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ABSTRACT 

This study develops an analytical solution for oblique wave 
scattering by a submerged porous breakwater with a leeside 
partially reflecting vertical wall.  The matched eigenfunction ex- 
pansion method is used to develop the analytical solution.  The 
whole fluid domain is divided into three regions according to the 
geometries of the structures.  The series solution of the velocity 
potential in each region is obtained by the separation of the va- 
riables, and the unknown expansion coefficients are determined 
using the pressure and velocity continuous conditions on inter- 
faces of different regions.  The newly developed analytical solu-
tion is confirmed by an independently developed multi-domain 
boundary element method (BEM) solution and two known so- 
lutions for special cases.  Numerical examples are presented to 
examine the reflection and transmission coefficients of the po-
rous breakwater.  Some useful results for engineering design are 
provided.  The present solution may be used to determine the op- 
timal breakwater parameters under an oblique wave attack at a 
preliminary engineering design stage. 

I. INTRODUCTION 

Submerged porous breakwaters can provide environmentally 
friendly protection for coast lines and coastal structures and, 
thus, are often used in coastal engineering.  For example, offshore 
submerged porous breakwaters have been successfully used to 
protect the Gudong Sea Dike and the Zhuangxi Sea Dike in the 
Shengli Oil Field in China (Liao et al., 2006).  The water wave 
interactions with the submerged porous breakwaters have been 
well studied by many researchers using analytical, numerical and 
experimental methods (Yu and Chwang, 1994; Losada et al., 

1996; Twu and Liu, 2004; Lara et al., 2006; Cheng et al., 2009; 
Lan et al., 2011; Zhang et al., 2012; Liao et al., 2013; Lee et al., 
2014; Wu et al., 2014; among others).  These studies have pro- 
vided scientific insights regarding the problems.  In these studies, 
the hydrodynamic performance of submerged porous breakwa-
ters was examined alone, and the effects of leeside structures were 
not considered. 

When a submerged porous breakwater is used to protect a 
seawall or steep coastal cliff, the hydrodynamic performance 
of the porous breakwater can be significantly changed by the 
reflection off a seawall or cliff.  Such effects should be consid-
ered in engineering design.  Jeng et al. (2005) experimentally 
examined wave interactions among a submerged porous break- 
water, a leeside vertical wall and a porous sand bed.  They found 
that the strong interaction of the water waves between the porous 
breakwater and the vertical wall significantly changed the pore 
water pressure within the sand bed.  Muni-Reddy and Neelamani 
(2006) experimentally measured the wave force reduction on a 
caisson protected by a submerged porous breakwater.  By solv-
ing modified time-dependent mild-slope equations, Tsai et al. 
(2012) calculated the wave height transformation and setup 
between a submerged porous breakwater and a seawall.  They 
clearly observed the modulations of the wave profile and wave 
setup between the breakwater and the seawall.  Koraim et al. 
(2014) experimentally examined the reflection coefficient and 
the wave run-up on a vertical porous seawall with and without 
a seaside submerged breakwater.  Recently, Koley et al. (2015) 
developed an analytical solution for wave trapping between a 
submerged porous bar and a fully reflecting vertical wall.  They 
found that through a suitable design, a major part of the incident 
wave energy could be dissipated by the porous breakwater.  Ko 
et al. (2015) numerically simulated wave and flow variations be- 
tween dual submerged porous breakwaters and a slope seawall.  
They observed periodic spatial variations of the wave height and 
water level due to the wave reflection by the seawall and the sub- 
merged porous breakwaters. 

In practice, a seawall or steep cliff is generally a partially re- 
flecting structure (Goda, 2010, Table 3.8; Elchahal et al., 2008), 
which should be rather different from a fully reflecting structure.  
This study will develop a new analytical solution for oblique 
wave scattering by a submerged porous breakwater with a leeside  

Paper submitted 04/25/16; revised 08/24/16; accepted 03/06/17.  Author for 
correspondence: Hua-jun Li (e-mail: huajun@ouc.edu.cn). 
Shandong Provincial Key Laboratory of Ocean Engineering, Ocean University 
of China, Qingdao, China. 



