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ABSTRACT 

This study presents fuzzy time series based on the concept of 
long-term predictive significance level.  Fuzzy time series theory 
and structural analysis are used to develop a long-term predic- 
tive significance level for evaluating the suitability of historical 
data.  New triangular fuzzy numbers by S are subsequently ob- 
tained using the graded mean integration representation method.  
Finally, S can strengthen fuzzy time series data for a series and 
yield additional information.  The Shanghai Containerized Freight 
Index is used to illustrate the forecasting process.  The results in- 
dicate that the proposed definition can generate forecast levels 
that provide more information for analysis. 

I. INTRODUCTION 

Since its creation in 1993 by Song and Chissom (1993a, 
1994), fuzzy time series has achieved considerable success in 
both theory development (Song and Chissom, 1993a, 1993b, 1994, 
1997; Chen, 1996; Liaw, 1997; Chen, 2002; Lee and Chou, 2004; 
Chou and Lee, 2006; Liang et al., 2006; Chou, 2008, 2009, 2011, 
2013; Chou and Chou, 2013) and practical applications, i.e., 
education economics (Song and Chissom, 1993a, 1993b, 1994, 
1997; Chen, 1996; Liaw, 1997; Chen, 2002; Lee and Chou, 2004), 
business economics (Chou, 2009; Chou and Chou, 2013), mone- 
tary economics (Teoh, 2008; Lai, 2009), etc.  Each analysis mode 
has its own advantages and disadvantages and a different pro- 
cedure or analysis process. 

Currently, fuzzy time series is increasingly used to make 
long-term predictions, of which long-range forecasting methods 
(Chou, 2001), are a notable example.  Fuzzy time series is no 
longer limited to short-term predictions but can be used to view 
and quantify long-term forecasting.  The interval settings followed 

by Chou in the traditional view of triangular fuzzy numbers and 
the fuzzy techniques developed by Chen and Hsieh (2000) to 
augment the original interval settings can yield accurate predicted 
values in the long term.  These values can be used to determine 
long-term future standards and column numbers.  The binding 
concept (Chou, 2001) uses fuzzy intervals to assess the range 
of an average predicted value, and the interactive use of these 
two methods can determine the scope of its predicted value.  With 
the new paradigm and definition defined in this paper, we cal- 
culate and interpret predictions of the Shanghai Containerized 
Freight Index (SCFI) (Shanghai Shipping Exchange, 2015). 

The remainder of this paper is organized as follows.  Section 2 
presents the definition and procedure of fuzzy time series, and 
Section 3 defines the long-term predictive significance level.  
A numerical example of SCFI is shown in Section 4, and con- 
cluding remarks are mentioned in conclusion. 

II. DEFINITION OF FUZZY TIME SERIES 

Fuzzy sets, introduced by Zadeh (1965), has various appli- 
cations, such as in fuzzy sets, fuzzy decision analysis, fuzzy re- 
gression, and fuzzy time series (Song and Chissom, 1993a, 1993b, 
1994, 1997; Chen, 1996, 2002; Liaw, 1997; Lee and Chou, 2004; 
Chou and Lee, 2006: Liang et al., 2006; Chou, 2008, 2009, 2011, 
2013; Duru and Yoshida, 2012; Chou and Chou, 2013; Chou, 
2016).  The theory is also widely applied in social science study 
and applications.  Fuzzy time series is developed rapidly since 
their introduction by Song and Chissom (Song and Chissom, 
1993a, 1994).  Recent fuzzy time series methods have benefited 
from both theoretical developments as well as relevant applica-
tions in research (Song and Chissom, 1993a, 1993b, 1994, 1997; 
Chen, 1996; Liaw, 1997; Chen, 2002; Lee and Chou 2004; Chou 
and Lee, 2006: Liang et al., 2006; Chou, 2008, 2011; Duru and 
Yoshida, 2012; Chou, 2016), which has led to more diverse uses.  
This trend indicates that the development of fuzzy time series 
has markedly improved.  The definitions and analytical proce- 
dures of the fuzzy time series used in this study are described 
as follows. 

