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ABSTRACT 

Numerical simulations of free roll decay are carried out for 
the DTMB 5512 based on computational fluid dynamics (CFD) 
theory and adoption of overset mesh technology.  The numerical 
time history of the ship roll shows good quantitative agreement 
with the experimental time history in the case of Fr = 0.138 
with an angle of list of a0 = 10.  The natural period is well es- 
timated, there is less than 2% error.  According to the time his- 
tory of the roll angle and the corresponding angular velocity, 
the nonlinear ship roll damping and restoring force of the hull 
are identified by solving the nonlinear Volterra integral equation 
of the first kind with Tikhonov’s regularization method.  The re- 
sults indicate that the numerical method in the paper is feasible, 
and the choice of regularization parameter is proper.  Addition-
ally, the influences of angle of list, model scale and ship speed 
on free roll decay are investigated.  Roll damping and nonlinear 
restoring force increase as model scale decreases.  Keeping the 
same scale of ship model, roll damping increases with ship speed 
while nonlinear restoring force decreases. 

I. INTRODUCTION 

It is necessary to obtain an accurate roll damping before 
making a good evaluation of roll motion.  Traditionally, there are 
three kinds of methods available for estimating the roll damping, 
the model test (Irvine, 2004; Aloisio and Felice, 2006; Irvine  
et al., 2013; de Oliveira and Fernandes, 2014), the semi-empirical 
method (Ikeda et al., 1976; Ikeda et al., 1977; Ikeda et al., 1977; 
Ikeda et al., 1978), and the numerical method (Yang et al., 2012; 
Zhu et al., 2012; Yang et al., 2013).  The model test is a quite 

reliable method, but costs both time and money.  The semi- 
empirical method is a convenient way to evaluate the ship roll 
damping by summing up each individual component, but it neg- 
lects the interactions among each component, and the roll damp- 
ing cannot be evaluated accurately, especially when the roll angle 
is large.  However, with the development of computational science 
and technology, the numerical simulation method, which is based 
on the computational fluid dynamic, is developing rapidly.  More 
and more dynamic mesh technologies, especially overset mesh 
technology, have been implemented in the simulation of an ob- 
ject in motion.  In recent years, overset mesh technology has 
been applied in numerical simulations of a ship in roll motion.  
Chen et al. (2001) carried out numerical simulations of two types 
of roll motion, a barge- prescribed roll and free roll decay.  Wilson 
et al. (2006) performed simulations of free roll decay and forced 
roll of the DTMB 5512 with/without bilge keel to show that the 
numerical method that is used on paper can accurately estimate 
the natural rolling frequency and roll decay rate at various ship 
speeds.  Jiang et al. (2016) conducted simulations of free roll 
decay of DTMB 5512 with bilge keel to explore the charac-
teristics of roll damping.  Meanwhile, verification and validation 
(V & V) of numerical results are required, the procedure for the 
CFD uncertainty analysis, which is provided by Stern et al. (1999; 
2001), is considered to be widely accepted and available. 

Generally, the time history of free roll decay can be obtained 
from a free roll decay test, either a model test or a numerical test.  
Roll damping can be evaluated with either the extinction curve 
method (Zhu et al., 2012; Yang et al., 2013; Jiang, 2016) or the 
energy method (Ma et al., 2012; Jiang et al., 2016) , in which 
the two following roll damping models are usually adopted (Zhou, 
2012).  One is the linear-plus-quadratic damping model, ( )M     