384 Journal of Marine Science and Technology, Vol. 25, No. 4 (2017) 

 

y z

x

a
B = 2b

D

h = a + d

θ

Partially reflecting

sidewall

KR

Incident wave

 
Fig. 1. Sketch of oblique wave scattering by a submerged porous break-

water with a partially reflecting sidewall. 

 
 

partially reflecting wall and present useful results for engineer-
ing applications.  In the following section, the boundary value 
problem for oblique wave scattering by a submerged porous 
breakwater with a partially reflecting sidewall is formulated.  The 
partially reflecting boundary condition proposed by Isaacson 
and Qu (1990) is used to represent the effect of the sidewall.  
The wave energy dissipation by the porous breakwater is de-
scribed using the classical porous medium model proposed by 
Sollitt and Cross (1972).  In section 3, the analytical solution for 
the present problem is developed using the matched eigenfunc- 
tion expansion method.  In section 4, the analytical solution is 
validated by previous solutions for special cases and an inde- 
pendently developed multi-domain BEM solution for the present 
problem.  Numerical examples are presented to examine the re- 
flection and transmission coefficients of the porous breakwater.  
Finally, the main conclusions of this study are drawn. 

II. MATHEMATICAL FORMULATION 

The idealized sketch of oblique wave scattering by a submerged 
porous breakwater with a leeside partially reflecting sidewall 
is shown in Fig. 1.  A Cartesian coordinate system, with an x-y 
plane located on the still water level and the z-axis directing 
upwards along the vertical midline of the porous breakwater, is 
adopted.  The water depth is h, and the wave approaches the 
breakwater at an angle  (0   < 90) to the positive x-axis.  
The incident wave number k0 has the components of k0x = k0 
cos and k0y = k0 sin in the x- and y-directions, respectively.  
It is noted that the special case of a normal incident wave with 
 = 0 can be directly analysed by the present solution.  How- 
ever, the limiting case of  = 90° cannot be considered by the 
present solution.  The width and the height of the porous break- 
water are B (B = 2b) and a, respectively.  The submerged depth 
of the porous breakwater is d (d = h  a).  The spacing between 
the porous breakwater’s rear face and the partially reflecting 
side wall is D.  The reflection coefficient of the sidewall is KR.  
The lengths of the porous breakwater and the sidewall along 

the y-direction are assumed to be infinite as they are very large 
compared to the incident wavelength.  For the solution of the 
problem, the whole fluid domain is divided into the following 
three regions: region 1 is the fluid domain in front of the porous 
breakwater (x  -b, -h  z  0); region 2 includes the fluid do- 
mains above and inside the porous breakwater (-b  x  b, -h  
z  0); and region 3 is the fluid domain between the porous break- 
water and the sidewall (b  x  b  D, -h  z  0). 

The present analytical solution is developed based on the 
linear potential theory and the classical porous medium model 
proposed by Sollitt and Cross (1972).  The fluid motions inside 
and outside the porous breakwater are both described by a veloc-
ity potential  (x, y, z, t).  For time-harmonic incident waves with 
angular frequency ω, the velocity potential is further written as: 

     0i ii
, , , Re , e e

2
yk y tgH

x y z t x z  


   
 

, (1) 

where Re denotes the real part of the variables, g is the 
gravitational acceleration, H is the incident wave height, and 
(x, z) is a complex spatial velocity potential. 

The spatial velocity potential in each region satisfies the 
modified Helmholtz equation: 

 
2 2

2
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x z
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where the subscript j denotes the variables in region j.  The ve- 
locity potentials also satisfy the following boundary conditions: 
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, (5) 

  2 2i
z d z d

s f   
  , (6) 

where z = -d and z = -d denotes, respectively, the upper and 
lower sides of the porous breakwater horizontal surface, and , 
f and s are, respectively, the porosity, the linearized resistance 
coefficient and the inertial coefficient of the porous breakwater 
(Sollitt and Cross, 1972; Dalrymple et al., 1991; Yu and Chwang, 
1994).  Here, the effect of the porous breakwater (porous medium) 
is represented by the three parameters of , f and s.  When  = 1, 
f = 0 and s = 1, the porous medium becomes water.  In addition 
to the preceding boundary conditions, the reflected wave in re- 
gion 1 propagates along the specular reflection direction of the 
incident wave and must be outgoing in the far field. 
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The preceding Eqs. (2)-(6) formulate a complete boundary 
value problem for oblique wave scattering by a submerged po- 
rous breakwater with a partially reflecting sidewall. 

