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ABSTRACT 

In this paper, a meshfree numerical scheme, which is based 
on the reproducing kernel particle method (RKPM), is proposed 
to solve the shallow water equations (SWEs).  By applying the 
split coefficient matrix method on SWEs, RK approximation 
with upstream scheme can be employed for spatial discretization.  
Temporal discretization of SWEs is handled by the second- 
order total-variation diminishing Runge-Kutta method.  The 
merits of the present method are verified by performing three 
numerical experiments, which are problems related to open 
channel flow, oblique hydraulic jump and two-dimensional dam 
break.  It is found that the proposed meshfree numerical scheme 
is able to efficiently model the shallow water problems with 
high convergence rate and accuracy.  When non-uniform dis-
cretization is used in conjunction with the proposed method, 
the order of approximation and accuracy can still be maintained. 

I. INTRODUCTION 

Shallow water equations (SWEs) are a set of hyperbolic first- 
order nonlinear partial differential equations.  The SWEs are 
often applied for the simulation of large-scale hydraulic prob- 
lems like river flow, tidal flow, and waves in the coastal region 
or inland area.  For these free surface flows, the effects in the 
gravity direction compared to those in the other two directions 
are very small.  Therefore, instead of solving the three-dimensional 
Navier-Stokes equations, the SWEs, which are obtained by in- 
tegrating the Navier-Stokes equations over the flow depth, are 
suitable for these problems. 

Many numerical methods had been utilized to solve the shallow- 

water problems.  For example, finite difference method (FDM) 
has been applied to perform hydraulic simulations (Fennema 
and Chaudhry, 1990; Xing and Shu, 2005).  Significant deve- 
lopment has been focused on utilizing finite volume method 
(FVM) to simulate complex unsteady flow phenomena (Yoon 
and Kang, 2004; Xing and Shu, 2011).  Finite element method 
is also widely used to solve SWEs (Liang et al., 2008; Young, 
1991).  However, the aforementioned mesh-based methods have 
a common difficulty of constructing a mesh and establishing 
the node-to-node connectivity, especially for problems with com- 
plex geometries.  Moreover, their performance depends signi- 
ficantly on the quality of the mesh. 

In the last few decades, meshfree methods, such as the smooth 
particle hydrodynamics (SPH) methods (Lucy, 1977; Gingold 
and Monaghan, 1977), diffuse element methods (Nayroles et al., 
1992), element-free Galerkin methods (Belytschko et al., 1994) 
and the reproducing particle kernel method (RKPM), (Liu et al., 
1995; Chen et al., 1996), had been developed extensively and 
used in a wide range of engineering applications.  These mesh- 
free methods do not require any mesh-generation and can achieve 
high order of approximation.  In recent years, RKPM method 
has been advanced such that they can obtain solutions more ef- 
ficiently and be applied on more complex problems.  For in- 
stance, Wang and Chen (2014) developed a quasi-convex RK 
approximation scheme which can eliminate most of the nega-
tive regions of the high-order RK shape functions.  This scheme 
is proven to be beneficial for vibration problems.  Yreux and 
Chen (2016) developed a quasi-linear RK approximation scheme 
to correct the approximation error which is present near a boun- 
dary, crack or in regions with non-uniform discretization.  Sun 
et al. (2018) developed a local re-construction of RK shape func- 
tion to eliminate the numerical oscillation when using the high- 
order approximation for shock wave propagation problem. 

Meshfree methods had also been applied to solve hydraulic 
problems governed by SWEs, for instance, SPH method (Ata 
and Soulaïmani, 2005; Vacondio et al., 2013) finite point me- 
thod (Buachart et al., 2014), radial-basis-function (RBF) col-
location method (Chou et al., 2015), natural element method 
(Du, 2000; Darbani et al., 2011), and element-free Galerkin me- 
thods (Du, 2000). 

This paper is organized as follows: Section II introduces the 
basic theoretical formulation of RKPM and governing equations 
for the shallow water problems.  Numerical treatment, includ-
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ing upstream method, full transformation method and Runge- 
Kutta time integration method, are discussed in Section III.  
The performance of the proposed numerical method is demon-
strated through three numerical examples in Section IV.  Lastly, 
conclusions and discussions will be given based on the nume- 
rical results. 