 
Definition 1 (Song and Chissom, 1993a, 1994; Liaw, 1997): 
A fuzzy number on the real line  is a fuzzy subset of  that is 
normal and convex. 
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Definition 2 (Song and Chissom, 1993a, 1994): Let Y(t)  
(t = , 0, 1, 2, ), a subset of , be the universe of discourse 
on which the fuzzy sets fi(t) (t = 1, 2, ) are defined, and let 
F(t) be the collection of fi(t) (t = 1, 2, ).  Then, F(t) is called 
fuzzy time series on Y(t) (t = , 0, 1, 2, ). 

 
Definition 3 (Song and Chissom, 1993a, 1994): Let I and J 
be the index sets for F(t-1) and F(t), respectively.  If for any  
fj(t)  F(t), where j  J, there then exists fi(t-1)  F(t-1), where 
i  I, such that there exists a fuzzy relation Rij(t, t-1) and fj(t) = 
fi(t-1)  Rij(t, t-1), where ‘’ is the max-min composition.  Then, 
F(t) is said to be caused by only F(t-1).  Denote this as fi(t-1)  
fj(t), or equivalently, F(t-1)  F(t). 

 
Definition 4 (Song and Chissom, 1993a, 1994): If, for any 
fj(t-1)  F(t), where j  J, there exists fi(t-1)  F(t-1), where i  I, 
and a fuzzy relation Rij(t, t-1), such that fj(t) = fi(t-1)  Rij(t, t-1).  
Let R(t, t-1) ijRij(t, t-1), where  is the union operator.  Then, 
R(t, t-1) is called the fuzzy relation between F(t) and F(t-1).  
Thus, we define this as the following fuzzy relational equation: 
F(t) = F(t-1)  R(t, t-1). 

 
Definition 5 (Song and Chissom, 1993a, 1994): Suppose that 
R1 = ijR1

ij(t, t-1) and R2(t, t-1) = ijR2
ij(t, t-1) are two fuzzy 

relations between F(t) and F(t-1).  If, for any fj(t)  F(t), where 
j  J, there exists fi(t-1)  F(t-1), where i  I, and fuzzy rela-
tions R1

ij(t, t-1) and R2
ij(t, t-1) such that fi(t) = fi(t-1)  R1

ij(t, t-1) 
and fi(t) = fi(t-1)  R2

ij(t, t-1), then define R1(t, t-1) = R2(t, t-1). 
 

Definition 6 (Song and Chissom, 1993a, 1994): Suppose that 
F(t) is only caused by F(t-1), F(t-2), , or F(t-m) (m > 0).  
This relation can be expressed as the following fuzzy relational 
equation: F(t) = F(t-1)  R0(t, t-m), which is called the first-order 
model of F(t). 

 
Definition 7 (Song and Chissom, 1993a, 1994): Suppose  
that F(t) is simultaneously caused by F(t-1), F(t-2), , and 
F(t-m) (m > 0).  This relation can be expressed as the following 
fuzzy relational equation: F(t) = (F(t-1)  F(t-2)    F(t-m))  
Ra(t, t-m)), which is called the mth-order model of F(t). 

 
Definition 8 (Chen, 1996): F(t) is fuzzy time series if F(t) is a 
fuzzy set.  The transition is denoted as F(t-1)  F(t). 

 
Definition 9 (Chou, 2009): Let d(t) be a set of real numbers: 
d(t)  R.  We define an exponential function where 

 
(1) y = exp d(t)  ln y = d(t) and 
(2) exp(ln d(t)) = d(t), ln(exp x) = d(t). 

 
Definition 10 (Lee and Chou, 2004): The universe of discourse 
U = [DL, DU] is defined such that min ( )LD D st n n   and 

max ( )UD D st n n   when n  30 or minLD D Z n   and 

maxUD D Z n   when n > 30, where t(n) is the 100(1-) 

percentile of the t distribution with n degrees of freedom.  z is 
the 100(1-) percentile of the standard normal distribution.  
Briefly, if Z is an N (0, 1) distribution, then P(Z  z) = . 

