 1 3 1 1 1 1

1
1 1 2

* * * *

* * *

0* *

0 *

0 0 

  
 
   

 
 

 
 

 
 

X G G

S C G S D S S D

AG + BK E X

AG + BK E X

C G D S

 (26) 

 

T

2 2

* * *

* *
0

0 *

0 0

  
 

     
 

  

X G G

C G D K I

AG BK X

AG + BK X

 (27) 

 
 

 
T 0

0
0

x

x

 
 

  X
. (28) 

where X = P-1 and K = FG. 
 

Proof: 
Applying Schur complement (Boyd et al., 1994), inequality 

(6) can be converted into the following inequality. 

 

T T
1 1 3 1 1 1 1

1

1

1
1 1 2

* * * *

* * *

* * 0

0 *

0 0

f

f







 
    
  
 

 
  

P

S C S D S S D

A E P

A E P

C D S

 (29) 

Multiplying the both side of (29) by  T , , , , diag G I I I I  

and  , , , , diag G I I I I , where  diag   denotes the diagonal 

matrix with element  , one has 

T 1

T T
1 1 3 1 1 1 1

1

1

1
1 1 2

* * * *

* * *

* * 0

0 *

0 0

f

f









 
 
   

  
 
 
  

G P G

S C G S D S S D

A G E P

A G E P

C G D S

. (30) 

According to 0P , one holds the following fact. 

    T1 T 1 0   P G P P G  (31) 

Arranging (31) one can find the following relation to re-
placing the bilinear term in (30). 

 1 T T      P G G G P G  (32) 

Thus, one has 

1 T

T T
1 1 3 1 1 1 1

1

1

1
1 1 2

* * * *

* * *

* * 0

0 *

0 0

f

f









  
 

   
  
 
 
 

 

P G G

S C G S D S S D

A G E P

A G E P

C G D S

. 

  (33) 
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Substituting f A A + BF  and f  A A BF  into (33), the 

following relation can be obtained by setting X = P-1 and K = 
FG. 

T

T T
1 1 3 1 1 1 1

1
1 1 2

* * * *

* * *

* * 0

0 *

0 0 

  
 
   

  
 
 
 

 

X G G

S C G S D S S D

AG + BK E X

AG + BK E X

C G D S

 (34) 

It is easy to find that (34) is equivalent to (26).  Thus, if con- 
dition (26) holds, then condition (6) is satisfied.  Besides, (27) 
and (28) can be respectively derived from conditions (7) and 
(8) with the above converting processes.  Thus, the proofs of (28) 
and (29) are omitted here.  The proof of Theorem 2 is complete.
 # 

In Theorem 2, the sufficient conditions are converted into ex- 
tended LMI form via introducing arbitrary matrix and applying 
transformation technologies.  Therefore, the feasible solutions can 
be obtained via using convex optimization algorithm to estab-
lish controller (2) such that the H2 performance and passivity 
of the closed-loop system (3) are achieved. 

 
Remark 2 

Referring to (Pipeleers et al., 2009), one can find that the ex- 
tended LMI form possesses two advantages.  One of the advan- 
tages is that the extended LMI form reduces the conservatism 
in finding feasible solutions for the conditions in Theorem 2.  
Another advantage is that the sufficient conditions in Theorem 
2 can be reduced to standard LMI form by setting G = P-1. # 

By setting S2 = 0, a sufficient condition (26) in Theorem 2 
becomes as non-standard LMI form that is difficult to be solved 
by the convex optimal algorithm.  For the case as S2 = 0, the suf- 
ficient conditions in Theorem 2 can be rewritten as the follow-
ing corollary. 

 
Corollary 1 

For the given matrices S1 and S3, the asymptotical stability 
and mixed H2/Passivity performance of closed-loop system (3) 
are achieved in the mean square, if there exists positive scalar 
, positive definite matrix P, arbitrary matrix G and feedback 
gain F such that 

 

T

T T
1 1 3 1 1 1 1

* * *

* *
0

*

0

  
 
     

 
  

X G G

S C G S D S S D

AG + BK E X

AG + BK E X

 (35) 

 

T

2 2

* * *

* *
0

0 *

0 0

  
 

     
 

  

X G G

C G D K I

AG BK X

AG + BK X

 (36) 

 
 

 

T 0
0

0

x

x

 
  

  X
. (37) 

Proof: 
Following the proof procedure of Theorem 2 and setting S2 = 

0, the proof of this theorem can be easily obtained and it is 
omitted here. # 

Based on Corollary 1, one can also apply convex optimal al- 
gorithm to find feasible solutions to establish controller (2) for 
the closed-loop system (3).  For demonstrating effectiveness and 
usefulness of the proposed design method, some numerical simu- 
lations are proposed in the following section. 

