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ABSTRACT 

Almost all bolted connections are eccentrically loaded.  The 
American Institute of Steel Construction (AISC) permits the 
use of elastic and instantaneous center of rotation (IC) methods 
to analyze eccentric bolted connections.  The elastic method nor- 
mally yields relatively conservative designs and the IC method, 
which provides more realistic analyses, is rather complex and 
tedious.  The current AISC manual provides tables for determin-
ing coefficient C, which is used to obtain the design strength of 
bolt group patterns.  However, the tables provide values for only 
six angles of inclination (  0, 15, 30, 45, 60, and 75).  
For other angles, a direct analysis using the IC method must be 
conducted.  The straight-line interpolation between C values for 
loads at different angles may be non-conservative and it is not 
recommended by the AISC.  This work develops an iterative al- 
gorithm for implementing the tedious IC method in the general 
analysis or design of eccentric bolted connections.  To eliminate 
the tediousness of the IC method, a method is proposed to pro- 
vide a reasonable result for all angles (between 0 and 90) in- 
cluding those not being considered in the current AISC design 
tables.  The proposed method is easy to implement but reasona-
bly accurate, and replaces both the straight-line interpolation 
between C values for loads at various angles and direct analysis.  
This work eliminates the current limitations on AISC design.  
It provides a quick and reliable tool for preliminary design of 
eccentric bolted connection. 

I. INTRODUCTION 

Steel structures generally have eccentrically loaded joints.   
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θ(a) 0° <    ≤ 75° cases θ(b) 75°<    ≤ 90° cases  
Fig. 1.  Loading cases covered and not covered in the AISC manuals. 

 
 

Some common examples of such joints are bracket-type con- 
nections and web splices in beams and girders.  For a bolted 
connection, as shown in Fig. 1(a), both the eccentric load and 
the induced torsion contribute to bolt shear.  The effect of the 
combined load is equivalent to a rotation of the bolts about a 
particular point, which is called the “instantaneous center of ro- 
tation” (IC).  The exact position of IC is important in the ana- 
lysis and design of eccentrically loaded joints.  The location of 
an IC depends on the pattern of the group of bolts and the lo- 
cation and direction of the loading.  Theoretically, the force equi- 
librium equations are satisfied at the true IC. 

The American Institute of Steel Construction (AISC) design 
manuals (1986, 1989, 1993, 1999, 2005, and 2010) provide two 
practical methods for evaluating the design strength of an ec- 
centrically bolted connection.  The first method is essentially an 
elastic method and is regarded as conservative; the second is 
based on the concept of the instantaneous center of rotation (IC), 
and is a strength-based method that provides more realistic re- 
sults.  In the method of the AISC, the design strength of an ec- 
centrically loaded bolt connection is evaluated using a tabulated 
coefficient C, which is proportional to the required strength of 
the bolt group. The AISC allowable stress design (ASD) manual 
(1989) contains the C coefficients for only vertical eccentric loads.  
Iwankiw (1987) proposed an approximate method to handle 
bolted connections under eccentric and inclined loading.  The 
AISC load and resistance factor design (LRFD) manuals (1986, 
1993, 1999, 2005, and 2010) provide the C coefficients for only 
six inclination angles of the load (  0, 15, 30, 45, 60, 
and 75), which were evaluated using the IC method.  Design 
engineers tend to interpolate linearly the C coefficient for a non- 
specific  value.  However, doing so is not entirely justified.  
Additionally, the direct implementation of the IC method is dif- 
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ficult because it involves a tedious trial-and-error process.  More- 
over, no design table or tool is available for  > 75 (Fig. 1(b)), 
even though this angle exists in practice.  A more effective and 
efficient method for analyzing an eccentrically bolted connec- 
tion without the above limitations and shortcomings is therefore 
needed. 

This work develops an iterative algorithm to locate the instan- 
taneous center of rotation of an eccentrically bolted connection, 
and proposes a simple rational method for approximating the C 
coefficient for loads at any angle without direct analysis.  The 
results thus obtained are compared with those obtained using 
other available methods, including the elastic method, the IC 
method, the AISC manual-based interpolation method, and the 
approximation method of Iwankiw (1987). 