 
Definition 11 (Lee and Chou, 2004): Assuming that there are m 
linguistic values under consideration, let Ai be the fuzzy number 
that represents the ith linguistic value of the linguistic variable, 
where 1  i  m.  The support of Ai is defined as follows: 

 

( )
( 1) ,   ,  1 1

( )
( 1) ,   ,  .

U L U L
L L

U L U L
L L

D D i D D
D i D i m

m m

D D i D D
D i D i m

m m

 
     




     

 

Definition 12 (Liaw, 1997): For a test H0: nonfuzzy trend against 

H1: fuzzy trend, where the critical region *C   2 2
k n kC C C    

2 (1 )nC C    , the initial value of the significance level  

is 0.2. 
 

Definition 13 (Chou, 2011): Let d(t) be a set of real numbers 
d(t)  R.  An upper interval for d(t) is a number b such that x  b 
for all x  d(t).  The set d(t) is said to be an interval higher if 
d(t) has an upper interval.  A number, max, is the maximum of 
d(t) if max is an upper interval for d(t) and max  d(t). 

 
Definition 14 (Chou, 2011): Let d(t)  R.  The least upper 

interval of d(t) is a number max


 satisfying: 
 

(1) max


 is an upper interval for d(t) such that maxx


  for 
all x  d(t) and 

(2) max


 is the least upper interval for d(t), that is, x  b for all 

( ) maxx d t b


   . 

 
Definition 15 (Chou, 2011): Let d(t) be a set of real numbers 
d(t)  R.  A lower interval for d(t) is a number b such that x  b 
for all x  d(t).  The set d(t) is said to be an interval below if d(t) 
has a lower interval.  A number, min, is the minimum of d(t) if 
min is a lower interval for d(t) and min  d(t). 

 
Definition 16 (Chou, 2011): Let d(t)  R.  The least lower 

interval of d(t) is a number min


 satisfying: 
 

(1) min


 is a lower interval for d(t) such that minx


  for all  
x  d(t) and 

(2) min


 is the least lower interval for d(t), that is, x  b for all 

( ) minx d t b


   . 
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Definition 17 (Chou, 2011): The long-term predictive value 

interval ( min


, max


) is called the static long-term predictive 
value interval. 

III. DEFINITION OF LONG-TERM PREDICTIVE 
SIGNIFICANCE LEVEL AND PROCEDURE 

This section proposes a method to forecast the long-term pre- 
dictive significance level by using fuzzy time series, extending 
the method proposed by Chou (2011).  Based on Chou’s pre-

dictive value interval ˆ( )d t , many methods to construct triangular 

fuzzy numbers are developed using Chen’s technique (1996).  
These permit the prediction of long-term profit levels and the 
prediction of phase discrimination values for discriminating 
future trends. 

 
Definition 18 (Chen and Hsieh, 2000): Let Ai = (i, i, i),  
i = 1, 2, , n, be n triangular fuzzy numbers.  By using the 
graded mean integration representation (GMIR) method, the 
GMIR value P(Ai) of Ai is P(Ai) = (i  4i  i)/6.  P(Ai) and 
P(Aj) are the GMIR values of the triangular fuzzy numbers Ai 
and Aj, respectively. 

 
Definition 19 Set up new triangular fuzzy numbers by S = 

( min


, ( )d t


, max


).  After GMIR transformation, S becomes a 

real number S.  This is called the long-term significance level 
with fuzzy time series.  The S is a real number satisfying the 
following: 

 
(1) S is called a long-term significance level up, only if:  

S > ( )d t


; 

(2) S is called a long-term significance level down, only if: 

S < ( )d t


; and 

(3) S is called a long-term significance level stable, only if: 

S = ( )d t


. 
 
The stepwise procedure of the proposed method consists 

the following steps (Chou, 2016), illustrated as a flowchart in 
Fig. 1 (Chou, 2008; Chou, 2016). 