IV. SIMULATION 

In this section, two numerical examples are proposed.  In the 
first example, a dissipative controller design method (Tan et al., 
2010) is applied to compare with the proposed design method.  
Through the simulation results in the first example, one can 
find that the considerations of stochastic behavior and H2 per- 
formance are important issues in practical control problem.  In 
the second example, a mixed performance control problem of 
an inverted pendulum on a cart system is discussed and solved 
by the proposed design method.  Moreover, a comparison be- 
tween the proposed design method and a mixed H2/H per-
formance design method (Fioravanti et al., 2014) is provided 
in Example 2.  Through this example, one can find that the pro- 
posed design method can be reduced into the design method 
(Fioravanti et al., 2014).  And, the proposed design method pos- 
sesses less conservatism than the method (Fioravanti et al., 2014) 
based on the simulation results. 

Example 1 

Referring to (Tanaka and Sano, 1994), the nonlinear dynamic 
equations of truck-trailer system can be proposed as follows: 

 

       

   
   

1 1

1

1 1.363 0.7143 0.1

0.09 0.45

0.01

x k x k u k v k

x k u k

v k w k

   

 



 (38a) 

           2 1 2 21 0.363 0.1x k x k x k x k w k      (38b) 

 
        

    
3 1 2 3

3

1 2 sin 0.18 +

0.2

x k x k x k x k

x k w k

     


 (38c) 

      1y k x k v k   (38d) 

where x1(k) is the angle difference truck and trailer, x2(k) is the 
angle of the trailer, and x3(k) is the vertical position of the rear  
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Fig. 1.  Responses of state x1(k) in Example 1. 

 

 
end of the trailer.  Moreover, the external disturbance v(k) is zero- 
mean white noise with variance 0.1.  Besides, the following linear 
model can be obtained to represent the local behavior of (38) 

around the equilibrium point    T0 0 0epx k  .  Moreover, 

the output  z k  is added to achieve H2 performance. 

            1x k x k u k v k x k w k    A B E A  (39a) 

      1 1y k x k v k C D  (39b) 

      2 2z k x k u k C D  (39c) 

where 

1.3636 0 0

0.3636 1 0

0.3636 2 1

 
   
  

A , 

0.09 0 0

0 0.1 0

0 0 0.2

 
   
  

A , B  

0.7143

0

0

 
 
 
  

,  1 1 0 0C ,  2 0 0 1C , D1 = D2 = 1 

and  T0.01 0 0E .  In order to apply the proposed design 

method, the S1 = 1, S2 = 0.8 and S3 = 0.8, initial condition 
T

(0) 40 20 1x     
   and sampled period as 2 second are 

determined.  And then, the following controller can be estab-
lished via solving the sufficient conditions in Theorem 2. 

    u k x k F  (40) 

where  2.6878 3.3552 0.5516 F .  Moreover, the mini- 

mum value of  = 4.9961 is also obtained.  Applying (40), the 
responses of (38) are stated in Figs. 1-3 with the initial condi-
tion.  Besides, the achievement of performances can be checked  
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Fig. 2.  Responses of state x2(k) in Example 1. 
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Fig. 3.  Responses of state x3(k) in Example 1. 

 
 

by the following equations with the simulation results. 

 
   

       

T
1

0

T T
2 3

0 0

2

1.006

p

p p

k

k
k k

k k

y k v k

y k y k v k v k



 







 

S

S S

 (41) 

and 

    T

0

3.156
pk

k

z k z k


  (42) 

According to the above equations, the value of (41) is big- 
ger than one that satisfies Definition 1.  Moreover, the value in 
(42) is smaller than the obtained minimum  that achieves 
Definition 2.  From (41), (42) and Figs. 1-3, the asymptotical 
stability and mixed H2/Passivity performance of truck-trailer 
system (38) are thus achieved by the controller (40). 
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Referring to (Tan et al., 2010), a dissipative controller design 
method was proposed without considering H2 performance 
and stochastic behaviors.  Based on the same matrices S1 = 1, 
S2 = 0.8 and S3 = 0.8, the following controller can be designed 
by using the method (Tan et al., 2010). 

    u k x k F  (43) 

where  2.2473 1.1462 0.0806 F .  With the same initial 

condition, the responses of (38) driven by (43) are also pro-
posed in Figs. 1-3.  Based on those responses, the following 
values can be obtained. 