II. PROPOSED METHOD FOR ANALYZING 
ECCENTRIC BOLTED CONNECTIONS 

Iwankiw (1987) presented a computationally simple but ra- 
ther conservative method for approximating the coefficients C 
for bolt patterns under inclined loads.  This work proposes an im- 
proved method that is based on the work of Iwankiw (1987) and 
yields sufficiently accurate results for loads at various angles 
between 0 and 90 without the complex iteration of the IC me- 
thod. 

According to the 2010 AISC design manual, the tabulated 
non-dimensional coefficient, C, represents the number of effec- 
tive bolts that resist the eccentric force.  C is proportional to the 
available strength (Rn) of the eccentrically loaded bolts.  The 
coefficient C represents for the resistance at the six specified 
angles (0, 15, 30, 45, 60, and 75), as indicated in the 
AISC manuals.  Any inclined load is conventionally split into 
vertical and horizontal components.  To be consistent with the 
tabulated C coefficients in AISC design manuals, an applied 
inclined load (Pu) can be divided into two components (P' and 
P'15), where P' and P'15 are parts of the connection capa- 
cities of P and P15.  P and P15 are proportional to C and 
C15, which are listed in the manual in increments of 15, as 
displayed in Fig. 2.  Since the algebraic addition of two com- 
ponents is always greater than the vector addition thereof, these 
two components are added algebraically to provide a conserva- 
tive estimate of the strength of bolted connections.  To put this 
proposed approach into mathematical form which is compatible 
with the AISC Manual C tables, part of the connection capacity 
(C) resists P', and the remainder resists P'15, based on the al- 
gebraic addition simplification.  The magnitudes of P' and 
P'15 are assumed to be as follows. 

 15 15 15andn n n

C C
P C r P C r C r
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where rn is the nominal shear strength per bolt; C and C15 are 
the coefficients at the six specified angles (0, 15, 30, 45, 
60, and 75), as tabulated in the 2010 AISC manual, and C' is  
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Fig. 2. Derivation of proposed method from trigonometric relationship 
(P'γ and P'γ+15). 

 
 

a derived eccentricity coefficient to resist a part of P. 
From the simple trigonometric relationship between P' and 

P'15, we have 

 15

sin( 15 ) sin( )
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 (2) 

Substitution of Eq. (1) into Eq. (2) gives 
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Further simplification of Eq. (3), the equation then becomes 
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Hence the derived eccentricity coefficient C' can be given as 
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where C is the AISC-tabulated C coefficient that corresponds 
to the angle γ(0, 15, 30, 45, 60, or 75) and γ < θ < γ + 15 
in degrees.  From the law of cosines, we have 

 2 2 2
15 152 cos165uP P P P P            (6) 

Substituting nP C r   and 15
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nC r  , we obtain 
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Fig. 3.  Instantaneous center of rotation method. 
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Then the proposed method can be concluded as follows: 
 

(1) Calculate C' , which is based on Eq. (5). 
(2) Compute Cu, which is calculated based on Eq. (7) and is 

the approximate coefficient for any angle () of inclination 
between 0 and 90. 

(3) Obtain Pu, which is the maximum eccentric load of the bolt 
group. 

 ( )u u nP C r   (8) 

 To evaluate the accuracy of the proposed method, the exact 
result obtained by the IC method is developed as follows. 

III. PROCEDURE FOR IMPLEMENTING  
THE IC METHOD 

The combined effect of rotation and translation under the 
eccentric load is equivalent to a rotation about a particular lo- 
cation, which is called the instantaneous center of rotation (IC), 
as shown in Fig. 3(a).  The exact location of the IC depends on 
the bolt patterns and the location and direction of the applied 
load.  Fig. 3(b) plots the load-deformation relationship (Crawford 
and Kulak, 1971) of a high-strength bolt, which is given by 

 10 0.55(1 )ultr r e    (9) 

where r denotes the nominal bolt shear strength (kips) (1 kip  
4.448 kN); rult is the ultimate bolt shear strength (kips), and  
is the combined bolt shear, bearing, and bending deformation 
(inches) (1 inch  2.54 cm). 