III. ANALYTICAL SOLUTIONS 

The series solutions of the velocity potentials, which satisfy 
Eq. (2) and the relevant boundary conditions in Eqs. (3)-(6), can 
be written as: 
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where Rm, Am, Bm, Cm and Dm are unknown expansion coeffi-
cients, and Zm(z) and Ym(z) are vertical eigenfunctions given by 
(Losada et al., 1996): 
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in which 2 2
0mx y mk k k   ( 1m  ), 2 2

0mx m yk    (m  0),  

Table 1. Calculation results for the complex wave numbers 
at k0d = 1.5, a/h = 0.5,  = 0.4, f = 2.0 and s = 1.0. 

Complex wave numbers Calculation results 

0 2.416523  0.328700 i 

1 0.122608  2.161902 i 

2 0.032153  5.955472 i 

3 0.110965  9.783322 i 

4 0.410217 13.372354 i 

 
 

and the positive real numbers mk and the complex wave num- 

bers m  satisfy: 

 2
0 0tanh tanm mgk k h gk k h    , 1m  , (13) 

  2 2tanh tanm m m m mg h P h g        , 0m  . (14) 

In this study, the wave numbers above and inside the submerged 
porous breakwater in region 2 are assumed to be the same.  Then, 
the vertical eigenfunctions in Eq. (11) and the complex disper- 
sion relationship in Eq. (14) are developed using the free surface 
condition, Eq. (3), the water bottom condition, Eq. (4), and the 
vertical velocity and pressure continuous conditions on the up- 
per horizontal surface of the submerged porous breakwater, 
Eqs. (5) and (6).  More details can be found in Losada et al. (1996) 
and Neves et al. (2000). 

We use the Newton-Raphson method to find the complex 
roots of Eq. (14).  In our calculations, the initial guesses of all the 
complex roots are determined using the perturbation method 
proposed by Mendez and Losada (2004).  The initial guesses of 
the complex roots can also be obtained by the homotopy pertur- 
bation method proposed by Chang and Liou (2006).  The typical 
calculation results of the complex wave numbers are listed in 
Table 1.  The real and imaginary parts of a complex wave number 
denote the spatial scale of the wavelength and the damping mo- 
dulus of the wave amplitude above the submerged porous break- 
water, respectively. 

On the interfaces between adjacent regions (x =  b), the ve- 
locity potential and the horizontal mass fluxes must be con-
tinuous: 

 1 2  , x b  , (15) 

 1 2

x x

 


 
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 
, x b  , (16) 

 3 2  , x b , (17) 

 3 2

x x

 


 
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 
, x b , (18) 

where  =  = 1 ( 0d z   ), = s  if ( h z d    ) and  
 =  ( h z d    ). 
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On the leeside vertical wall, the partially reflecting boundary 
condition for obliquely incident waves is given by (Isaacson and 
Qu, 1990): 

 3
0 3xk

x


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
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
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1
i
1

R

R

K

K



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
, x b D  , (19) 

where KR is the reflection coefficient of the sidewall as men-
tioned in Fig. 1.  When using Eq. (19), the wave incident direc-
tion in front of the sidewall is the same as that from the open sea.  
In addition, the reflection phase angle on the sidewall is simply 
treated as zero according to the numerical results presented by 
Isaacson and Qu (1990).  When KR is equal to unity, the trans- 
mitted waves by the porous breakwater are fully reflected by 
the sidewall.  While KR is equal to zero, the transmitted propa- 
gation waves are fully dissipated by the sidewall.  In practice, 
the reflection coefficient KR of a seawall should be determined 
by experimental tests or field tests.  Alternatively, the approximate 
reflection coefficients of typical coastal structures can be found 
in Goda (2010, Table 3.8). 