 
   

       

T
1

0

T T
2 3

0 0

2

1.165

p

p p

k

k
k k

k k

y k v k

y k y k v k v k



 







 

S

S S

 (44) 

and 

    T

0

47
pk

k

z k z k


  (45) 

Because the value in (44) is bigger than one, the passivity 
performance of (38) driven by (43) is achieved.  However, the 
value in (45) is bigger than the obtained  = 4.9961.  Thus, the 
H2 performance of (38) driven by (43) is not achieved.  It 
means that the output energy of (38) driven by (43) is bigger 
than that driven by (40). 

Referring to Figs. 1-3, controller (40) possesses better settling 
time than controller (43).  Besides, the overshoot of (38) driven 
by (43) is bigger than that driven by (40).  The poor control per- 
formance of (43) is caused by the considered stochastic behavior.  
Moreover, because the H2 performance was not concerned by 
Tan et al. (2010), the response of x3(k) cannot be constrained 
under the given requirement.  Concluding this simulation re- 
sults, the proposed design method provides better control per- 
formance than the method of Tan et al. (2010). 

Example 2 

In this example, a comparison between the proposed design 
method and the method (Fioravanti et al., 2014) is provided to 
show advantages of this paper.  From (Fioravanti et al., 2014), 
a mixed H2/H performance controller design method has been 
proposed for discrete-time linear systems.  In this example, two 
cases are proposed to emphasize the contribution of this paper.  
One of the cases is to show that the proposed design method 
provides less conservative than the method (Fioravanti et al., 
2014).  Another case is to emphasize the importance of consid-
ering stochastic behavior under the same performance indexes.  
Referring to (Iordanou and Surgenor, 1997), the following discrete- 
time inverted pendulum on a cart system was modeled with sam- 
pling time as 0.01 second.  To apply the proposed design method, 

an external disturbance v(k) and a multiplicative noise w(k) are 
added. 

       

        

1x k x k u k v k

x k u k v k w k

   

  

A B E

A B E
 (46a) 

      1 1y k x k v k C D  (46b) 

      2 2z k x k u k C D  (46c) 

where           T

1 2 3 4x k x k x k x k x k    ,  1x k  is the 

cart position,  2x k  is the cart velocity,  3x k  is the payload 

angle,  4x k  is the payload angle velocity,  u k  is the applied 

force, and  v k  is the zero-mean white noise with unit variance.  

And, system matrices are presented by  T0 0 0.01 0E , 

 1 0 0 1 0C ,  2 1 0 0 0C , 1 2 1 D D , 

1 0.0087 0 0

0 0.7515 0 0

0 0.0111 1.0015 0.0100

0 2.1235 0.3052 0.9999

 
 
 
 
 

 

A  and 

0.0027

0.5219

0.0234

4.4593

 
 
 
 
 
 

B .  In 

order to compare with the method (Fioravanti et al., 2014), the 
matrices in Definition 1 are set as S1 = 0, S2 = I and S3 = - 2 
such that the proposed design method is reduced as mixed 
H2/H performance controller design method.  And, the initial 

condition 
T

(0) 0.5 0 50 0x    
  is assumed in the follow-

ing cases. 

Case 1 

In the first case, the multiplicative noise terms in (46a) are 

set as zero ( 0  A B E ).  Moreover, the attenuation level  
and upper bounded   are respectively fixed to apply the pro- 
posed design method and the method (Fioravanti et al., 2014) 
to solve the mixed performance control problem of (46).  Through 
MATLAB LMI Toolbox, simulation results of this case are 
concluded in Table 1.  From Table 1, by fixing , the value as  = 
30.4778 can be obtained by the proposed design method.  And, 
the value of  = 32.0344 is obtained by applying the method 
(Fioravanti et al., 2014).  It is easy to see that the smaller upper 
bound  can be found by using the proposed design method 
than one found by Fioravanti et al.  (2014).  Besides, under 
fixing , the attenuation level  = 1.2093 is obtained by the 
proposed design method.  Moreover, an attenuation level  = 
1.8334 is obtained by the method (Fioravanti et al., 2014).  It 
should be noted that the proposed design method provides 
smaller attenuation level than the method (Fioravanti et al., 
2014).  It means that the proposed design method provides 
better attenuation performance than the method (Fioravanti  
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Table 1.  Comparison Between the Proposed Design Method and Method of (Fioravanti et al., 2014). 
Method Fixing  = 1.1 Fixing  = 20 

The Proposed Design Method  = 30.4778  = 1.2093 
Method of (Fioravanti et al., 2014)  = 32.0344  = 1.8334 
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Fig. 4.  Responses of state x1(k) in Example 2. 
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Fig. 5.  Responses of state x2(k) in Example 2. 