II. BASIC FORMULATIONS 

1. Reproducing Kernel Approximation 

Considering an arbitrary function f(x), its numerical appro- 
ximation f h(x) can be presented as (Chen et al., 1996): 

 ( ) ( ; )h
a I I

I

f f  x x x x   (1) 

where a  is the RK shape function, and I represents the index 

for Ith particle.  Therefore, If
  and xI are the nodal coefficient 

and position of the Ith particle respectively.  The RK shape func- 
tion can be written as: 

 ( ) ( )a I a IC    x x x x  (2) 

where ( )IC x x  and ( )a I x x  are the correction function 

and kernel function, respectively.  Index a refers to the value 
of the support size.  In this paper, the B-spline function (Guan 
and Sun, 2014) is applied for the kernel function.  The correc- 
tion function is a polynomial function, which can be computed as: 

 1( ) ( ) (0)T
I IC   x x B x x M B  (3) 

where 

   

      2 2

( ) 1

               

T
I I I

I I I I

x x y y

x x y y x x y y

   

    

B x x


 (4) 

 ( ) ( ) ( )T
I I a I

I

   M B x x B x x x x  (5) 

Substituting Eq. (3) into Eq. (2) yields the following RK 
shape function: 

 1( ) (0) ( )T
a I a I   B x x M B x x  (6) 

The kernel function controls the continuity and smoothness 
of the RK approximation, and the support size determines the 
influence area of the RK particles.  Therefore, a large support 
size means more neighboring particles would participate in the 
local approximation.  Fig. 1 shows the first order RK shape 
function. 

RK shape function

Discrete particles

 
Fig. 1.  The diagram of RK shape function. 

 

2. Pseudo-Derivative of Reproducing Kernel Approximation 

In this paper, we applied the pseudo-derivative (Krongauz 
and Belytschko, 1997) for the approximation of the derivative 
field.  This method avoids calculating the derivative of every term 
in Eq. (6).  Therefore, it can improve the efficiency during the 
process of building shape functions.  To use pseudo-derivative, 
we assume that the derivative field can be presented as: 

 ( ) x I I
I

f f    x   (7) 

where   is the shape function of the derivative field and can 
be written as: 

 ( ) ( )I I a IC     x x x x  (8) 

The indices  = 1, 2 represent the two dimensions x, y re-
spectively.  The term x is the dimensions where the partial de- 
rivative is taken.  Similar to the RK shape function, the shape 
function of the derivative field is given by: 

 1( ) (0) ( )T
I I a Ix       B x x M B x x  (9) 

Fig. 2 shows the first-order pseudo derivative of the RK shape 
function. 

3. SWEs 

The SWEs can be derived from the Navier-Stokes equations 
by integrating them along the vertical (z) direction with the as- 
sumptions of negligible vertical acceleration and hydrostatic 
pressure distribution.  The SWEs include the mass conservation 
equations: 

 
h uh vh

t x y

   
      

 (10) 

and the momentum conservation equations: 

 
x

y

u u u h
u v g F

t x y x

v v v h
u v g F

t x y y

   
   

   
   

   
   

 (11) 
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d/dx RK shape function

Discrete particles

 
Fig. 2. The diagram of the first-order pseudo derivative of the RK shape 

function. 
 

 
where h, u, and v are the water height, depth-averaged velocity 
in the x- and y-directions respectively.  Under the assumption 
of incompressible fluid, the external forces Fx and Fy can be 
evaluated as: 

 
x x x f

y y y f

F gSo gSf C v

F gSo gSf C u

  

  
 (12) 

in which, g and Cf 
are the gravitational acceleration and the 

Coriolis coefficient, respectively.  So is the seabed slope term, 
and Sf is the seabed friction term, which can be calculated as: 

 2 4 / 3 2 2 2 4 / 3 2 2; x ySf b h u u v Sf b h v u v      (13) 

where b is the Manning’s roughness coefficient.  The SWEs in 
non-conservative form can be expressed as (Li and Fan, 2017): 

 
t x y

  
  