1 2b b     , and the other is the linear-plus-cubic damping 

model, 3
1 3( )M b b      .  Roll damping estimations based 

on the damping model can be regarded as parametric identifica- 
tion (Li et al., 2012; Hou, 2015; 2016; Jiang and Zhu et al., 2016).  
Li et al. (2012) focused on the estimation method of least square 
support vector regression (LS-SVR) theory to identify the para- 
meters of roll motion based on the linear-plus-quadratic roll 
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damping model.  Hou et al. ( 2015) also aimed at identification 
method- support vector regression (SVR) to identify the non- 
linear roll motion equation with linear-plus-quadratic roll damp- 
ing model for a FPSO vessel in regular waves.  Jang (2011) pointed 
out that parametric identification is limited to finding only the 
parameters on which the systems are assumed to depend, that 
is, the model should be given in advance.  Taylan (1998) inves- 
tigated various representations of the damping and restoring 
terms, results showed that an inappropriate selection of damp-
ing and restoring terms may lead to a serious discrepancy with 
reality, especially in peak roll amplitudes.  Unlike parametric 
identification, non-parametric identification is a good method.  
It requires no priori assumption about the form of damping, 
with only the displacement and velocity being required.  Jang 
(2011) also proposed a method to identify nonlinear damping by 
solving the nonlinear Volterra integral equation of the first kind, 
and applied this method only in the identification of roll damp- 
ing of a fishing vessel in free roll decay (Jang et al., 2010).  As 
for the nonlinear Volterra integral equation of the first kind, that 
inverse problem is ill-posed, the solutions lack numerical stability 
(Tikhonov, 1963; Groetsch, 1993).  In order to suppress the in- 
stability of the inverse problem, many regularization methods 
(e.g., Tikhonov’ regularization method, Landweber’s regulariza-
tion method etc.) are developed and applied (Groetsch, 1993).  
Jang (2009; 2013) used Landweber’s regularization method to 
overcome the instability problem encountered when solving a 
nonlinear Volterra integral equation of the first kind. 

In the present paper, a new analytical approach for the free 
roll decay of ships is established, in which roll histories are ob- 
tained by numerical simulations of the free roll decay of ships 
by adopting the overset mesh technology.  Then nonlinear Volterra 
integral equation of the first kind with Tikhonov’s regularization 
method is solved to identify the nonlinear roll damping and re- 
storing forces.  The approach is extended to be applied in evalu- 
ating the influence of parameters (e.g., angle of list, scale and speed 
etc.) on the ship rolling.  More specifically, the numerical simu- 
lation of free roll decay of the DTMB 5512 with bilge keel at 
Fr = 0.138 is firstly performed, given an angle of list of a0 = 
10°.  That case is selected for V & V to verify the validity of the 
numerical method used in the paper.  Secondly, given the angle 
of list of a0 = 2.5, 5, 7.5, 12.5, 15, and 20, numerical 
simulations of the free roll decay of the ship without forward 
speed are performed.  Both the nonlinear damping and restoring 
force of the hull in free roll decay are identified by solving a 
nonlinear Volterra integral equation of the first kind with Tik-
honov’s regularization method with a proper regularization pa- 
rameter, 2 = 0.01.  Furthermore, the effects of scale and speed 
on the roll damping and nonlinear restoring force are discussed, 
respectively. 

II. GOVERNING EQUATION  
AND REALIZATION OF  

ROLL MOTION OF THE SHIP 

The finite volume method is used in deriving discretized equa- 

tions.  The second-order upwind scheme is adopted in the con- 
vection term, and the central-differencing scheme is used in 
the diffusion term.  The coupled equation of velocity and pressure 
is solved by the Semi-Implicit Method for Pressure-Linked 
Equations (SIMPLE algorithm).  The volume of fluid method 
(VOF) is used to distinguish between two different phases.  The 
algebraic multigrid method is used to solve the discretized al- 
gebraic equations. 

1. Governing Equation 

Continuity equation: 

 
( )

0 ( 1, 2, 3)i
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t x
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Momentum equation: 
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Transport equation of a scalar quantity  : 
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in which iu  is velocity in i th direction, fi stands for the body 

force, p  is the pressure, density is defined as 
2

1
q q

q

a 


  , in 

which the volume fraction aq represents the volume proportion 

of the q-th phase fluid in a cell, and 
2

1

1q
q

a


 , and  is the 

average dynamic viscosity with its form being analogous to 
that of the density. 

Returning to Eq. (3) and introducing the turbulent kinetic 
energy k and the dissipation rate  respectively, the SST k- 
model is derived as follows: 
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 (4) 

where the diffusivity of k, diffusivity of , production of k, 
production of , dissipation of k, dissipation of ω, and cross  
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Table 1.  Principal particulars of DTMB 5512. 
Main Features Value Main Features Value 

Scale  46.588 Draft T (m) 0.132 
Length between perpendiculars L (m) 3.048 Wetted surface S (m2) 1.371 

Vertical position of gravity center zg (m) 0.030 Block coefficient Cb 0.506 
Beam B (m) 0.405 Mass m (kg) 82.150 

 
 

(a) (b) (c)

Background
region Overset region

Overset cell

Background cell
Active cell

x
y

z

xy
z

xy
z

 
Fig. 1.  overset mesh schematic. 