Eq. (9) was obtained from an experiment on an ASTM A325 
bolt with a diameter of ¾ inch under single shear with rult  74 
kips and max  0.34 in.  The nominal shear strength (r) of the 
farthest bolt from the IC is obtained by applying a maximum 
deformation max to the bolt.  The values of r of the other bolts 
are obtained by considering a deformation  that varies linearly 
with distance from the IC between zero (at the IC) and max (at 
the farthest bolt).  The nominal shear strength of the bolt group 
is, then, the sum of the individual bolt strengths. 

The AISC design manuals (1986, 1989, 1993, 1999, 2005, and 
2010) used the IC method to analyze eccentric bolted connec- 
tions by specifically evaluating C.  Brandt (1982) presented a 
technique for locating the IC.  However, none of the aforemen- 
tioned design manuals provided detailed steps for the implemen- 
tation of the tedious IC method.  The present work develops a 
different algorithm for locating the IC, as follows. 

In the IC method, three force equilibrium equations (Fx  0, 
Fy  0, and M  0) are required to locate the instantaneous 
center of rotation.  The exact solution to the problem is almost 
impossible to obtain directly, so an iterative algorithm that is based 
on the concept of gradient descent for line search (Nocedal and 
Stephen, 1999; Su and Siu, 2007) is developed to solve it. 

Given M  0, the required trial strength (Pu) of the eccen-
trically loaded bolt group is Pu  Mu/ro  (ri di)/ro, whose 
corresponding load components are Pux and Puy.  At static equi- 
librium (Fx  0, Fy  0), the resultants are expressed as 

 andx uh ux ux y uy uy uyF F P r F F P r           (10) 

where Fuh and Fuv are called unbalanced forces if Fx  0 or 
Fy  0. 

Let F(x0, y0) be the magnitude of the resultant of the eccen-
trically loaded bolt group at the first trial point of the IC: 

0 0 0 0( , ) ( , ) ( , ) ( , )

2 2

( , )

where

x y x y x y x y

x y uh uv uh uv

F F
F x y

x y

F F F F F F F

 
 

  
 

       

i j

i j i j

 (11) 

The magnitude of resultant F(x, y) increases rapidly in the di- 
rection of positive gradient (F), and falls rapidly in the direct- 
ion of negative gradient (-F).  The negative gradient (-F) 
specifies the direction of descent of the resultant F(x, y).  In the 
iterative algorithm, this negative gradient is applied to reduce 
the x- and y-components of unbalanced forces, Fuh and Fuv, in 
each direction of descent.  Gradient is perpendicular to the force 
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Fig. 4.  Iterative algorithm to find the location of IC. 

 

 
vector.  Accordingly, the direction of descent opposes the normal 
to the force vector, so Fuv declines in the positive x direction and 
Fuh falls in the negative y direction.  Then, step length, siFuv or 
siFuh, is adjusted as a shift along each direction of descent with 
reference to Fig. 4(a).  The positive si is the steplength parameter, 
which can be set for each iterative process.  Therefore, the iterated 
coordinates are given by 

 
1

1

( ) and

( )

i i i uy i uy

i i i uy i uh

x x s F x F

y y s F y F





   
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 (12) 

The algorithm requires that the initially guessed IC position 
is the centroid of the section; the iterative process generates the 
next point by moving one step length in the direction of nega- 
tive gradient from the preceding IC point.  The computational pro- 
cedure is described in detail herein using an illustrative example. 

The iterative process terminates when the unbalanced forces 
Fuv and Fuh have been obtained to the desired accuracy, which 
approaches zero.  The required design force (Pu) and available 
bolt strength (rn) are then set, yielding the coefficient C = Pu / 
(rn). 

The detailed procedure for implementing the IC method is 
summarized as follows: 

1. Determine the sectional properties and geometry of the bolt 
group and use the center of gravity (CG) of the bolt group 
as the first trial location of IC. 