We note that the partially reflecting boundary condition in 
Eq. (19) in fact denotes the wave energy dissipation by the wave 
absorber behind the boundary.  This is very different from the 
porous boundary condition presented by Yu (1995), which de- 
noted the pressure loss on a perforated thin wall, i.e., the wave 
energy dissipation by the porous boundary itself. 

Next, we can use the boundary conditions in Eqs. (15)-(19) to 
determine the unknown expansion coefficients in the velocity 
potentials.  Upon inserting the velocity potentials from Eqs. (7) 
and (8) into Eq. (15), we have: 
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Multiplying both sides of Eq. (20) by Zn(z) and integrating 
with respect to z along the whole water depth, we have: 
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where mn = 1 (m = n), mn = 0 (m  n), mn   
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method as Eq. (21), we transform Eqs. (16)-(19) into 
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where 0 0ix xk k  , nx nxk k ( 1n  ) and mn   

   
0

dm nh
Y z Z z z
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We truncate n and m after N terms in Eqs. (21)-(25) and 
solve the equations simultaneously using the standard Gauss 
elimination method to determine the velocity potentials. 

The reflection and transmission coefficients of a coastal 
structure are defined as the ratios of the reflected and trans-
mitted propagation wave heights to the incident wave height, 
respectively.  In Eq. (7), the first term is the incident waves, the 
second term is the reflected propagation waves in front of the 
submerged breakwater, and the third term represents a series 
of evanescent modes decaying in the negative x-direction.  In 
Eq. (9), the first term represents the transmitted propagation 
waves, and the second term is the propagation waves reflected 
by the sidewall.  Thus, the reflection coefficient CR and the trans- 
mission coefficient CT of the porous breakwater are: 

 0RC R , (26) 

 0TC C . (27) 

We conclude in theory that the reflection coefficient of the 
partially reflecting sidewall satisfies: 

 0

0
R

D
K

C
 . (28) 

This relationship can be used to assess the accuracy of our 
present analytical results.  By considering the wave energy con- 
servation, the energy loss coefficient of the submerged porous 
breakwater can be defined as:  

  22 21L R T R TE C C K C    . (29) 

IV. RESULTS WITH DISCUSSIONS 

1. Convergence Examination 

We first examine the convergence of the present series solu-
tion by increasing the truncated number N adopted for solving 
Eqs. (21)-(25).  The calculated reflection and transmission co- 
efficients, CR and CT, at different N values for a typical case are 
listed in Table 2.  The calculation conditions are as follows: 
k0d = 1.5, a/h = 0.8, B/h = 0.8, D/h = 3.0,  = 0.4, f = 2.0, s = 1.0 
and KR = 0.5.  It can be observed from Table 2 that the value of 
N = 40 should be enough to obtain convergent results.  Thus, the 
value of N = 40 is adopted in this study. 
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Table 2.  Convergence of CR and CT with the increasing truncated number N. 

 = 10  = 30  = 50  = 80 
N 

CR CT CR CT CR CT CR CT 

2 0.4270 0.6233 0.4045 0.6699 0.4194 0.6276 0.7678 0.3416 

5 0.3810 0.5898 0.3962 0.6473 0.3831 0.5996 0.7520 0.3374 

10 0.3830 0.5921 0.3956 0.6482 0.3850 0.6018 0.7518 0.3381 

20 0.3832 0.5926 0.3955 0.6484 0.3854 0.6021 0.7517 0.3382 

40 0.3832 0.5927 0.3954 0.6484 0.3854 0.6022 0.7517 0.3382 

60 0.3832 0.5927 0.3954 0.6484 0.3855 0.6022 0.7517 0.3382 

 
 

1
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0.4

Lines: Present analytical solution
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Fig. 2. Comparison between the present analytical solution and that pre- 
sented by Losada et al. (1996). 