 
 

diffusion term , are denoted by k, , Gk, G, Yk, Y, and S, 
respectively. 

The transport equation of the volume of fraction can be 
written as 

 
( )

0 ( 1, 2; 1, 2, 3)q i q

i

a u a
q i

t x

 
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 
 (5) 

2. Roll Decay Motion Equation 

In the system of the ship in free roll decay, assuming the hull 
is treated as a rigid body, a reference coordinate system, denoted 
by OXYZ, is fixed at the gravity center of the hull.  It follows 
the right-hand rule, the positive X direction is towards the stern 
and the positive Y direction is towards the starboard.  By appli- 
cation of the Newton’s second Law, the roll decay motion equa- 
tion is defined as 

 2 3 3 2( )xx

s

d
I f r n r n dS

dt

 
   (6) 

where Ixx stands for the moment of inertia around the X-axis, 
   represents the roll angular velocity, f is the stress acted on 
the wetted surface of the hull, which is composed of dynamic 
pressure and shear stress.  The normal of the element on the 

hull is marked as 1 2 3( , , )n n n n


, and 1 2 3( , , )r r r r


 denotes 

the coordinates of the center of the element on the hull in the 
reference frame. 

3. Overset Methodology 

Overset meshes are used to discretize a computational do- 
main with several different meshes that overlap each other in an 
arbitrary manner (CD-adapco, 2014).  There are two kinds of re- 
gions in the overset meshes, a background region enclosing the 

entire solution domain and one or more overset regions contain- 
ing the bodies within the domain, as shown in Fig. 1(a).  The cell 
generated in the background region is called the background 
cell, whereas the cell in the overset region is referred to as the 
overset cell. 

In a set of overset mesh, cells are grouped into active and 
inactive cells.  Discretized governing equations are solved within 
active cells, as shown in Fig. 1(c).  The difference between 
Figs. 1(b) and (c) is that the background cells within the overset 
region where two different sets of cells overlap are cleared up.  
The cells within which no equation is solved are known as in- 
active cells.  Acceptor cells separate active and inactive cells in 
the background region and are attached to the overset boundary 
in the overset region (CD-adapco, 2014).  Acceptor cells con-
tribute to the information exchange between the background 
region and the overset region.  Variable values at the acceptor cell 
of one mesh are expressed by variable values at donor cells in 
the other mesh through linear interpolation, yielding 

 rec i i    (7) 

where rec is the variable values at the acceptor cells, i is the 
variable values at the donor cells, and i is the shape functions 
spanning a triangle (in 2D) or a tetrahedron (in 3D) defined by 
the centroids of the donor cells. 

III. GEOMETRY AND MESH 

1. Geometry and Case Conditions 

The US Navy combatant, DTMB 5512, is only equipped with 
bilge keel B whose details can be found in the reference (2008).  
Principle particulars for the DTMB 5512 are listed in Table 1.  
Numerical simulation conditions for free roll decay motion tests 
are summarized in Table 2. 
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Table 2.  Conditions for numerical simulation of roll decay motion. 

 Scale Fr Angle of list (deg) 

46.588 0/0.138/0.28 2.5/5.0/7.5/10.0/12.5/15.0/20.0 
Free roll decay 

35.482/24.830/13.311 0 2.5/5.0/7.5/10.0/12.5/15.0/20.0 

 
 

 
Fig. 2.  Mesh generation. 

 
 

2. Mesh and Domain 

In the cases of free roll decay, the whole flow field was dis- 
cretized.  The space coordinate range for background region is 

determined as 
1 1

2 1
2 2

L X L   , -L < Y < L, 
2

3
L Z L   , 

and the overset region of 5512 is determined as 
3

4
L   

3

4
X L , 

2 2

3 3
B Y B   , 

1 1

5 5
L Z L  .  Fig. 2 depicts 

overset meshes of the objective hulls.  In the regions, i.e., free 
surface zones or regions near the hull, some variable gradients 
are large.  The cells in these regions need to be refined, in order 
to either capture the free surface precisely or compute the force 
acted on the hull accurately.  Moreover, the cells in the overlap- 
ping region are of similar size in both the background and overset 
meshes. 