 
Step 1. Let d(t) be the data under consideration and let F(t)  

be fuzzy time series.  Following Definition 11, a differ- 
ence test is performed to determine whether stability of 
the information.  Recursion is performed until the infor- 
mation is in a stable state, where the critical region is 

  *
2 2 2 (1 )k n k nC C C C C C       . 

Step 2. Determine the universe of discourse U = [DL, DU]. 

Step 3. Define Ai by letting its membership function be as 
follows: 

Define the Universe of Discourse 

Fuzzy Observed Rules 

Forecast and Defuzzify 

Set Up Prediction Value Interval 

Set Up New Triangular Fuzzy 

Defuzzify by GMIR 

Is the Data Stable? 

 
Fig. 1.  Procedure of the proposed model. 

 
 

( )
1  for [ ( 1) , ) 

where 1 1;

( )
( ) 1  for [ ( 1) , ] 

where ;

0  otherwise.

i

U L U L
L L

U L U L
A L L

D D i D D
x D i D

m m
i m

D D i D D
u x x D i D

m m
i m

 
   


  

      







 

Step 4. Then, F(t) = Ai if d(t)  supp(Ai), where supp () de-
notes the support. 

Step 5. Derive the transition rule from period t  1 to t and 
denote it as F(t-1)  F(t).  Aggregate all transition rules.  

Let the set of rules be  :i i i iR r r P Q  . 

Step 6. The value of d(t) can be predicted using the fuzzy time 
series F(t) as follows.  Let T(t) = {rj d(t)  supp(Pj), 
where rj  R} be the set of rules fired by d(t), where 

supp(Pj) is the support of Pj.  Let supp( )jP  be the me-

dian of supp(Pj).  The predicted value of d(t) is 

 
( 1)

supp( )

( 1)
j

j

r T t

Q

T t   . 

Step 7. The long-term predictive value interval for ( )d t  is 

given as ( min


, max


). 

Step 8. Set up new triangular fuzzy numbers by S = ( min


, 

( )d t


max


). 

Step 9. Defuzzify S to be S. 
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The SCFI return rate
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Fig. 2.  Rate of return of the SCFI. 

 

IV. NUMERICAL EXAMPLE OF SCFI DATA 

In this study, the SCFI is used for a numerical example.  The 
SCFI reflects the spot rates of the Shanghai export container 
transport market, including both freight rates (indices) of 15 indi- 
vidual shipping routes and a composite index (Shanghai Shipping 
Exchange, 2015).  The SCFI data are sourced from the Shanghai 
Shipping Exchange (2015), the historical data for which is de- 
fined here as the SCFI, and season-averaged data for the period 
between Quarter 1, 2010, and Quarter 2, 2015, was collected. 

Over these 22 data points, the analysis produces an average 
of 1124.70, with a standard deviation of 187.83, maximum value 
of 1514.51, and minimum value of 697.65.  These descriptive sta- 
tistics show that the SCFI has largely remained at the 1124.70 
level.  Compared with figures from Quarter 1, 2010, this value 
represents the peak level for recent years while China’s domes-
tic demand has remained weak, because of the global financial 
crisis and European debt crisis.  Therefore, the weak domestic 
demand has allowed China’s economic growth to remain crucial 
despite these negative influences.  We discovered that although 
China is considerably affected by the SCFI, the consequent ad- 
justments result in a synergetic change in the rate of return of the 
SCFI.  As shown in Fig. 2, the SCFI has recovered from the ef- 
fect of the financial crisis, although its current rate of return is 
negative. 

The following steps in the procedure are performed when 
using fuzzy time series to analyze visitor arrivals. 

 
Step 1. First, we take the logarithm of the SCFI data to reduce 

variation and improve the forecast accuracy, letting 
~

SCFI( ) lnSCFI( )t t . 
Step 2. Maintaining stationary data while forecasting helps to 

improve the forecast quality; therefore, we conduct a 
stationary test on the SCFI data.  For fuzzy time series, 
a fuzzy trend test can measure whether the SCFI’s fuzzy 
trend moves upward or downward.  Using this fuzzy 
trend test, the SCFI data can be converted into a sta-
tionary series.  If the original SCFI data exhibited a fuzzy 
trend, it can be eliminated by taking the difference.  We 
then repeat the test after taking the first difference to  

Table 1. Fuzzy historical SCFI data and the forecasted 
results. 

