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ABSTRACT 

In the present study, we conducted a series of computations 
to investigate the effects of turbulence models on the the deve- 
lopment of horseshoe vortices for flow past a finite wing mounted 
on a flat plate.  The cross section of the wing is a combination 
of a semi-ellipse at the nose and a NACA0020 airfoil at the tail 
which join each other at the location of maximum thickness.  
The Reynolds number is 5  105, based on the chord length of 
the wing, c.  The maximum thickness is 0.235c and the span 
of the wing is 0.75c.  Both the linear and nonlinear models 
were employed.  The former include Spalart-Allmaras model 
(1-equation model), standard k- model, realizable k- model, 
and SST k- model (2-equation models) and the latter are the 
V2-f model and the Reynolds stress model.  The results show 
that different models may lead to significantly different numerical 
solutions.  While some of them are closer to the experimental 
data, the others differ quite significantly. 

I. INTRODUCTION 

Junction flows are complicated three-dimensional flows.  
They are resulted from flow separation when a boundary layer 
passes an obstacle mounted on the same surface.  Physically, the 
separation is due to the pressure gradients around the obstacle 
and induces highly unsteady horseshoe vortices resulting in high 
turbulence intensities and surface pressure fluctuations.  Junction 
flows are common in engineering applications.  The flows around 
small parts on a circuit board of computer, junctions in turbo- 
machinery, junctions of tall buildings rising on the ground, 
wing-body junctions on aircraft, and control surfaces on ship and 
submarine hulls are just some important examples. 

Simpson (2001) reviewed the typical physical features of some 
pratical laminar and turbulent junction flows around bluff and 
streamlined obstacles.  He discussed effects of various geomet-

rical parameters and elucidated their physical significances.  
Moreover, many studies have been conducted experimentally 
and computationally to reveal flow physics.  Dickinson (1986a, 
1986b) conducted a series of flow visualizations, pressure meas- 
urements, and three dimensional mean and fluctuating velocity 
measurements for appendage-flat plate junction flow with a tur- 
bulent incoming boundary layer.  Fleming et al. (1993) focused 
on the effects of the approaching boundary layer characteristics 
on the junction flow.  They found that the “momentum deficit 
factor” directly affected the mean junction flow characteristics.  
Baker (1979) showed that as the Reynolds number increased, 
the flow topology changed from a single steady primary horse- 
shoe vortex to steady multiple vortices for laminar junction flows.  
The experiments by Pierce and Shin (1992) reveal a drifting 
single large dominant vortex and a very small corner vortex for 
a turbulent junction flow formed by a streamlined cylinder.  
The studies in the literature have shown that the junction flow 
is strongly dependent on the Reynolds number, obstacle ge-
ometry, and incoming flow quality. 

In addition to experiment, computation is also an important 
tool to capture the junction flow physics.  Significant amounts 
of modeling work have been available in the literature.  Most 
studies are based on the Eulerian model.  To take turbulence into 
proper consideration, most work has been conducted using the 
Reynolds-averaged Navier-Stokes (RANS) equations in compu- 
tations.  Deng and Piquet (1992) gave a comprehensive review 
of the early development on numerical treatment of horseshoe- 
vortex processes.  It is well known that in the approach with 
the RANS equations, a turbulence model must be employed to 
close the equation systems.  Therefore, the choice of turbulence 
models plays a central role in the simulation.  Apsley and Leschzi- 
ner (2001) computationally studied 12 turbulence models for 
flow past a generic wing-body junction.  The geometry of the 
wing consists of a 3:2 semi-elliptic nose (with its major axis 
aligned with the approach flow) and a NACA0020-section tail.  
The wing is mounted on a flat plate with the oncoming stream 
with a zero angle of attack.  Focusing on the structure of the 
horseshoe vortex and its effects on the forward flow, they con- 
cluded that the second-moment closure offered predictive ad- 
vantages over the other models.  However, they also found that 
no model achieved close agreement with the experimental data 
in respect of both mean flow and turbulence quantities. 