3. Boundary Condition 

The computational domain is discretized, boundary condi-
tions are set up as follows: 

 
(1) Inlet/lateral/bottom/top boundaries: 
 The velocity vector is specified directly, pressure is extra- 

polated from the adjacent cell using reconstruction gradients. 
(2) Outlet boundary: 
 The velocity is extrapolated from the interior using recon- 

struction gradients.  Pressure is specified. 
(3) Ship hull boundary: 
 The tangential velocity is explicitly set to zero.  Pressure is ex- 

trapolated from the adjacent cell using reconstruction gra- 
dients. 

IV. IDENTIFY NON-LINEAR DAMPING  
AND RESTORING FORCE 

1. Modeling of Nonlinear Damping and Restoring Force 

Supposing the system of the hull in free roll decay is non- 

linear, the application of Newton’s second law yields the fol-
lowing second-order ordinary differential equation with the fol- 
lowing initial conditions. 

 ( ) ( )xxI C M r        (8) 

and 

 (0) (0)      (9) 

where C represents the restore coefficient and ,   ,    are 
corresponding to the roll angle, the roll angular velocity, and 
the roll angular acceleration, respectively.  ( )M   denotes the 

roll damping moment, which is a function of the roll angular 
velocity.  r( ) represents the nonlinear restoring force.  Both 
the nonlinear damping ( )M    and nonlinear restoring force 

r() have an anti-symmetry property: 

 ( ) ( )M M      (10) 

 ( ) ( )r r     (11) 

Defined here, ( ) ( ) ( )t M r    , an equivalent form of 

Eq. (8), is rewritten as  

 ( )xxI C t      (12) 

According to the concept of variation of constants, the so-
lution of the inhomogeneous Eq. (12) is supposed to be 

 1 1 2 2 1 1 2 2,                (13) 

where 1 and 2 satisfy the homogeneous equation xxI     

0C   and 1 and 2 are unknown functions of t.  The first 
equation in Eq. (13) is differentiated as 

 1 1 1 1 2 2 2 2                 (14) 
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Comparing Eq. (14) and the second equation in Eq. (13), 
the first condition on 1 and 2 is as follows: 

 1 1 2 2 0       (15) 

Substituting Eq. (13) into (12) yields the second condition 
on 1 and 2: 

 1 1 2 2
xxI

          (16) 

The solutions to Eq. (15) and Eq. (16) are obtained by 
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 (17) 

in which the Wronskian 1 2 2 1W       , a nonlinear Volterra 

integral equation, is derived by integrating Eq. (17) and substi- 
tuting it into the first equation in Eq. (13): 
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where 1 and 2 are chosen to ensure that 
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so that the form of 1 and 2 are as follows: 
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2

cos( )

1
*sin( )

t

t

 
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
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in which / xxC I  . 

2. Identify Nonlinear Damping and Restoring Force 

The kernel, K(t, ), is defined as 

 1 2 1 2( ) ( ) ( ) ( )
( , )

xx

t t
K t

I W

     



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Then Eq. (18) is rewritten as 

 1 2 0
( ) ( ) ( ) ( , ) ( )

t
t t t K t d          (22) 

which is classified as the Volterra integral equation of the first 
kind for . 

Two unknowns are involved in this nonlinear equation, the 
nonlinear damping ( )M    and the restoring force r( ).  An in- 

genious approach (Jang, 2011) is used to solve two unknowns, 
respectively. 

Given histories of the roll angle and roll angular velocity, a 
number of intersection points of the roll angle/roll angular ve- 
locity curve with the x-axis are obtained.  The tl for l = 1, 2,  
is a zero-crossing time for the roll angle, and tm for m = 1, 2,  
is a zero-crossing time for the roll angular velocity. 

 ( ) 0 1, 2,lt for l     (23) 

 ( ) 0 1, 2,mt for m      (24) 

Considering the anti-symmetry property, when the roll an-
gle is zero, 

 
( ( ) 0) ( ( ) 0) 0

( ) ( ( ))

l l

l l

r t r t

t M t

 



    

 
 (25) 

Similarly, when the roll angular velocity is zero, 

 
( ( ) 0) ( ( ) 0)

( ) ( ( ))

m m

m m

M t M t

t r t

 



    

 
 (26) 

3. Tikhonov’s Regularization 

The nonlinear integral Eq. (22) should be discretized, given 
the signal at t = t1, t2,  tn, the trapezoidal rule is adopted to 
approximate the integral term.  Then the matrix equation is de- 
rived as 

 L    (27) 

where  is the vector which is the left hand side in Eq. (22) 
evaluated at t = t1, t2,  tn. 