2. With reference to Fig. 4(b), find the normal form of the equa- 
tion (Sisam and Atchison, 1955) along the load application 
line (l).  The perpendicular distance (e) from the CG to l is 
expressed as 

 ( ) cos ( )sinp cg p cge x x y y      (13) 

 and the perpendicular distance (ro) from the IC to l is cal-
culated as 

 
( )cos ( )sin

( )cos ( )sin

o ic cg ic cg

ic p ic p

r x x y y e

x x y y

 

 

    

   
 (14) 

 where  is the angle between the line that is normal to Pu 
and the horizontal axis. 

3. Calculate the deformation (i) and resistance (ri) from the 
load-deformation relationship that is given in the AISC man- 
uals for each bolt: 

 
max max max

10 0.55

( / ) 0.34( / ) and

(1 )i

i i i

i ult

d d d d

r r e 
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 
 (15) 

4. Calculate the resultant moment (Mu) and force components 
(rux and ruy) for the bolt group. 

 
( ) / , ( ) / , and

( )

ux i i i uy i i i

u i i

r r y d r r x d

M r d

     

  
 (16) 

 where (xi, yi) are the coordinates of each bolt, ri is the re-
sistance of each bolt, and di is the radial distance from CG 
to the center of each bolt. 

5. Calculate the corresponding applied load (Pu) and its com- 
ponents (Pux and Puy) by considering the static equilibrium, 

 
/ ( ) / , cos , and

sin

u u o i i o ux u

uy u

P M r r d r P P

P P





    


 (17) 

 where  is the angle of inclination of Pu with respect to the 
horizontal line and ro is the load eccentricity, which is ob-
tained using Eq. (14). 

6. Confirm the force equilibrium. 

 andx uh ux ux y uy uy uyF F P r F F P r           (18) 

7. If an equilibrium condition is violated (Fuh  0 or Fuv  0),  
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Table 1. Comparisons of values of C obtained using pro-
posed iterative algorithm. 

Angle ( ) 0 15 30 45 60 75
Computational  

result (C) 
3.554 3.618 3.921 4.554 5.710 7.902

2010 AISC  
manual (C) 

3.550 3.620 3.920 4.550 5.710 7.900

(Based on 2010 AISC Tables 7 and 8 with g  5.5 in., s  3 in., ex  16 
in., and n  6; 1 in.  2.54 cm) 

 
 

 then alter the location of IC to reduce the difference between 
the applied load (Pu) and the resultant force (Σru) of the bolt 
group.  The next IC coordinates are adjusted to 

 
1

1

( ) and

( )

i i i uy i uy

i i i uy i uh

x x s F x F

y y s F y F





   

   
 (19) 

 where positive si is the step-length parameter for Fuh and 
Fuv. 

8. Repeat Steps 2 to 7 until the convergence value of 0.1 percent 
for unbalanced forces Fuh and Fuv is reached. 
 
A design example is presented below to illustrate the above 

procedure, whose results are compared with those of the pro- 
posed method.  A computer program was developed to execute 
the above iterative process.  The outputs (coefficients C) of the 
program were verified against the tables in the 2010 AISC de- 
sign manual.  Table 1, which presents a set of outputs, shows 
that the calculated C coefficients in the example compare favor- 
ably with those in the AISC design tables. 

IV. ILLUSTRATIVE EXAMPLE 

Fig. 5(a) shows a bolted connection under an applied load 
(Pu).  The connection is supported by the bracket.  Both the col- 
umn and the bracket are made of steel with Fy  36 ksi.  A325-N 
bolts with a diameter of ⅞ in. are used in standard holes.  As- 
sume the column flange and the bracket plate have adequate 
strength.  The objective is to evaluate the maximum load (Pu) 
using both the available methods and the proposed method. 