Recently, large eddy simulation (LES) has been employed  
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Fig. 1.  Schematic of the junction flow. 

 

 
to simulate the large-scale unsteady vortex structures along the 
body mounted on the plane.  Fu et al. (2007) developed a RANS/ 
LES hybrid method for flows passing a wing-body junction at 
a non-zero angle of attack.  The core idea of the method is to com- 
bine RANS near the wall with LES in the separation region.  
Wong and Png (2009) compared different LES models and found 
that all models were able to capture the main physics of the highly 
strained, anisotropic, and unsteady flow.  However, significant dif- 
ferences in the numerical predictions of the horseshoe vortex can 
be seen with different models.  For other simulations, Escauriaza 
and Sotiropoulos (2011) developed a Lagrangian particle mo- 
del in computation for a surface-mounted circular cylinder in 
order to reveal the mechanism of bed-load sediment transport 
in turbulent junction flows. 

II. THE PROBLEM AND FORMULATION 

Shown in Fig. 1 is the flat-plate boundary layer passing a 
wing of finite span.  The wing is vertically mounted on the plate.  
The cross section of the wing is a combination of a semi- 
ellipse at the nose and a NACA0020 airfoil at the tail.  They join 
at the location of maximum thickness.  The ratio of the two axes 
is 3:2 and the major axis is aligned with the incoming flow.  
The maximum thickness of the wing is T = 0.235c and the span 
of the wing is s = 0.75c, where c is the chord length of the 
wing. 

In turbulent flows, if we decompose the velocity ui and 
pressure p in time-averaged and fluctuating components, 
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where the quantities with bar are time-averaged components 
and the rest terms on the right hand side are fluctuating ones, 
and xi and t denotes space coordinates and time, respectively, 
then the turbulent flow for the present problem can be modeled 
by the incompressible Reynolds-averaged Navier-Stokes (RANS) 
equations 
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where  denotes the fluid density, ij the viscous stress tensor 
evaluated in terms of the mean flow quantities, and ij the Rey- 
nolds stress tensor.  The viscous and Reynolds stress tensors can 
be expressed as 
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where  is the dynamic viscosity of fluid. 

1. Turbulence Models 

The Reynolds stresses incorporate the effects of the unre-
solved turbulent fluctuations on the mean flow.  These apparent 
turbulent stresses significantly enhance momentum transport 
in the mean flow but they lead to six additional unknown quanti-
ties and, hence, the closure problem for the RANS equations.  
One way to cure this problem is the introduction of turbulence 
models in order to appropriately model the Reynolds stress.  
Various models have been proposed in the literature.  Generally 
speaking, the turbulence models may be classified as eddy- 
viscosity models (based on Boussinesq approximation) and 
second moment models.  The former includes zero-, one-, and two- 
equation models; the latter includes Reynolds-stress transport 
models. 

In this study, six different turbulence models were employed.  
They cover the two categories of models.  In the following, a 
brief comment for each of them will be first made.  To shorten 
discussions in this sub-section, we omit all formulations which, 
nonetheless, are readily available in the references cited herein. 

Five linear eddy-viscosity models were chosen in present study.  
The first one is the Spalart-Allmaras model, a one-equation 
model (Spalart and Allmaras, 1992).  Typically, one-equation 
models include a viscosity-like variable as another equation.  
The Spalart-Allmaras model solves a transport equation for 
a modified eddy viscosity and the turbulent kinetic energy is 
not calculated.  The formulation blends automatically from a 
viscous sub-layer formulation to a logarithmic formulation.  It 
may be inaccurate for shear flow, separated flow, and decaying 
turbulence. 

The rest three models belong to two-equation ones.  Two- 
equation models account for history effects like convection and 
diffusion of turbulent kinetic energy.  In this category, the stan-
dard k- model (Launder and Sharma, 1974) is most widely 
used in engineering applications.  However, a wall function must 
be employed for this model.  In their original intention, Launder 
and Sharma proposed it to improve the mixing-length model 
and to find an alternative to prescribing algebraically turbulent 
length scales in moderate to high complexity flows.  Generally, 
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its performance is poor for flows with strong separation, large 
streamline curvature, and large pressure gradient. 