Year ln(Actual) Fuzzified The forecast value 

2010Q1 7.184 A6 7.194 

2010Q2 7.270 A6 7.194 

2010Q3 7.323 A7 7.194 

2010Q4 7.074 A5 7.001 

2011Q1 6.964 A4 6.872 

2011Q2 6.950 A4 6.872 

2011Q3 6.934 A4 6.872 

2011Q4 6.801 A3 6.872 

2012Q1 6.969 A4 6.872 

2012Q2 7.268 A6 7.194 

2012Q3 7.190 A6 7.194 

2012Q4 7.052 A5 7.001 

2013Q1 7.073 A5 7.001 

2013Q2 6.940 A4 6.872 

2013Q3 6.981 A4 6.872 

2013Q4 6.935 A4 6.872 

2014Q1 6.984 A4 6.872 

2014Q2 6.996 A4 6.872 

2014Q3 6.994 A4 6.872 

2014Q4 6.933 A4 6.872 

2015Q1 6.897 A4 6.872 

2015Q2 6.548 A1 6.743 

 
 

 measure if the SCFI data exhibits a fuzzy trend.  If a 
fuzzy trend is again observed, then we take the second 
difference, and so on. 

 Letting SCFI(t) be the historical data under consid-
eration and fuzzy time series, a difference test is used 
(following Definition 11) to understand whether the sta- 
bility of the information.  Recursion is performed until 
the information is determined to be stable.  Once the 
region 

 
 

 

'' 13 21 13
2 2

21
2106 (1 0.2) 168

C C C C C

C C

  

    
, 

 the SCFI data are considered in a stable state and are 
not rejected. 

Step 3. According to the interval setting of the SCFI data, we de- 
fine the upper and lower bounds, which facilitate divid-
ing the linguistic value intervals later.  From Definition 
10, the discourse U = [DL, DU].  From Table 1, Dmin = 
6.548, Dmax = 7.323, s = 0.170, and n = 22 can be ob- 
tained.  Letting  = 0.55, since n is less than 30, a Student 
t distribution with 22 degrees of freedom was used as 
a substitute for the normal distribution.  Thus, t(n) = 
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t0.05(22) = 1.717, min 6.485 LD D st n   , and DU = 

Dmax 7.386 st n  .  That is, U = [6.485, 7.386]. 

Step 4. After defining the upper and lower bounds of the 
SCFI data in Step 3, we can define the SCFI range by 
determining the membership function as well as the 
linguistic values.  We can also define the range of the 
subinterval for each linguistic value, assuming that the 
following linguistic values are under consideration: ex- 
tremely few, very few, few, some, many, very many, and 
extremely many.  According to Definition 11, the sup- 
ports of fuzzy numbers that represent these linguistic 
values are given as follows: 

1  for [6.485 ( 1)(0.129),  6.485 (0.129)) 

where 1 1;

( ) 1  for [6.485 ( 1)(0.129),  6.485 (0.129)]

where ;

0  otherwise.

iA

x i i

i m

u x x i i

i m

   


  


    






 

 where A1 = “extremely few,” A2 = “very few,” A3 = 
“few,” A4 = “some,” A5 = “many,” A6 = “very many,” 
and A7 = “extremely many.”  Thus, the supports are 
supp(A1) = [6.485, 6.614), supp(A2) = [6.614, 6.743), 
supp(A3) = [6.743, 6.872), supp(A4) = [6.872, 7.001), 
supp(A5) = [7.001, 7.130), supp(A6) = [7.130, 7.259), 
and supp(A7) = [7.259, 7.386). 

Step 5. According to the subinterval setting of each linguistic 
value, we classified each historical dataset of the SCFI 
into its corresponding interval to measure the value cor- 
responding to the linguistic value for each interval.  The 
fuzzy time series F(t) was given by F(t) = Ai when d(t)  
supp(Ai).  Therefore, F(2010Q1) = A6, F(2010Q2) = A6, 
F(2010Q3) = A7, F(2010Q4) = A5, , and F(2015) = A1.  
Table 1 shows the comparison between the actual SCFI 
data and the fuzzy enrollment data. 