1. Elastic Method 

With reference to Fig. 5(a), the center of gravity (CG) of the 
given bolt group is located at 

 ( ) / 2.75 in. and ( ) / 7.5 in.,cg i b b cg i b bx x A A y y A A         

where Ab is the cross-sectional area of each bolt.  By calcula- 
tion, d2  405.75 in.2 with respect to the CG of the bolt group.  
The components of direct bolt shear are 

 sin sin / sin80 / 0.0821 ( )pux pu u u ur r P n P n P         

 cos cos / cos80 / 0.0145 ( )puy pu u u ur r P n P n P         

(a) Bolted connection

(b) Perpendicular distance (ro) from
trial IC to line along which loadis applied
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Fig. 5.  Illustrative example. 

 
 
The torque at the CG is 

 cos ( 0.17365 16) 2.7784 (clockwise)cg u u uM P P P       

The components of torsion-induced bolt shear are 

 
2

2.7784 7.5
  0 05136 

405.75
CG y u

mux u

M d P
r . P

d

 
   


 () 

 
2
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  0 01883 

405.75
CG x u

muy u

M d P
r . P

d

 
   


 () 

Hence, the required strength per bolt, ru, is 

 

   

   

2 2

2 2
   0 0821 0 05136 0 0145 0 01883

0.1375 

u pux mux puy muy
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u

r r r r r

. P . P . P . P

P

   

     



 

According to the 2010 AISC LRFD, ru  rn.  With rn  
24.3 kips, the obtained maximum Pu value is (Pu)max  176.727 
kips 

From Pu  Rn  Ce  rn , Ce  (Pu)max/(rn)  176.727/ 
24.3  7.273 
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2. IC Method 

As stated above, the CG of the bolt group is located at xcg  
2.75 in. and ycg  7.5 in.  With reference to Fig. 5(b), the line 
along which the load is applied can be expressed in normal form.  
The angle between the horizontal line and the normal to the load 
direction is 

 180 180 80 100           

The perpendicular distance from the CG to the line along 
which the load is applied is 

 
( ) cos ( )sin

16 cos100 0 sin100 2.778 in.

p cg p cge x x y y    

       
 

where 

 
( , ) (18.75 in., 7.5 in.) and

( , ) (2.75 in., 7.5 in.)

p p

cg cg

x y

x y




 

The initial guess of IC at CG is (x0, y0)  (2.75 in., 7.5 in.).  
The perpendicular distance from the initially guessed IC to the 
line along which the load is applied is 

 

0 0

0 0

( ) cos ( )sin

( 2.75)cos100 ( 7.5)sin100 2.778

2.778 in.

o cg cgr x x y y e

x y

     

      



 

The AISC load-deformation relationship for one bolt is 

 
10 0.55

max(1 ) , 0.34( / ),

( / ), and ( / )

ult i

ux y uy x

r r e d d

r r d d r r d d

    

   
 

From the developed program outputs, (r  d) = 1501.396 
k-in, rux  0, and ruy  0 

Therefore, Pu  Mu/ro  (r  d)/2.778  1501.396/ 
2.778  540.387 kips 

The equilibrium of the unbalanced forces in the horizontal 
and vertical directions is checked as follows.  The angle between 
the line along which the load is applied and the horizontal axis is 

 270 270 80 190          

 
540.387 cos190 0

531.178 kips ( ) 0

uh x ux uxF F P r       

   
 NG. 

 
540.387 sin190 0

93.837 kips ( ) 0

uy y uy uyF F P r      

   
 NG. 

In this example, the step-length parameter (si) is set to 5% 
in each iteration.  The iterative algorithm generates the next trial 
location of IC as 

 
1 1

1 1

2.75 0.05( 93.837) 1.942 in.

7.5 0.05( 532.178) 34.109 in.

i i i uv

i i i uh

x x s F x

y y s F y





       

      
 

The step length and direction of descent in this iteration are 
given by -4.692 in. in the negative x direction and 26.609 in. in 
the positive y direction, respectively.  The iteration algorithm ge- 
nerates the next location (x1, y1)  (-1.942 in., 34.109 in.) from 
the current point (x0, y0)  (2.75 in., 7.5 in.).  Repeating the above 
steps, as described above, yields a sequence of locations of IC. 