 ( , )ij j i jL q K t t t   (28) 

 

0.5 1,

1 1

0

j

j i

q j i

otherwise


  



 (29) 

That is an ill-posed problem, and the solution of Eq. (27) is 
not unique.  In solving such inverse problems, a regularization 
term can be included in the minimization process in order to give 
preference to a particular solution with desirable properties. 

  2 2
min L      (30) 
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Table 3.  Number of grids in simulation (104). 

 Coarse  medium fine 

Background region 6.8 16.7 42.8 

Overset region 34.5 64.6 138.1 

 
 

(a) coarse grids 

(b) middle grids

(c) fine grids

x
y

z

x
y

z

x
y

z

 
Fig. 3.  Grids on hull and middle section. 

 
 

where  is the Tikhonov matrix, which is chosen as a multiple 

of the identity matrix I  , 
2

L    represents the error 

from the mathematical model, 
2

  is a L2 norm which re- 

flects the smoothness of the solution, and  is chosen to balance 
the two effects. 

Defined here, 
2 2

E L      , then 

 
( ) ( ) ( ) ( )

2

T T

T T T T T T

E L L

L L L

 

  

       

      
 (31) 

In order to obtain the extremum, the derivative of Eq. (31) 
needs to be zero: 

 

1

0

2( ) ( ) 2 0

( )

( )

T T T T T T

T T T

T T T

E

L L L L

L L L

L L L





 

        

   

   

 (32) 

If both the angular acceleration and the roll angle are given, 

_ref is a reference vector whose components can be calcu-
lated out directly according to the left hand side of Eq. (8).  (t) 
is obtained from Eq. (32), then the optimal value of the regu-
larization parameter is chosen according to Eq.(33). 

 2

2

2
arg min _ ref


   (33) 

V. ANALYSIS OF RESULTS 

1. Uncertainty Analysis of Numerical Results 

For the problem of the roll decay motion of the hull with speed, 
the attitude is considered in the progress of geometry construc- 
tion.  The simulation involves two stages.  In the first stage, the 
hull is fixed with an initial heel.  For the second stage, the hull is 
in the roll decay motion. 

The case which 0 = 10 and, Fr = 0.138 is selected for V & V.  
In order to obtain the numerical error/uncertainties of the si- 
mulations, at least three different sets of grids are required, as 

displayed in Fig. 3.  The refinement factor of grids is 2 , the 
numbers of grids for the case are listed in Table 3. 

The solutions of fine/medium/coarse grids are expressed 
with SG1/SG2/SG3, and three time steps t1 = 0.005, t2 = 0.0071, 
and t3 = 0.01 are available.  Grid errors/uncertainties (G /UG) 
are estimated from the results of multiple grids while keeping the 
fine time step, t1 = 0.005, constant.  The errors/uncertainties 
(T /UT) of the time steps are estimated by refining the time step 
while keeping the grid SG2 constant. 

Verification is performed with consideration to grid and time 
step convergence studies.  Numerical simulation errors  SN and 
uncertainties USN are given by 

 
2 2 2

SN G T

SN G TU U U

   

 
 (34) 

A global convergence ratio 21 312 2
/ 3.734 /G G GR     

10.899 0.343 , < > denotes an averaged value and 
2

   

1/ 2

2

1

N

i
i




 
 
 
  denotes the L2 norm of solution change over the  

N points in the first five periods of free roll decay.  1GR   

indicates that the convergence condition is monotonic conver- 
gence.  The order of accuracy GP  and the correction factor 

GC  are: 

 
 32 212 2

ln /
3.090

ln

G G

G
G

P
r

 
   (35) 

 
1

1.918
1

G

Gest

P
G

G P

G

r
C

r


 


 (36) 
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Table 4. Averaged values from verification of free roll decay 
for Fr = 0.138 with angle of list a0 = 10. 

Study RG PG CG UG RGC 

Grid 0.34 3.09 1.92 1.66% 0.54%

TimeStep 0.51 1.94 0.96 0.60% 0.02%

 
 

Table 5. Averaged values from validation of free roll decay 
for Fr = 0.138 with angle of list a0 = 10. 

 E% UV% UD% USN% 

E = D  S -0.676 2.458 1.5 1.771 

EC = D  SC -0.581 1.628 1.5 0.539 

 
 

where PGest = 2 is the theory accuracy. 
For 1.918GC  , when considered as sufficiently less than 

or greater than 1 and lacking confidence, UG is estimated and 

not *
G . 