  
U U U

A B F  (14) 

where 

0 0 0
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y
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v u g v F

      
                
             

U A B F  (15) 

By applying Eq. (1) for the water depth and depth-averaged 
velocities, and using the pseudo-derivative shape function for 
the derivative field, the discrete form of SWEs would become: 

 1 2
NP NP

I
I I J J I J J

J Jt


    

  U
F A U B U     (16) 

where subscripts I, J represent the Ith, and Jth particles respec-
tively, and NP is the total number of discrete RK particles that 

participate in the approximation of Ith particle.  The   is the 

pseudo-derivative of the RK shape function, and JU  is the so 

called “nodal coefficient vector” of the unknown field vector 
U at node J.  We need to distinguish these two vectors (U and 

U ) in the formulation because the RK shape functions does 
not possess the Kronecker delta properties.  The nodal coeffi-
cients of the RK approximation would deviate from the true 
values of the unknown field at the same node J when the sup- 
port size increases.  We will discuss how to make transformation 
between the real nodal values and the nodal coefficients in the 
next section. 

III. NUMERICAL ALGORITHM 

1. The RK Approximation with Upstream Scheme 

In this paper, we use the split-coefficient matrix method 
(Fennema Robert and Chaudhry, 1990) to find the characteristics 
of the SWEs.  With such characteristics, we would be able to em- 
ploy the framework of upstream method and can simulate the 
propagation of waves in different directions. 

Under the framework of split-coefficient matrix method, the 
coefficient matrices A and B from Eq. (14) are diagonalized in 
order to find the characteristic lines of the SWEs.  The eigen-

values of matrix A are u, u  c, and u  c, where c gh .  On 

the other hand, v, v  c, v  c are the eigenvalues for matrix B.  
Therefore, matrices A and B can be written as: 

    1 1
; A A A B B B

I I I I I I I I

 
 A P D P B P D P  (17) 

where P is eigenvector matrix and D is a diagonal matrix con- 
taining the eigenvalues.  The sign of the eigenvalues indicates 
the direction of the wave.  Then according the wave direction, the 
eigenvalue matrix D can be further separated into D and D- 
as follows.: 

 
;  ;

; ;   

A A A A A
I I I I I I I I

B B B B B B
I I I I I I I I

   

   

 

 

A P D P A P D P

B P D P B P D P
 (18) 

Substituting Eq. (18) into Eq. (16), the governing equation 
can be expressed as: 

 

1 1

2 2

NP NP
I

I I J J I J J
J J

NP NP

I J J I J J
J J

t
   

   


    



   

 

 

U
F A U A U

B U B U

   

   
 (19) 

where    is pseudo-derivative of the RK shape function in 
the positive (or negative) direction of the wave propagation for 
the -direction.  When we perform the RKPM approximation, 
we should adjust the support size separately for the upstream 
and downstream components.  For wave propagation in the po- 
sitive direction, only the upstream particles would participate 
in the approximation.  Conversely, when wave propagates in the 
negative direction, only the downstream particles would be chosen 
to form the local approximation.  Fig. 3 depicts the 1st deriva- 
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d/dx RK shape function

Discrete particles

streamline

direction
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Fig. 3. First-order derivative of the shape function divided into positive 

and negative components along with the discrete particles. 
 
 

tive of the original shape function in both positive and nega-
tive directions, along with the RK discrete particles. 

2. Full Transformation Method 

In the RK approximation, when the support size increases, the 
shape function tends to be more “smooth”, which is depicted 
in Fig. 4.  This behavior would make the RK shape function 
lose the Kronecker delta property.  Therefore, in Eq. (1), the 
nodal coefficients are not exactly equal to the real physical 
values at the particle location.  In order to resolve this problem, 
the full transformation method is proposed to transform the no- 
dal coefficient into physical value (Chen and Wang, 2000).  The 
formulation is listed below: 

 

1

11 12 1 11

21 22 2 22

1 2

NP

NP

NP NP NPNP NPNP

     
     
     

     
     
     
      

Φ Φ Φ UU

Φ Φ Φ UU

Φ Φ Φ UU

 


   
 

 (20) 

where 

I I J I I J I I J( ; ) ( ; ) ( ; )
T

IJ a a a        Φ x x x x x x x x x  

  (21) 

when all fields are approximated by the same set of RK shape 
functions.  At every time step, in order to construct Eq. (19), we 
need to use Eq. (20) to recover the nodal coefficient vectors. 