At the correct IC (xic, yic), the force equilibrium equations 
are satisfied, (ΣFx  0, ΣFy  0 and ΣM  0), and the final Pu 
value is thus determined.  In this example, the correct IC coor- 
dinates, (xic , yic)  (1.3468 in., 15.8477 in.) are obtained after 
25 iterations.  The distance from the IC to the CG, S  3.780 in. 
(with Sx  1.403 in. leftward and Sy  8.3477 in. upward).  
Table 2 presents in detail the calculations that are associated 
with, and the results that are obtained using, the iterative algo- 
rithm that is based on the IC method. 

 
2456.8452 /[(1.3468 2.75)cos100

(15.8477 7.5)sin100 2.778] 218.522 kips

uP   

    
 

The equilibrium of the horizontal forces is confirmed as fol- 
lows. 

 cos 218.522 cos190 215.202 kipsux uP P        () 

 
215.202 215.203

0.001 0 kips

x ux uxF P R      

 
 OK 

The equilibrium of the vertical forces is confirmed as follows. 

 cos 218.522 sin190 37.946 kipsuy uP P        () 

 37.946 37.946 0 kipsy uy uyF P R        OK 

rn  24.3 kips as per the 2010 AISC LRFD, and C  Pu/(rn)  
218.522/24.3  8.99 

3. Straight-Line Interpolation 

Tables 7-6 to 7-13 in the 2010 AISC manual provide the 
values of C for the six specified load inclination angles (  0, 
15, 30, 45, 60, and 75).  For a non-tabulated  value, 
straight-line interpolation between C values for loads at differ-
ent angles may be non-conservative, so the AISC recommends 
direct analysis.  In this case, linear interpolation yields C  9.27 
for   80 where C  7.90 for   75 and C  12 for   90. 
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Table 2.  Results in illustrative example (   80) obtained using the iterative algorithm. 

Bolt No. dx (in.) dy (in.) d (in.)  (in.) r (kip) rux (kip) ruy (kip) R  d (k-in.)

1 -1.347 -0.848 1.591 0.033 12.095 -6.443 -10.236 19.248 

2 4.153 -0.848 4.239 0.088 18.096 -3.619 17.730 76.706 

3 -1.347 -3.848 4.077 0.085 17.853 -16.851 -5.898 72.779 

4 4.153 -3.848 5.662 0.118 19.833 -13.478 14.549 112.285 

5 -1.347 -6.848 6.979 0.145 20.972 -20.578 -4.047 146.359 

6 4.153 -6.848 8.009 0.166 21.645 -18.507 11.225 173.347 

7 -1.347 -9.848 9.939 0.206 22.549 -22.342 -3.055 224.128 

8 4.153 -9.848 10.688 0.222 22.808 -21.015 8.863 243.765 

9 -1.347 -12.848 12.918 0.268 23.370 -23.243 -2.436 301.895 

10 4.153 -12.848 13.502 0.280 23.478 -22.339 7.222 317.003 

11 -1.347 -15.848 15.905 0.330 23.803 -23.718 -2.016 378.588 

12 4.153 -15.848 16.383 0.340 23.851 -23.071 6.046 390.742 

      -215.203 37.946 2456.845 

(1 kip  4.448 kN; 1 in.  2.54 cm) 
 
 

Table 3.  Differences among values of C in illustrative example (   80). 

 
 

Elastic method (A) IC method (B) AISC Manual interpolated (C) Method of Iwankiw (D) Proposed method (E)

Coefficient C 7.27 8.99 9.27 7.63 8.85 

Pu (kips) 176.73 218.52 225.26 185.47 215.08 

Difference (%) 
-19.12 

(A  B)/B 
0.00 

(B  B)/B 
3.05 

(C  B)/B 
-15.12 

(D  B)/B 
-1.58 

(E  B)/B 
 
 
The required strength of the bolt group is Pu  C  (rn)  

9.27  24.3  225.26 kips. 
As expected, this result is an overestimate, relative to that 

obtained by the IC method. 

4. Method of Iwankiw 

Cmax  12 (total number of bolts) and Co  3.55 (AISC’s 
tabulated C value for   0). 