The realizable k- model (Shih et al., 1995) is a variant of 
the standard one to improve simulations of flow with rotation, 
strong adverse pressure gradients, and mixing.  It differs from the 
standard k- model in two ways.  This model contains a new for- 
mulation for the turbulent viscosity and a new transport equation 
for the dissipation rate derived from an exact equation for the 
transport of the mean-square vorticity fluctuation.  The term 
“realizable” implies that the model satisfies certain mathematical 
constraints on the Reynolds stresses, consistent with the physics 
of turbulent flows.  However, this model may produce non-
physical turbulent viscosity in situations with both rotating and 
stationary fluid zones. 

The shear stress transport (SST) k- model (Menter, 1994) 
uses a blending function to gradually transition from the stan-
dard k- model near the wall to a high Reynolds number ver-
sion of k- model in the outer portion of the boundary layer.  In 
physics, the definition of the turbulent viscosity is modified to 
account for the transport of the principal turbulent shear stress.  It 
is this feature that gives this model an advantage in terms of 
performance over both the standard k- model and the stan-
dard k- model.  Nevertheless, it may overestimate turbulence 
in regions with large normal strain and converge slowly. 

The last two models belong to the second-moment ones.  
The V2-f model (Laurence et al., 2004), similar to the standard 
k-ε version, is a nonlinear one.  It incorporates some near-wall 
turbulence anisotropy as well as non-local pressure-strain effects.  
It is a general low-Reynolds-number turbulence model that is 
valid all the way up to solid walls, and therefore does not need 
to make use of wall functions.  It can capture the features of 
attached or separated boundary layer flows. 

The Reynolds stress model (Launder et al., 1975) is a higher- 
level elaborate turbulence model.  Avoiding isotropic viscosity 
assumptions, it solves the individual Reynolds stresses directly, 
employing differential transport equations.  The individual 
Reynolds stresses are then used to obtain closure of the Reynolds- 
averaged momentum equations.  Unfortunately, several terms 
in the exact equation are unknown and modelling assumptions 
are required in order to close the equations.  It can be used for 
highly swirling flows and stress-driven secondary flows. 

2. Computational Strategy 

In this study, ANSYS Fluent 15.0 was employed.  Steady flows 
at zero angle of attack to the wing were computed with six avail- 
able turbulence models.  Due to flow symmetry, computations 
were conducted in a half flow domain.  The SIMPLEC algo-
rithm was adopted for iterations for the velocity and pressure 
fields.  For more effective computations, we employed non- 
structured polyhedral grids in Fluent.  It has been shown that 
this type of mesh considerably reduces mesh skewness (Lan-
zafame et al., 2013). 

The computational domain extends 4.3c upstream from the 
leading edge of the wing, 6.9c downstream from the trailing 
edge, 4.3c in width, and 2.4c in the spanwise direction from  

(a) Grid near the wing

(b) Local refinement near the wing section  
Fig. 2.  Grid for the present study. 
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Fig. 3.  Vortical flow structure (Devenport and Simpson, 1990). 

 
 

the flat plate.  The total number of grids is about 4.7  106.  Fig. 2 
shows the mesh near the wing and part of the refinement.  To 
capture the vortex structure, we refined the local grid near the 
wing, the flat plate, and rear regions. 

III. SOME RESULTS AND DISCUSSIONS 

The results presented in the following discussion were ob-
tained at the Reynolds number Re = 5  105, based on the chord 
length of the wing.  The upstream velocity distribution was 
specified according to the report by Devenport and Simpson 
(Devenport and Simpson, 1990).  And all comparisons of our 
results are made with data available in this report. 