Step 6. We apply fuzzy theory to define the corresponding 
value for the intervals of the SCFI data, arrange the 
corresponding method for the SCFI data, and integrate 
the changes from all the rules to determine the rules 
for the SCFI quantity.  The transition rules are derived 
from Table 1.  For example, F(2010Q1)  F(2010Q2) 
is A6  A6.  Table 2 shows all transition rules obtained 
from Table 1. 

Step 7. We calculate each rule by determining all the rules of 
the SCFI, and the calculation results can be used to 
forecast future values.  Table 1 shows the forecasting 
results from 2010Q1 to 2015Q2. 

Step 8. The calculated SCFI rules can define the intervals of 
the SCFI data; using these intervals, we can determine 
the variation in future long-term intervals.  The long- 
term predictive value interval for the SCFI is given as 
(6.743, 7.194).  Thus, the long-term predictive interval  

Table 2.  Fuzzy transitions derived from Table 1. 

1 3 4:r A A  5 4 6:r A A  9 6 6:r A A  

2 4 1:r A A  6 5 4:r A A  10 6 7:r A A  

3 4 3:r A A  7 5 5:r A A  11 7 5:r A A  

4 4 4:r A A  8 6 5:r A A   
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Fig. 3.  Forecast SCFI and actual SCFI. 

 
 

 for the SCFI is given as (848.005, 1331.198).  There- 
fore, the current long-term SCFI is bounded by this 
interval.  According to Step 8, the fuzzy SCFI of 2015Q2 
shown in Table 1 is A1, and from Table 2, we can see that 
the rules are the fuzzy logical relationships in Rule 11 
of Table 2, in which the current state of fuzzy logical 
relationships is A6.  Thus, the 2015Q3 SCFI predictive 
value is 848.005. 

Step 9. Letting defuzzified S be S, the SCFI 2015Q3 forecast 
value based on our investigation is 848.005, and its 
trading range is between 848.005 and 1331.198.  Thus, 
the new triangular fuzzy numbers by S = (848.005, 
1331.198, 1331.198).  Thus, the defuzzified S is S = 

928.537, and S = 928.537 > ( )d t


 = 848.005. 

 
The result shows that based on the long-term significance 

level, the SCFI is currently oversold.  This result and the risk- 
reward ratio are both related within the group.  We used Table 1 
data in our analysis according to the root mean square percent-
age error method, with an average prediction error of 0.278%.  
Fig. 3 shows the forecast visitor arrivals determined through 
fuzzy time series analysis and the actual SCFI values.  Based 
on the fuzzy time series results, the average SCFI is estimated 
to be 848.005 in 2015Q3 (Fig. 3). 

V. CONCLUSION 

In this paper, a long-term predictive value interval model is 
developed for forecasting the SCFI.  This model facilitates mini- 
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mizing the uncertainties associated with fuzzy numbers.  The 
method is examined by forecasting the SCFI by using data from 

which S = 928.537 and S > ( )d t


 is obtained.  For index re- 

turns, the current rate of return is negative and its volatility is 
increasing.  The long-term predictive significance level of the 
SCFI is at the S level; the SCFI should thus exhibit extreme 
volatility. 

The current model for the SCFI 2015Q3 forecast level deviates 
insignificantly from the actual values for an average of 848.005 
and is within the group; the prediction error does not exceed 
0.278% of the significance level.  By constructing a fuzzy time 
series forecasting model for the SCFI with an error of less than 
0.278%, with the traditional fuzzy time excluded from the single- 
point forecast comparison, this model provides a long-term pre- 
dictive significance level. 

Furthermore, the proposed method can be computerized.  
Thus, by improving fuzzy linguistic assessments as well as the 
evaluation of fuzzy time series, decision makers can automati-
cally obtain the final long-term predictive significance level. 
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