  21 211
1 1G G

G G
G G GP P

G G

U C C
r r

    
            

 (37) 

For 1.918GC  , when considered close to 1 and having 

confidence, both *
G  and UGC are estimated: 

 * 21

1G

G
G G P

G

C
r




 
    

 (38) 

   211
1G

G
CG G P

G

U C
r

 
     

 (39) 

Verification for the results of the different time steps is per- 
formed by the same process.  The results are summarized in 
Table 4.  The results show that the errors/uncertainties due to grids 
are the main components by comparing the differences of the 
errors/uncertainties of grids and time steps. 

Validation of the free roll decay is performed by using both 
the simulation prediction S and the corrected simulation pre-
diction SC.  Averaged values for both definitions of the comparison 
error, validation uncertainty, and simulation uncertainty are given 
in Table 5.  Values are normalized with 02  .  The point com- 

parison error E = D  SG2 is compared to the validation uncer- 
tainty UV in Fig. 4(a), while the error EC = D  SC is compared 
to the validation uncertainty UVC in Fig. 4(b), in which the un- 
certainty of the model test is UD = 1.5% (Wilson et al., 2006; 
Zhu et al., 2015).  The simulation results for both the uncorrected 
and corrected approaches are validated, at a level of 2.458% and 
1.628%, respectively. 
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Fig. 4.  Validation for free roll decay with angle of list 0 = 10 at Fr = 0.138. 
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Fig. 5.  Roll history (Fr = 0.138, 0 = 10). 

 
 
The numerical result SG2 is in good agreement with the ex- 

perimental one, as shown in Fig. 5.  From the roll time history, 
the amplitude in the previous roll cycles decays faster, while it 
decays slower after several cycles.  The average of the first five 
roll cycles is defined as the natural roll period, its numerical 
quantity is 1.6125 s and the experimental quantity is 1.6402 s, 
the error between these two is less than 2%. 

2. Influence of Angle of List 

In order to take the consideration of the initial condition, nu- 
merical simulations of free roll decay at Fr = 0 with different 
angle of lists, a0 = 2.5, 5.0, 7.5, 10.0, 12.5, 15.0, 20.0, 
are performed.  The histories of the roll angle and roll angular 
velocity are monitored, as displayed in Fig. 6.  Assuming a series 

of candidates, 2 = 10-1, 10-2, 10-3, 10-4, 10-5, 10-6, 
2

2
_ ref   

with various 2 is tabulated in Table 6.  Based on Eq. (33), the  
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Table 6.  influence of 2 on value of 
2

2
_ ref   for different angle of list. 

2 

Angle of list 
10-1 10-2 10-3 10-4 10-5 10-6 

2.5 2 2 4 12 33 86 
5 10 7 15 46 132 348 

7.5 27 18 33 105 299 797 
10 49 31 58 186 542 1438 

12.5 104 59 93 289 825 2172 
15 155 88 143 429 1233 3284 
20 306 158 261 761 2119 5602 
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Fig. 6.  Time history. 
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Fig. 7.  Solutions of  for different angle of list (2 = 0.01). 

 
 

optimal regularization parameter is set as 0.01.   agrees well 
with _ref, as shown in Fig. 7. 

According to Eqs. (25) and (26), the nonlinear damping 
( )M    and the restoring force r() are derived, as shown in 

Figs. 8 and 9.  Based on the non-parametric model, each set of 
data is fitted with a polynomial form to a curve, and a fitting 

formula is indicated as Eq. (40). 

 
3 5
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 (40) 
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Table 7.  Coefficients from roll histories with different angle of list (Fr = 0). 

0/deg T/s T* Ixx (kg  m) I*xx 

2.5 1.6125 7.9361 2.6609 0.1975 

5 1.6187 7.9669 2.6815 0.199 

7.5 1.625 7.9976 2.7023 0.2005 

10 1.6275 8.0099 2.7106 0.2012 

12.5 1.6425 8.0837 2.7608 0.2049 

15 1.6387 8.0653 2.7482 0.204 

20 1.6375 8.0591 2.744 0.2036 
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Fig. 8.  ( )M    for different angle of list with Fr = 0. 
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By substituting the form of Eq. (40) into Eq. (8), another new 

form of the motion equation can be derived as 

 3 5
2 3 52 0xxI N D C R R                (41) 

in which, the value of C is set as 40.4 N/rad (Wilson et al., 
2006).  Divide Eq. (41) by Ixx: 

 2 3 5
2 0 3 52 0n d r r                 (42) 

Table 8.  Nonlinear damping and restoring (Fr = 0). 