1. Vortical Flow on the Symmetric Plane 

Shown in Fig. 3 are the streamlines of flow on the symmetric 
plane according to the LDA data by Devenport and Simposon 
(1990).  It appears that only one vortex was revealed.  Its center 
is approximately at x/T = -0.2.  However, we have to keep in 
mind that the measurement region and the number of measure- 
ment points are quite limited.  This may result in incapability 
of detailed flow field measurement, especially for those of smaller 
scales. 

The vortex systems obtained with different turbulence models 
are shown in Fig. 4 in which the color plots exhibit the global 
picture and the black-and-white ones show the local details 
near the corner of junction at the leading edge.  Furthermore, 
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Fig. 4.  Vortex system on the symmetrical plane (See Fig. 3 for color legend). 

 
 

the color in each plot represents the velocity magnitude va- 
riation.  The major vortex core position in x-direction varies 
from model to model.  The result by the one-equation model 
differs most significantly from the experimental data; others 
are much closer.  The SST k- model results in three vortices, 
though two of them are very small which might be beyond the 
capability of LDA measurement (Devenport and Simpson, 
1990).  A similar phenomenon is also observed with the omega 
Reynolds-stress model which is not presented here.  Even 
though these two vortex systems are totally different, they are 
both possible in junction flows (Simpson, 2001). 

In y-direction, the major vortex core position also varies from 
one model to another one.  The experimental data (Devenport 
and Simpson, 1990) show that it is at about y/T = 0.05.  The 
computational results show that the two nonlinear models best 
predicted the major vortex core position (y/T = 0.045 by the 
V2-f model and 0.044 by the Reynolds-stress model).  The result 
by the standard k- model appears to be far more underestimated 
with y/T = 0.025 whereas the SST k- model over-predicted 
the position with y/T = 0.06.  For the other two models, the pre- 
dicted values are the same; i.e., y/T = 0.04. 

As to the shape of the major vortex, the experimental data 
show that it is oblate.  Most models also predicted a oblate shape; 
the only exception is the Reynolds-stress model which resulted 
in a big and round shape.  The results by the Spalart-Allmaras 
model and the V2-f model best agree with the experimental 
one.  However, the former one has the worst prediction on the 
location of the vortex. 

In addition, a corner vortex appears in all models.  This is not 
detected in the experiment by Devenport and Simpson (1990) 
which might be due to the limitation on measurement region 
because the nearest measurement point is 0.05T away from the 
leading edge of the wing.  The separation point is at around x/T = 

 
Fig. 5.  Oil flow visualization (Ölçmen and Simpson, 2006). 

 

 
0.025 for the Spalart-Allmaras, standard k-, and Reynolds- 
stress models, 0.03 for realizable k- and V2-f models, and 0.04 
for SST k- model, compared to the experimental value of 0.025 
(Devenport and Simpson, 1989).  It is also the attachment point 
of the separated flow more upstream of the wing.  As a simple 
summary, we found that there is a 4-vortex system for the SST 
k- model.  For other models, what we got is a 2-vortex system. 

2. Flow Structure Near the Leading Edge 

Fig. 5 shows the oil film visualization (Ölçmen and Simpson, 
2006).  The flow separates at about x/T = -0.47 (Devenport and 
Simpson, 1989).  A closed separation line originating from this 
point extends symmetrically downstream on both sides of the 
wing.  In addition, a line of low mean shear stress which is be- 
tween the wing and the separation line is also apparent.  This 
line intersects the symmetric plane at about x/T = -0.28. 
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Fig. 6.  Limiting streamline patterns on the flat plate for different turbulence models. 
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(a) Two-vortex system

Separation point Attachment point

(b) Four-vortex system  
Fig. 7.  Limiting streamline topology. 
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Fig. 8.  Pressure distributions on the wing surface. 

 
 
Fig. 6 shows the limiting streamlines (or skin friction lines).  