 
 

et al., 2014).  Based on those simulation results, one can find 
that the conservatism of the proposed design method is less 
than one of the method (Fioravanti et al., 2014) according to 
extended LMI form.  Therefore, the proposed design method 
is less conservative than the method (Fioravanti et al., 2014). 

Case 2 

In this case, the matrices of multiplicative noise term of (46) 

are set as 
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Fig. 6.  Responses of state x3(k) in Example 2. 
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Fig. 7.  Responses of state x4(k) in Example 2. 

 

 
 T0 0 0.001 0 .  Moreover, minimum upper bound  = 20 
and attenuation level  = 2 are simultaneously fixed.  Applying 
the proposed design method, the following controller can be 
established. 

    u k x k F  (47) 

where  1.0165 1.4476 1.5815 0.3116  F .  Applying 

(47), the responses of (46) are stated in Figs. 4-7.  Based on 
those responses, the following values can be obtained to check 
achievements of Definition 1 and Definition 2, respectively. 
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and 

    T

0

6.212
pk

k

E z k z k


    
  
  (49) 

From the above results, one can find that the value of (48) is 
smaller than the given attenuation level  = 2.  According to 
Definition 1, the H performance of the system (46) driven by 
(47) is achieved.  Besides, the value in (49) is smaller than the 
given  = 25.  Thus, the H2 performance of (46) driven by (47) 
is achieved. 

In addition, the following controller can be designed by 
using the method (Fioravanti et al., 2014) with the same  = 20 
and  = 2. 

    u k x k F  (50) 

where  0.9777 1.2568 1.7609 0.2871 F .  Based on 

(50), responses of (46) are stated in Figs. 4-7.  Also, the fol-
lowing equations are proposed to ensure achievement of De- 
finition 1 and Definition 2. 
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and 

    T

0
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pk

k

E z k z k


    
  
  (52) 

From (51) and (52), one knows that the H2 and H perfor- 
mances of (46) are achieved. 

Referring to the above simulation results, asymptotical sta- 
bility and mixed H2/H performance of (46) can be achieved 
by using (47) or (50).  However, from Figs. 4-7, one can easily 
find that the overshoot of (46) driven by (47) is smaller than 
that driven by (50).  Moreover, the settling time of (46) driven 
by (47) is short than that driven by (50).  Those poor perfor- 
mances in controller (50) designed by Fioravanti et al. (2014) 
are caused via the stochastic behaviors.  According to the simu- 
lation results, it can be thus concluded that the proposed mixed 
H2/Passivity controller design method proposes some improve- 
ments for (Fioravanti et al., 2014) in stabilizing the discrete- 

time linear stochastic systems. 
Concluding the simulation results of this section, the consi- 

deration of stochastic behavior is an important issue in prac-
tical control because it always causes poor performance during 
control process.  Besides, the derived sufficient conditions in 
Theorem 2 provides some relaxations in searching feasible so- 
lutions according to an arbitrary matrix G .  Therefore, the pro- 
posed design method is not only less conservative but also more 
general than the methods (Tan et al., 2010; Fioravanti et al., 
2014). 

V. CONCLUSIONS 

In this paper, a general and flexible mixed performance con- 
trol problem of the discrete-time linear stochastic systems has 
been discussed by H2 control scheme and passivity theory to 
achieve minimized output energy and external disturbance con- 
straint.  To proposed mixed H2/Passivity performance control- 
ler design method, some sufficient conditions were derived by 
Lyapunov function.  Moreover, the derived sufficient conditions 
were converted into extended LMI form to reduce some con-
servatism in searching feasible solutions.  Therefore, one can 
find the feasible solutions to build a controller such that the 
asymptotical stability and mixed H2/Passivity performance of 
the stochastic system are achieved in the mean square.  Finally, 
some simulation results have been proposed to show the effec- 
tiveness and applicability of the proposed design method. 
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