2n d2 r3 r5 
0.1093 0.1987 1.2563 -19.6817 

 
 

Table 9.  Grid number for different model scale (Fr = 0). 

Number of grids (104) 
scale 

Background region Overset region 
46.588 24.12 68.61 
35.482 22.48 90.96 
24.830 24.09 110.63 
13.311 23.09 107.57 

 
 

where 

2 3 52
2 0 3 5

2
2 , , , ,

xx xx xx xx xx

R RDN C
n d r r

I I I I I
      (43) 

The roll period and virtual moment of inertia are tabulated in 
Table 7, where the non-dimensional coefficients of roll period 
and virtual moment of inertia are defined, respectively, as 

 
2

* * xx
xx

Ig
T T I

B m B
 


 (44) 

It’s found that the influence of the angle of list on the roll 
period is negligible from Table 7.  This is consistent with the ob- 
jective fact that the roll period, which depends on the geometry 
of the ship and the mass distribution, is an intrinsic property of 
the ship.  Little influence of the angle of list on the virtual mo- 
ment of inertia is also observed.  Substitute the average of these 
values into Eq. (43) to obtain the nonlinear damping and restoring 
coefficients, as tabulated in Table 8. 

3. Influence of Model Scale 

The scale effect is always an inevitable problem that exists 
between the model and the real ship, because their Re numbers 
are not equal.  The influence of the model scale on the free roll 
decay at Fr = 0 is studied in this section, and the model scale  
ranges from 13 to 47.  The details of the grid numbers for dif- 
ferent scale models are listed in Table 9. 
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Fig. 10.  Time period for  s (Fr = 0). 
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Fig. 11.  Virtual moment of inertial for  s (Fr = 0). 

 
 
The dimensionless roll period and virtual moment of inertia 

are showed in Figs. 10 and 11, respectively.  Results illustrate 
that the influence of the model scale on the roll period and the 
virtual moment inertia coefficients is small.  Given that a mo- 
del scale is fixed, the roll period increases with the angle of list 
if angle of list is less than 10, while it almost keeps constant if 
angle of list ranges from 12.5 to 20.  This rule also holds for 
the virtual moment of inertia. 

By solving the inverse problem, the nonlinear damping and 
restoring force are derived, as scattered in Figs. 12 and 13, and 
their corresponding coefficients are listed in Table 10.  Roll 
damping is composed of two components, a linear and a non-
linear one, but the nonlinear term is subdominant.  Linear damp- 
ing is in proportion to  , and nonlinear damping has a reduced 
tendency as  decreases. 

As to the nonlinear restoring force, it is composed of r3 and 
r5 approximately, the r5 term is subdominant as the roll angle is 
less than 1 rad.  For the model whose scale is 46.588, its linear 
restoring force is 40.4 N*m and its related r3 is small, which  
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Fig. 12.  Nonlinear damping for  s (Fr = 0). 

 
 

means that the linear restoring force is proper.  However, r3 in- 
creases as the scale decreases, and its growth rate is greater 
than that of r5. 

In a word, the roll damping decreases slightly with the scale, 
while the nonlinear restoring force increases as the scale de-
creases. 

2. Influence of Ship Speed 

The influences of the angle of list and the model scale were 
studied in previous two sections at Fr = 0, this section will  
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Fig. 13.  Non-linear restoring force for  s (Fr = 0). 

 
 

focus on the influence of ship speed (Fr = 0.138, 0.28) given 
that the model scale is 46.588.  The grid numbers for the nu-
merical simulations at different speeds are listed in Table 11. 

The roll period is obtained from the time history of the roll 
angle.  The virtual moment of inertia is evaluated according to the 
third equation in Eq. (43).  Results are tabulated in Table 12.  It’s  

Table 10. Nonlinear damping and restoring coefficients 
for  s. 

scale 2n d2 r3 r5 

46.588 0.1107 0.2467 0.8757 -12.6223 

35.482 0.0979 0.2801 2.7021 -20.7265 

24.830 0.0721 0.1609 2.8348 -14.3093 

13.311 0.0609 0.1234 3.4507 -23.8550 

 
 

Table 11.  Grids numbers for different Fr. 