 
12

3.380 1.0
3.55

max

o

C
A  

C
     

The approximate eccentricity coefficient for the inclined 
load (Ca) is given by 

    
3.38

sinθ cosθ sin80 3.38cos80

2.15 1.0

a

o

C A

C A
 

  
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The required strength (Pu) is then calculated as 

 ( ) (2.15 3.55) (24.3) 185.47 kipsu a nP C r       

5. Proposed Method 

For   75, C C75  7.90, as obtained from the AISC table.  
Here, C90  12, so when   80, 

 
75 90

75 90

sin( 75 ) sin(80 75 )
0.5019

sin(90 ) sin(90 80 )

7.9 12
5.9380

7.9 0.5019 12

C C
C

C C






    
  

   

   
  

 

 21 2 cos165 8.85uC C        

Therefore, Pu  Cu rn  8.85  24.3  215.055 kips 

V. DISCUSSION 

Table 3 presents the results that are obtained using the va- 
rious methods for   80.  The values of C for other  values 
can be computed similarly, and are shown in Table 4 and Fig. 6.  
Fig. 7 compares the values of C that are obtained using the 
various methods.  The following observations are made. 

 
(1) For the six specified values of  (0, 15, 30, 45, 60 & 

75), the C coefficients that are calculated using the pro-
posed iterative algorithm equal those that are tabulated in 
the 2010 AISC manual, which are presented in Table 1 and  
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Table 4.  Comparisons of values of C obtained by various methods. 

Angle  
(degree) 

Celastic [1] CIC method [2] Cinterpolated [3] CIwankiw [4] Cproposed [5]

(%) 

[1] [2]

[2]


(%) 

[3] [2]

[2]


 

(%) 

[4] [2]

[2]


(%) 

[5] [2]

[2]



0 2.837 3.554 3.550 3.550 3.550 -20.16 0.00 0.00 0.00 

15 2.787 3.618 3.620 3.405 3.620 -22.96 0.00 -5.88 0.00 

30 2.933 3.921 3.920 3.501 3.920 -25.20 0.00 -10.70 0.00 

45 3.329 4.554 4.550 3.874 4.550 -26.90 0.00 -14.92 0.00 

60 4.166 5.710 5.710 4.695 5.710 -27.04 0.00 -17.79 0.00 

75 6.072 7.902 7.900 6.519 7.900 -23.16 0.00 -17.50 0.00 

76 6.277 8.102 8.173 6.711 8.069 -22.53 0.88 -17.17 -0.41 

77 6.498 8.311 8.447 6.917 8.247 -21.81 1.64 -16.76 -0.76 

78 6.736 8.528 8.720 7.139 8.436 -21.01 2.25 -16.29 -1.08 

79 6.993 8.755 8.993 7.377 8.637 -20.12 2.72 -15.74 -1.35 

80 7.273 8.993 9.267 7.635 8.850 -19.14 3.05 -15.10 -1.58 

81 7.574 9.241 9.540 7.913 9.077 -18.03 3.24 -14.37 -1.77 

82 7.903 9.499 9.813 8.215 9.319 -16.80 3.31 -13.51 -1.89 

83 8.262 9.767 10.087 8.544 9.577 -15.41 3.27 -12.52 -1.94 

84 8.655 10.045 10.360 8.903 9.853 -13.84 3.13 -11.37 -1.91 

85 9.085 10.334 10.633 9.297 10.149 -12.08 2.90 -10.04 -1.79 

86 9.558 10.632 10.907 9.730 10.466 -10.10 2.58 -8.49 -1.57 

87 10.080 10.938 11.180 10.208 10.806 -7.85 2.21 -6.68 -1.21 

88 10.656 11.248 11.453 10.740 11.174 -5.26 1.83 -4.52 -0.66 

89 11.294 11.571 11.727 11.333 11.570 -2.39 1.59 -1.82 -0.01 

90 12.000 12.000 12.000 12.000 12.000 0.00 0.00 0.00 0.00 
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Fig. 6.  Coefficients C computed using various methods. 

 
 

 Fig. 6, verifying the very high accuracy of the proposed 
iterative algorithm. 