Several physical phenomena can be observed in these plots.  
First of all, the main flow separation point can be identified.  
For most models, the position of the separation point does not 
vary significantly.  They are at about x/T = -0.5, quite consis-
tent with the experimental data.  The only exception is the one 
by the Spalart-Allmaras model in which the flow separates at 
about x/T = -0.6.  In addition, the developments of the sepa-
ration line for different models are comparable.  Experimental 
data shows that the line crosses x/T = 1 at about z/T = 1.0.  In 
our computations, the value of z/T varies from about 0.9 for 
the Reynolds stress model to 1.1 for the Spalart-Allmaras and 
realizable k- models.  Furthermore, the separation point near 
the corner can be clearly observable for all models in Fig. 6. 

In additional to these separation and attachment points, we 
can also find other similar points in some of the plots.  We pointed 
out above that SST k- model resulted in a 4-vortex system 
and others a 2-vortex system.  Therefore, we can expect that the 
limiting streamline structure for the SST k- model must be 
more complicated.  It has another separation and reattachement 

points as shown in Fig. 6(d).  As to the 2-vortex system, we find 
another separation point in Figs. 6(a), (e), and (f.).  However, 
the two k- models do not reveal this feature if we observe 
Figs. 6(b) and (c).  Fig. 7 shows the limiting streamline topo- 
logy for both 4- and 2-vortex systems.  From these two plots, 
we can clearly identify the separation points.  Nevertheless, the 
flow pattern in Fig. 5 seems to imply that the flow structure 
should be a 2-vortex system.  Of course, the present study fo-
cuses on steady flow.  Such mean vortex patterns are not rep-
resentative of the highly unsteady instantaneous flow. 

Furthermore, the line of low shear can be clearly observed in 
Figs. 6(a), (d), (e), and (f).  However, for the Spalart-Allmaras 
and V2-f models, the predicted location on the symmetric 
plane is upstream of the location in experiments.  For the other 
two models, the prediction is much closer to the experimental 
data.  Of course, the structure in Fig. 6(f) is even closer to that 
revealed in the experiment. 

3. Pressure Distributions 

Fig. 8 presents the pressure distributions on the wing sur- 
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Fig. 9.  Flow visualization at the trailing edge (Simpson, 2001). 
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Fig. 10.  Separation near the trailing edge of the wing. 
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Fig. 11.  Overall flow pattern around the wing. 

 
 

face at y/T = 0.13279 and 0.39837.  It is found that the pressure 
distributions for all six models coincide with each other and 

their differences are almost indistinguishable.  Compared to the 
experimental data, the pressure prediction at y/T = 0.13279 is 
better than that at y/T = 0.39837.  We also compare the data on 
the wing at different heights and find that near x/c = 0.2, there 
is a significant discrepancy between the computational results 
and the experimental data.  This could be because, near this 
point which is close to the point of maximum thickness (x/c = 
0.18), the blockage effect in wind tunnel experiments might be 
more significant, the value of pressure coefficient precipitously 
drops and rises and is difficult to be accurately predicted by 
these six models. 

4. Flow Structure near the Trailing Edge 

Fig. 9 shows the surface oil flow visualization of the junction 
flow in the trailing edge region of the wing (Simpson, 2001).  
It appears that the flow separates near the trailing edge.  The 
limiting streamlines of the computed solutions in the local area 
are shown in Fig. 10.  At a glance, we may find that not all so- 
lutions reveal such a flow structure.  The results show that the 
linear models have a better capability to capture the flow se- 
paration than the nonlinear ones.  The four linear models lead to 
similar separation.  Nevertheless, the flow separation by the 
V2-f model was barely captured very near the trailing edge and 
not found in the solution by the Reynolds stress model.  It is 
quite interesting to find that the nonlinear high-order methods 
are not more capable of resolving such a flow phenomenon in 
a very small region. 

Fig. 11 shows the overall picture of limiting streamlines in the 
region where the wing is located.  The results used in this plot  
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Fig. 12.  Wake distribution on the plane of x/c = 1.05. 
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Fig. 13.  Wake distribution on the plane of x/c = 1.50. 