3. Time Integration 

While second order RKPM spatial approximation is used in 
this study, second-order total-variation diminishing Runge- 
Kutta method (Gottlieb and Shu, 1996) is applied for the time 
integration.  The time discretization of Eq. (16) can be written as: 

a = 2
a = 3
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Fig. 4.  The first-order RK shape function with different support sizes. 
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U
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U
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 (22) 

in which, superscript n represents the n-th time step, and t is 
the time increment. 

IV. NUMERICAL EXAMPLES 

1. Open-Channel Flow Over a Hump 

The first numerical example is the well-known benchmark 
problem for SWEs.  In this example, the flow will pass through 
humps with two kinds of geometry.  The basement of these two 
kinds of channel are frictionless The total length of the channel is 
25 meters, and a unit width is applied as it is a one-dimensional 
problem. 

The first basement geometry can be described by the follow- 
ing function (Liang et al., 2008): 

 
2 if 12 80.2 0.05( -10)

Z
else0

b

xx   


 (23) 

The boundary conditions are water height (h) of 2 m at the 
downstream boundary, and a constant discharge q = 4.42 m3/s 
at the upstream boundary.  The initial conditions for the upstream 

boundary are specified as    0
2 2.21 0

T T
h u v  .  The mo- 

del of the basement and the steady-state solution of the water 
height are illustrated in Fig. 5. 

In order to evaluate the convergence rate, 126, 251 and 501 
RK particles with uniform discretization are used.  Both first- 
order and second-order RK approximations are applied with a 
support size of a = 5x and the same total number of particles,  
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Fig. 5.  The first type of basement and the steady-state open-channel flow. 
 
 

1st order RK (uniform)
2nd order RK (uniform)

-3 -2.5
log(dx)

lo
g(

Er
ro

r)

-6

-5.5

-5

-4.5

-4

-3.5

-2 -1.5
 

Fig. 6. The convergence test by first- and second-order RK approximation 
with 126, 251, and 501 particles with uniform discretization (for 
open channel flow over a semi-circular hump). 

 
 

where x is the nodal distance used in the uniform discretiza-
tion case.  It should be noted that for all numerical examples 
presented in this paper, the same support size is used.  A sup- 
port size of a = 5x is chosen because the latter numerical 
example with non-uniform discretization requires at least a = 
5x to achieve numerical stability.  To make sure that the re- 
sult would converge to the steady state solution, the total si- 
mulation time is set at 400T  s with time step of t = 0.005.  
The estimation error for all one-dimensional problems is calcu- 
lated by using the root-mean-square method, which is defined as: 

  21 NP
h

I

e f f
NP

   (24) 

where f, f h are exact and approximate solutions respectively.  
The convergence test results (for the solution of water height) 
obtained by using different orders of approximation are shown 
in Fig. 6. 

uniform discretization

non-uniform discretization

7 8 9 10 11 12 13 14

7 8 9 10
X

11 12 13 14

 
Fig. 7. The comparison of uniform and non-uniform discretization with 

126 particles (for open channel flow over a semi-circular hump). 

 

 
In Fig. 6, the rates of convergence by the first- and second- 

order approximations are 1.122 and 1.030 respectively.  In this 
numerical example, the slope of the basement would create a 
discontinuous jump at the start and end points of the hump.  
However, the RK approximation is highly smooth and conti- 
nuous.  The rate of convergence is bounded when the RK appro- 
ximation tries to simulate the discontinuous region, even though 
a high-order RK shape function is applied. 