 
 

2. Comparison with Known Solutions of Special Cases 

Losada et al. (1996) developed an analytical solution for ob- 
lique wave scattering by a submerged porous breakwater with- 
out a leeside vertical wall.  When the reflection coefficient KR 
of the present sidewall is zero and the distance D between the 
porous breakwater and the sidewall is large enough, the present 
solution becomes the analytical solution presented by Losada 
et al. (1996).  The reflection and transmission coefficients calcu- 
lated by the present analytical solution are compared with the 
results presented by Losada et al. (1996), as shown in Fig. 2.  
The calculation conditions are as follows: k0h = 0.68, a/h = 0.7, 
B/h = 1.0, D/h = 10.0,  = 0.4, f = 1.5, s = 1.0 and KR = 0.  It can 
be observed from Fig. 2 that the two solutions are in good 
agreement.  Additionally, it can be observed from this figure that 
with the increasing wave incident angle , the reflection coef- 
ficient first decreases, attains its minimum and then rapidly in- 
creases to unity. 

Koley et al. (2015) developed an analytical solution for ob- 
lique wave scattering by a submerged porous breakwater in front 
of a fully reflecting vertical sidewall.  When the reflection coef- 
ficient of the present sidewall is unity, the present solution be- 
comes the analytical solution presented by Koley et al. (2015).  
The reflection coefficients CR calculated by the present analytical  
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Fig. 3. Comparison between the present analytical solution and that pres- 

ented by Koley et al. (2015). 

 

 

solution are compared with the results presented by Koley et al. 
(2015), as shown in Fig. 3.  The calculation conditions are as 
follows: k0h = 0.592, a/h = 0.2, B/h = 0.6, D/h = 10.607,  = 
0.437, f = 0.5, s = 1.0 and KR = 1.0.  Again, the two solutions are 
in good agreement. 

3. Comparison with Multi-Domain BEM Solution 

In addition to the analytical solution, we develop a multi- 
domain boundary element method (BEM) solution for the pre- 
sent oblique wave scattering problem.  The present multi-domain 
BEM solution is given in the Appendix, which is modified by 
our previous BEM solution for normally incident waves (Liu 
et al., 2012).  The multi-domain BEM solution is a numerical 
solution, and it needs the discretizing of all the boundaries of 
fluid domains.  Thus, the solution procedure of the BEM solu- 
tion is more cumbersome than the analytical solution, but the 
BEM solution can consider structures with more complicated 
shapes.  More details on the multi-domain BEM can be found in 
Ijima et al. (1976), Sulisz (1985), Yueh and Chuang (2009) and 
others. 

The reflection coefficients CR calculated by the analytical 
solution and the multi-domain BEM solution are compared in 
Fig. 4 for cross-checking.  The calculation conditions are as fol- 
lows: a/h = 0.5, B/h = 1.0, D/h = 1.0, ε = 0.45, f = 2.0, s = 1.0  
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transmission coefficients. 

 
 

and KR = 0.5.  It can be observed from Fig. 4 that the agree-
ment between the two solutions is very good. 

According to the preceding validations, we believe that the 
solving procedure of the present analytical solution should be 
correct. 

4. Numerical Examples 

We first present Fig. 5 to examine the effects of the relative 
porous breakwater height a/h on the reflection coefficient CR 
and the transmission coefficient CT.  The calculation conditions 

are as follows:  = 30°, B/h = 0.8, D/h = 3.0,  = 0.4, f = 2.0,  
s = 1.0 and KR = 0.5.  It can be observed from Fig. 5 that the 
reflection and transmission coefficients both decrease with the 
increasing breakwater height.  One may feel intuitively that when 
the breakwater height increases, the reflection coefficient should 
also increase.  However, a higher submerged porous breakwater 
with a sidewall can dissipate more incident wave energy and, 
thus, results in a lower reflection coefficient.  Our further cal- 
culation results show that when the porosity  is small, the reflec- 
tion coefficient CR may increase with the increasing relative 
breakwater height a/h.  In addition, the reflection coefficient of 
a submerged porous breakwater without a sidewall generally 
increases with the increasing value of a/h.  We also note from 
Fig. 5(a) that with the increasing value of k0h, the reflection 
coefficient oscillates between its local maximum and minimum 
values.  This is due to the wave resonance between the porous 
breakwater and the sidewall. 