Number of grids (104) 
Fr 

Background region Overset region 

0 24.12 68.61 

0.138 22.70 73.05 

0.28 27.38 69.71 

 
 

Table 12. Influence of Fr on roll period and virtual inertia 
moment. 

Fr T/s T* Ixx (kg  m2) I*xx 

0 1.6289 8.0169 2.7155 0.2015 

0.138 1.6138 7.9422 2.6650 0.1978 

0.28 1.5996 7.8728 2.6187 0.1943 

 
 

Table 13. Influence of Fr on damping and restoring coef-
ficients. 

Fr 2n d2 r3 r5 

0 0.1107 0.2467 0.8757 -12.6223

0.138 0.3645 -0.0252 -4.7096 34.8178 

0.28 0.5663 -0.0682 -20.9633 218.8236

 
 

found that the roll period and the virtual moment of inertia de- 
crease slightly as speed increases. 

The nonlinear damping and restoring force are derived by 
solving the inverse problem, as shown in Figs. 14 and 15, and 
the corresponding coefficients are listed in Table 13.  Roll damp- 
ing increases slightly with speed, especially the linear compo-
nent.  Ikeda et al. (1978) supposed that the roll damping consists 
of five damping components, friction damping (Ikeda et al., 
1976), wave damping, eddy damping (Ikeda et al., 1977), lift 
damping and bilge keel damping (Ikeda et al., 1976; Ikeda et al., 
1977).  Speed mainly affects wave damping and lift damping, 
these two components are proportional to the angular velocity. 

As for the nonlinear restoring force, an interesting pheno- 
menon is detected in Fig. 15.  The nonlinear restoring force is in 
the same direction as the roll angle, which means that a positive/ 
negative roll angle results in a positive/negative nonlinear re- 
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Fig. 14.  nonlinear damping. 

 
 

storing force.  This is why there is a larger minus correction from 
r3 to the linear restoring force as speed improves, as shown in 
Table 13.  For the hull in navigation, the speed has an influence 
on the attitude (sinkage and trim) of the hull, then the attitude 
leads to an area variation of the waterplane, which varies the re- 
storing force.  The linear restoring force at Fr = 0 is not suitable 
to describe the restoring force feature of the hull with speed, 
because the restoring force decreases as speed increases. 

In short, roll damping increases with speed, while the restor-
ing force decreases as the speed increases. 

VI. CONCLUSION 

Based on Computational Fluid Dynamics combined with the 
overset technology, the problems of characteristics of the non- 
linear damping and restoring forces are investigated.  A nume- 
rical simulation of the free roll decay is performed for the DTMB 
5512 at Fr = 0.138 with an angle of list of 0 = 10 to validate 
the numerical method in the present paper.  The nonlinear damp- 
ing and restoring force terms are derived by solving a Volterra 
integral equation of the first kind by using Tikhonov’s regula- 
rization method.  Furthermore, the influences of the angle of list, 
the model scale, and the ship speed on the roll damping and non- 
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Fig. 15.  Nonlinear restoring force. 

 

 
linear restoring forces are explored.  The conclusions, based on 
CFD numerical simulations, are summarized as: 

For the case of the DTMB 5512 at Fr = 0.138 with an angle 
of list of 0 = 10, the computational roll history shows a good 
quantitative agreement with the experimental one.  The numerical 
result of the natural roll period is 1.6125 s and the experimental 
value is 1.6402 s, the error of these is less than 2%.  The com- 
putation of the free roll decay with overset mesh is feasible.  It’s 
an ingenious method to obtain the nonlinear damping and re- 
storing forces by solving the inverse problem from time his-
tories of the roll angle and the roll angular velocity.  The result 
indicates that the regularization parameter 2 = 0.01 is proper. 

It’s found that the influence of the angle of list on the roll period 
and virtual moment of inertia is negligible.  Roll damping de- 
creases with model scale slightly, due to the decrease of its sub- 
dominant component, nonlinear damping.  However, roll damping 
increases with speed because its dominant component, linear 
damping, increases as speed increases. 

As for the characteristics of the nonlinear restoring force, it 
can be concluded that the nonlinear restoring force increases as 
the model scale decreases, while it decreases as the speed in-
creases. 
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