One of the many advantages of the meshfree method is that 
it can be easily applied with non-uniform discretization while 
the same accuracy is maintained.  Here, we re-examine the open- 
channel flow problem (with the first basement geometry) with 
non-uniform discretization.  The total number of discrete parti- 
cles are 126, 251, and 501 which are the same as the uniform dis- 
cretization case.  The distance between particles has a random 
perturbation .  The perturbation is set as 0.4 x   .  The par- 

ticle arrangement with non-uniform discretization (with 126 par- 
ticles) is presented in Fig. 7. 

Generally, for non-uniform discretization, the RK shape func- 
tions would have different sizes of influence domain for differ- 
ent particles.  However, with the use of the full transformation 
method, a constant support size can be used conveniently while 
the same order of accuracy can be maintained.  In this case, the 
support size is a = 5x for both first- and second-order RK 
approximations.  The errors in the simulated water-height from 
both uniform and non-uniform discretization cases (for differ- 
ent number of particles) are compared and shown in Fig. 8.  It 
can be observed that the error in the simulation for the non- 
uniform discretization case does not monotonically increase 
with the “average” nodal distance.  This is because the nodal dis- 
tance is randomly assigned.  If a large nodal distance is coinci-
dentally used for the discontinuous region, a large error would 
likely be resulted. 

For non-uniform discretization, a higher order approximation 
can yield better accuracy.  In addition, it can achieve similar level  
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Fig. 8. The convergence test result of uniform and non-uniform discretiza- 
tion cases with first- and second-order RK approximations (for open 
channel flow over a semi-circular hump). 
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Fig. 9.  The second type of basement and the steady-state open-channel flow. 
 
 

of accuracy as the uniform discretization case.  Therefore, the pro- 
posed method has the robust ability for using the non-uniform 
discretization. 

For the open channel flow problem, a second geometry, 
which can be described by an exponential function (Chou et al., 
2015), is used to describe the basement: 

  20.16 10Z 0.2 x
b e   (25) 

The model of the channel and the analytical solution with 
the same boundary conditions are shown in Fig. 9. 

The first-order and second-order RK approximations are 
applied with support size a = 5x.  The error in the simulated 
water height is used as the measure for the convergence test.  
The rates of convergence for the first- and second-order ap-
proximation with 26, 51, 126, and 251 particles are compared 
and shown in Fig. 10. 
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Fig. 10. The convergence test by first- and second-order RK approxima- 

tion with 26, 51, 126, and 251 particles with uniform discretization 
(for open channel flow over a hump with exponential shape). 
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Fig. 11. The convergence test of uniform and non-uniform discretization 
by first- and second-order RK approximation (for open channel 
flow over a hump with exponential shape). 

 
 
In Fig. 10, the rates of convergence obtained by using the 

first- and second RK approximations with uniform discretiza-
tion are 1.04 and 1.87 respectively.  Unlike the previous case 
(open-channel flow with a discontinuous semi-circular hump), 
the numerical results obtained by using higher order RK shape 
function can obtain better accuracy and higher rate of conver- 
gence.  For the non-uniform discretization case, the perturba-
tion of the distance between particles is also set as 0.4 x   .  

Convergence test results for the uniform and non-uniform dis- 
cretization cases are compared and shown in Fig. 11.  The simu- 
lations were performed by using first- and second-order RK 
approximations with 26, 51, 126, and 251 particles. 
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Fig. 12.  The model for the oblique hydraulic jump. 

 
 
As shown in Fig. 11, when the geometry of the seabed is con- 

tinuous, the convergence rate for the non-uniform discretization 
model is exactly the same as the rate for the uniform discreti- 
zation model.  In contrast, as shown in Fig. 8, the convergence 
rate for non-uniform discretization model (with discontinuous 
seabed) is highly dependent on the nodal arrangement around 
the discontinuous region. 