The effects of the sidewall reflection coefficient KR and the 
relative porous breakwater width B/h on the hydrodynamic quan- 
tities are shown in Figs. 6 and 7, respectively.  As shown in these 
figures, the hydrodynamic quantities are plotted as the function 
of the relative spacing between the porous breakwater and the 
sidewall (the ratio of the spacing D to the incident wavelength 
L).  The calculation conditions in Fig. 6 are as follows:  = 30°, 
k0h = 1.5, a/h = 0.8, B/h = 0.8, ε = 0.4, f = 2.0 and s = 1.0.  We 
note from Fig. 6 that for KR = 0, the reflection and transmission 
coefficients are both constant, except for when the values of 
D/L are very small.  This is because of the evanescent modes in 
Eq. (9) at small values of D/L.  When the sidewall reflection 
coefficient KR increases, the reflection and transmission coef-
ficients both vary periodically with the increasing values of D/L.  
In addition, the reflection coefficient increases significantly with 
the increasing values of KR, and the minimum transmission co- 
efficient decreases with the increasing KR.  The calculation con- 
ditions in Fig. 7 are as follows:  = 30°, k0h = 1.5, a/h = 0.8,  
 = 0.4, f = 2.0, s = 1.0 and KR = 0.5.  It can be observed from 
Fig. 7 that a wider porous breakwater has a better sheltering 
function (with a lower transmission coefficient).  However, the 
effect of the relative porous breakwater width on the reflection 
coefficient is rather complicated due to the interfaces of the 
waves reflected by the porous breakwater and the sidewall.  
By considering both Figs. 6 and 7, the relative spacing of D/L 
has significant effects on the hydrodynamic quantities of the 
porous breakwater in front of a partially reflecting sidewall.  In 
practical engineering design, one should carefully design the 
value of D/L to obtain a lower transmission coefficient. 

It should be mentioned that when the value of D/L approaches 
zero, the submerged porous breakwater is attached to the side- 
wall.  For this special case, the transmission coefficient CT de- 
fined in Eq. (27) is not zero and has little physical meaning.  In 
fact, the wave reflection by a submerged porous bar attached 
to a fully reflecting vertical wall has been studied by Chen et al. 
(2006). 

In the preceding numerical examples, the wave incident angle is 
fixed at  = 30.  As shown in Fig. 8, the reflection and transmis- 
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Fig. 8.  Effects of the wave incident angle  on the reflection and transmission coefficients. 

 
 

sion coefficients of the submerged porous breakwater at different 
wave incident angles are presented.  The calculation conditions 
are as follows: k0h = 1.5, B/h = 0.8, D/h = 3.0,  = 0.4, f = 2.0,  
s = 1.0 and KR = 0.5.  When the wave incident angle increases 
from 0 to 60, the variations of the reflection and transmission 
coefficients are not notable.  While the wave incident angle 
further increases from 60 to 90, the reflection coefficient and 
the transmission coefficient rapidly approach unity and zero, re- 
spectively.  This is similar to the oblique wave reflection and 
transmission by a submerged porous breakwater without a 

sidewall, as shown in Fig. 2. 

V. CONCLUDING REMARKS 

We have used the matched eigenfunction expansion method 
to develop an analytical solution for oblique wave scattering by 
a submerged porous breakwater in front of a partially reflecting 
vertical wall.  We have also developed a multi-domain BEM so- 
lution for the same problem.  The hydrodynamic quantities of 
the reflection and transmission coefficients calculated by the ana- 
lytical solution and the multi-domain BEM solution are in good 
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agreement.  In addition, we have shown that for two special cases 
of a single submerged porous breakwater and a submerged po- 
rous breakwater with a fully reflecting sidewall, the present 
calculation results agree very well with previous results in the 
literature.  The effects of major engineering design parameters, 
including the relative breakwater height and width, the sidewall 
reflection coefficient, and the relative spacing between the po- 
rous breakwater and the sidewall, on the reflection and trans- 
mission coefficients have been clarified by numerical examples.  
Due to wave resonance between the porous breakwater and the 
partially reflecting sidewall, the relative spacing between the 
porous breakwater and the sidewall must be carefully designed 
to obtain a lower transmission coefficient (better sheltering func- 