 
 

are those obtained by the Spalart-Allmaras model.  Compared 
to the fishtail like separation shown in Fig. 9, this model suc-
cessfully captures the flow phenomenon.  We also find that the 
fishtail like separation is also clearly shown for the other three 
linear models, but not for the two nonlinear models.  The three- 
dimensional plot shown in Fig. 11(c) clearly depicts the three- 
dimensional flow separation which appears on both the wing 
and the flat plate surfaces.  Similar results were obtained for the 
rest of three linear turbulence models. 

5. Wake Structures 

The wake distributions at x/c = 1.05 and 1.50 are discussed.  
They are shown in Figs. 12 and 13. 

At x/c = 1.05, we find that, at the first glance, the wake seems 
underestimated in the corner region near the symmetric plane 
for most models when comparing with the experimental data 
(Devenport and Simpson, 1990).  The result by the V2-f model 
appears to be the only exception and, hence, agrees much well 
with the LDA data (Devenport and Simpson, 1990).  However, 
we should also point out that the available LDA data is quite 
sparse and the wake distribution is more qualitative than quan- 
titative in the corner region.  If we refer to Fig. 10, we can see 
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that the wake region is bigger for the models which result in 
flow separation near the leading edge.  Again, the only exception 
is the result by the V2-f model in which no separation is induced.  
Even though in the experiment the flow separates, it appears 
that the low-speed wake region is restricted to a very small re- 
gion.  In addition, there appears another low-speed region at about 
z/T = 1.0.  It is more significant for some models.  The compu-
tations show that this region begins to develop at the cross section 
where the maximum thickness of wing takes place.  It grows 
downstream before the flow reaches the trailing edge.  After pass- 
ing the trailing edge, it shrinks very rapidly.  Furthermore, it 
decays further downstream and drifts away from the symmetric 
plane, as shown in Fig. 13.  Nevertheless, it appears that such a 
slow-speed region is not observed in the experimental data. 

At x/c =1.5, the low-speed wake region disappears.  It seems 
to imply that the turbulent mixing is efficient and the flow be- 
comes much more uniform.  The wake distributions obtained from 
different turbulence models are similar and close to the one ob- 
tained in experiment, except for the low-speed region at about 
z/T = 1.  Again this region is not captured in the experiment.  
Nevertheless, speed is raised, compared to that at x/c = 1.05. 

IV. CONCLUSIONS 

In this study, we have investigated some features of junction 
flows by computations with different turbulence models.  Only 
steady flow is considered in the present study.  Various flow struc- 
tures and physical quantities were studied.  The results show that 
the choice of turbulence model may have strong influence on 
the revelation of flow structure.  While some can reasonably pre- 
dicted the flow, others may lead to quite different flow structures. 

For the vortical flow structure, the SST k- model leads to a 
4-vortex system on the symmetric plane while the other models 
result in a 2-vortex system.  Nevertheless, the two kinds of flow 
structures are possible in junction flows (Simpson, 2001) though 
the experiment data to which we compared our results seems to 
exhibit the 2-vortex system.  All models capture the tiny vortex 
in the corner of the juncture at wing leading edge though its size 
strongly depends on the selected model. 

The location of the separation point position is reasonably 
predicted, compared to the experimental data.  The development 
of the separation lines with different models also agree well with 
each other.  However, the low shear line seems not well predicted, 
especially for two k- models. 

The pressure distribution can be accurately predicted with va- 
rious turbulence models, except in the region of rapid variation. 

The linear models can predict more accurately the tiny three- 
dimensional separation near the trailing edge.  In this respect, 
the nonlinear ones are not as capable.  Nevertheless, the flow 
development in the near wake region at x/c = 1.05 is strongly 
affected by the separation.  It appears that the flow dissipation 
exhibited in the computed results is not so efficient that the 
low-velocity region is much more significant, compared to the 
experiment data. 

Generally speaking, there is no single model which can well 
predict all physical phenomena.  Even the nonlinear models 
cannot predict certain flow physics more accurately than the 
linear ones. 
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