2. Oblique Hydraulic Jump 

This example is a well-known two-dimensional hydraulic 
problem.  The open channel is 40 m long and has a width of  
30 m.  During the wave propagation, the flow would hit a con- 
verging wall with a deflection angle  = 8.95.  The flow would 
create a discontinuous shock, which develops from the initial 
point of the converging wall.  The shock would exit the model 
with a shock angle  = 30 (Buachart et al., 2014).  The top and 
bottom parts of the channel are wall boundaries which are 
assumed to be flat and frictionless.  The left and right sides are 
the inlet and outlet boundaries respectively.  In this problem, 
the total number of discrete particles is 4860 with uniform dis- 
tance s = 0.5 at the inlet boundary.  The model of this prob-
lem including the domain discretization are presented in Fig. 12. 

For this flow channel, the initial conditions of the water height 
and velocities in both directions are h = 1 m, u = 8.75 m/s, v = 
0 respectively.  The convergence criterion for achieving the 
steady state is defined by the L2 error norm: 

  21n n
I I

I

e h h   (26) 

When e < 10-5, the simulation is considered to have reached 
steady state.  The simulation of the water jump at steady state 
is shown in Fig. 13.  In Fig. 13, we can observe that the water- 
stack phenomenon which is due to the contraction of the channel. 

In order to test the convergence of the proposed method, we 
apply 1230, and 4860 particles respectively in the numerical 
simulation of the oblique hydraulic jump problem.  The exact and 
numerical solutions, in terms of water-height contour diagrams,  
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Fig. 13. The numerical result of oblique hydraulic jump problem at 10 

second (when steady state is reached). 
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Fig. 14. The comparison of contour lines of water height by 1230 (top 

figure), and 4860 particles (bottom figure) , where the dash line 
is the exact shock front 

 
 

are presented in Fig. 14. 
As shown in Fig. 14, the proposed method can well describe 

the water stack phenomenon.  By increasing the number of par- 
ticles, better accuracy can be achieved.  Therefore, the proposed 
method has robustness and reliability for simulating two dimen- 
sional flow problem. 

3. Two Dimensional Dam-Break Problem 

In this problem, the computational domain is a square tank 
with 200 m for each side.  There is a dam located in the middle  
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Fig. 15.  The model of the dam-break problem with 1546 discrete particles. 
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Fig. 16.  Numerical results of water height and velocity field of dam-break problem at t = 7.2 s. 
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Fig. 17.  The water surface profile at 1.6, 3.5, 5.4, and 7.2 second for the dam-break problem. 

 
 

of the tank, and the size of the dam is 200 m in length and 10 m 
in width.  The four side boundaries of the tank are all walls with 
free slip condition, and the bottom of the tank is frictionless.  
The model of this problem is shown in Fig. 15. 

The left side is the catchment area.  The water height on the 
left side is 10 m.  and the water height in the downstream is 5 
m.  The dam has a non-symmetric breach from y =105 m to 
170 m.  The dam would rapidly break during the initial state, 
which would create a positive shock wave that propagates 
towards downstream and a negative fan wave that propagates 
towards upstream.  In this problem, the second order RK ap-
proximation is applied with support size a = 2.5s, where s  
is the distance between particles.  The total simulation time is 
7.2 seconds to avoid the wave from hitting the left and right 
boundaries. 

Fig. 16 shows the numerical results in terms of water height 
and velocity field by using s = 5 and s = 2.5 at 7.2 second.  
The numerical results are compared to the solutions by (Sun et 
al., 2013; Chou et al., 2015; Li and Fan, 2017).  The water 
surface profiles at different instants are presented in Fig. 17.  
Both upstream and downstream waves can be well described, 
suggesting that the proposed method are stable and reliable for 
two dimensional dam-break problems. 

V. CONCLUSION 

In this study, meshfree reproducing kernel particle method is 
applied in conjunction with the upstream scheme and second- 
order Runge-Kutta time integration scheme to model several 
open channel flow and dam break problems.  Through the nu- 
merical simulations, the proposed model was demonstrated to 
achieve accuracy with high convergence rate.  Moreover, model 
with non-uniform discretization was successfully implemented 
with the proposed meshfree method and found to be very ef- 
ficient even though discontinuity was expected in the solution 
field.  The ease of using non-uniform discretization would hence 
be a key advantage of the proposed method over other nume- 
rical schemes. 
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