tion).  For preliminary engineering design, the present solution 
may be useful for determining the optimal breakwater para- 
meters.  It should be mentioned that the wave nonlinearity, the 
possible wave breaking over the submerged breakwater and the 
vortex flow near the structure cannot be considered in the present 
linear potential theory.  These need to be clarified by further ex- 
perimental tests and numerical simulations. 
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APPENDIX: MULTI-DOMAIN BEM SOLUTION 

Here, the multi-domain boundary element method is used to solve the boundary value problem formulated in Section II.  In the 
BEM solution, simple constant boundary elements are adopted.  Fig. A.1 shows a sketch of the multi-domain BEM solution.  The 
adopted Cartesian coordinate system is the same as that shown in Fig. 1.  A fictional vertical boundary, which is far from the 
submerged porous breakwater, is set at x = -l (beelines AB).  Then, the whole fluid domain is divided into the following three 
regions: region 1 is the outer region (x  -l); region 2 is the domain inside the porous breakwater and is enclosed by the curve 
DCFED; and region 3 is the fluid domain enclosed by the curve ABCDEFGHA. 
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Fig. A.1.  Sketch of the multi-domain BEM solution (side view). 

 
 
The boundary integration equations for the velocity potentials in regions 2 and 3 can be written as (Ang, 2007): 
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2 j

j j
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  
  
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 n n

, j = 2, 3, (A.1) 

where the subscript j denotes variables in region j; (, ) and (x, z) denote, respectively, the source point and field point; j is the 
boundary curves of region j; nj is the unit normal vectors on j and points away from region j; and the fundamental solution G(x, 
z; , ) of the modified Helmholtz equation is given by: 

    2 2
0 0

1
, ; , K ( ) ( )

2 yG x z k x z   


     , (A.2) 

in which K0 is the modified Bessel function of the second kind of zero order. 
All the boundary curves in regions 2 and 3 are divided into M2 and M3 beelines, respectively.  On each beeline, the velocity 

potential and its normal derivative are constants.  On the midpoint of the k-th boundary element of region j (j = 2, 3), the velocity 
potential and its normal derivative are written as ,j k  and ,j k , respectively.  Then, a discretized version of Eq. (A.1) is given by: 
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where, mk = 1 (m = k), and mk = 0 (m  k). 
On the fictional boundary AB ( x l  ), the velocity potentials and the horizontal fluid velocities are continuous:  

    1 3, ,l z l z    , (A.6) 

 31

x x
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 
, x l  . (A.7) 

The velocity potential in region 1 can be written as: 

      0 0i i
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where the evanescent modes are ignored as the outer region is far from the submerged porous breakwater.  Inserting Eq. (A.8) into 
Eq. (A.6), then multiplying both sides of the new equation by Z0(z) and integrating with respect to z from -h to 0 yields: 

 
   

0

3 0

0 0 2
0

, d
1

( )d

h

h

l z Z z z
R

Z z z







 


. (A.9) 

Substituting Eqs. (A.8) and (A.9) into Eq. (A.7), we have: 
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On the interface CDEF of regions 2 and 3, the velocity potentials satisfy: 

 3 2
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, on CDEF, (A.11) 

  3 2is f   , on CDEF. (A.12) 

On the water bottom, the free surface and the partially reflecting sidewall, the velocity potentials satisfy: 
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We substitute Eqs. (A.10)-(A.16) into Eq. (A.3) and solve Eq. (A.3) to determine the velocity potentials and their normal 
derivatives on all boundary elements.  Then, the reflection coefficient is estimated using Eqs. (A.9) and (26). 
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