(2) As indicated in Table 4 and Fig. 7 in this example, all me- 
thods except the linear interpolation method underestimate 
C, as determined by comparison with those obtained using 
the more exact IC method.  The linear interpolation method 
overestimates the strength by 0-3%.  For   0-75, the  
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Fig. 7.  Comparisons of C values obtained using various methods. 

 
 

 underestimations by the elastic method, the approximate 
method of Iwankiw (1987), and the proposed method are 
27%, 18%, and 0.9%, respectively.  For   75-90, not 
considered in any AISC manual, the maximum degrees of 
conservatism are 23%, 17%, and 1.91%, respectively.  Ap- 
parently, the proposed method yields fairly accurate results. 
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Table 5.  Bolt group geometry in 2010 AISC design tables. 

AISC Tables Column No. Row No. Horizontal eccentricity (in.) Horizontal spacings (in.) Vertical spacings (in.) 

7-6 1 2-12 2-36  3, 6 

7-7 2-36 3.0 3, 6 

7-8 2-36 5.5 3, 6 

7-9 

2 1-12 

2-36 8.0 3, 6 

7-10 2-36 3.0 3, 6 

7-11 
3 1-12 

2-36 6.0 3, 6 

7-12 2-36 3.0 3, 6 

7-13 
4 1-12 

2-36 4.0 3, 6 

(1 in.  2.54 cm) 
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Fig. 8.  Accuracy of the proposed method for other bolt groups in 2010 design manual. 

 
 

(3) For all other bolt patterns in the 2010 AISC manual, shown 
in Table 5, the proposed approach yields results that are 
very close to those obtained using the IC method for   
0-75, shown in Fig. 8.  For    75-90, not covered in any 
AISC manual, the proposed approach yields sufficiently 
accurate results. 

(4) The proposed approach yields results with greater accuracy 
than straight-line interpolation between C values for loads 
at the specified angles; straight-line interpolation may be 
non-conservative and is not recommended by the AISC. 

(5) The derived eccentricity coefficient C' is obtained by a non- 
linear interpolation between C and C15, which are listed 
in the AISC design tables.  C' decreases as the angle of in- 
clination increases in range of each 15 interval for all bolt 

patterns in the 2010 AISC manual.  This finding reflects that 
the assumption, as represented by Eq. (1), is a rational one.  
The proposed method is derived from a simple trigonome- 
tric relationship among the applied load and two compo-
nents of force.  Accordingly, the method can be reasonably 
applied to estimate the strength of an eccentrically loaded in- 
plane connection without any restriction on materials or a 
tedious iterative process. 

VI. CONCLUSIONS 

This work presents a rational procedure for determining the 
instantaneous center of rotation and strength of an eccentric 
group of bolts.  The procedure is simple and reliable.  This work 
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overcomes the limitations in current AISC design manuals.  
The results in this work support the following conclusions. 

 
1. The proposed iterative algorithm constitutes a general pro-

cedure for implementing the tedious IC method to find the 
exact location of an IC.  The iterative procedure yields iden- 
tical eccentricity coefficients C at the six specified load in- 
clination angles  (0, 15, 30, 45, 60, and 75) being 
tabulated in the AISC design manuals, further demonstrating 
the accuracy and reliability of the iterative algorithm. 

2. The proposed method yields fairly accurate results without 
the need for a tedious trial-and-error procedure for all angles 
of inclination (0     90) as shown in Fig. 6.  The ac-
curacy is also applied to all other bolt patterns listed in the 
2010 AISC design manual.  Some examples of the accuracy 
are displayed as shown in Fig. 8. 

3. The proposed method is a rational and reliable tool for ap- 
proximating the eccentricity coefficients C for loads at angles 
between 0 and 90 instead of straight-line interpolation, which 
is not recommended by the AISC.  The proposed model can 
get rid of engaging on a direct analysis or the C values for the 
next lower angle increment in the tables as recommended by 
the 2010 AISC design manual.  The accuracy of the proposed 
method substantially exceeds the requirements of engineering.  
This work overcomes the design limitations (for 0     75 
only) which are evident in current AISC design manuals. 
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