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ABSTRACT 

In this paper, techniques for tracking and grasping moving 
objects with an unknown speed on a conveyor using an eye- 
in-hand robot arm are presented, which are useful in a pro-
duction line for automatic object classification.  First of all, the 
CAMshift (Continuously Adaptive Meanshift) algorithm is em- 
ployed to continuously track a moving object in the image plane.  
Then, the minimum area rectangle method is integrated for cor- 
rectly identifying a rectangle enclosing the target object.  Ob- 
ject features for tracking purposes can be extracted from this 
rectangle.  Next, through the application of an image Jacobian 
matrix, the tracking error in the image plane can be transformed 
to be the displacements of the robot’s end effector.  Accord-
ingly, the robot arm can be controlled for tracking this object.  
However, because of sensor noise and the fact that the object is 
moving, tracking errors cannot be eliminated at this stage.  There- 
fore, the Kalman filter is used to estimate the state of the mov- 
ing object, especially the moving speed.  Finally, on the basis 
of the estimated speed, the robot gripper can thus be controlled 
to the point on the conveyor for accurately grasping and plac- 
ing the moving object to a specified location.  Experimental 
results showed the effectiveness of the techniques for grasping 
different target objects with different moving speeds and at any 
orientations. 

I. INTRODUCTION 

The eye-in-hand architecture of a robot arm is adopted pri-

marily to guide the end effector and to ensure that the tool can 
properly engage the intended target.  The advantages of an eye- 
in-hand configuration include higher flexibility, higher accuracy, 
and occlusion avoidance.  Substantial research studies have been 
done recently for tracking static objects via an eye-in-hand con- 
figuration (Fang et al., 2009; Lazar and Burlacu, 2009; Huang 
et al., 2013; Hajiloo et al., 2016; Van et al., 2016).  On the other 
hand, an eye-to-hand configuration has been used in some re- 
search studies for grasping moving objects through binocular 
vision (Allen et al., 1993; Fuentes-Pacheco et al.  2009; Zhang 
and Shen, 2014) or Kinect vision sensors (Husain et al., 2014; 
Suzuki et al., 2015) to acquire the depth information between 
the camera and the object.  The aim of this study was to apply 
an eye-in-hand robot arm in a production line with an unknown 
speed to automatically grasp and place the coming objects into 
groups for classification purposes.  A two-finger gripper mo- 
dule with a camera installed inside is attached to the robot’s end 
effector for the tasks mentioned here. 

Visual servoing plays an important role in robot applications.  
It makes robots more intelligent and flexible.  The goal of this 
task is to calculate the control input to the robot system so that 
the error between the desired signal and the feedback signal, 
which is extracted from a vision sensor, can converge to zero.  
Generally, visual servoing can be classified into three types: 
position-based visual servoing (PBVS), image-based visual ser- 
voing (IBVS), and hybrid visual servoing (Malis et al., 1999; 
Corke and Hutchinson, 2001; Nobakht and Liu, 2015).  Among 
them, IBVS is an important control technique often used for solv- 
ing complex control problems of a six-degrees-of-freedom ro- 
bot arm for object tracking.  With the use of an image Jacobian 
matrix, the image plane tracking errors can be transformed into 
errors in the Cartesian space.  However, IBVS has problems in 
tracking objects with large angles and displacement motions 
(Chaumette, 1998).  In this study, the angle of an object was com- 
pensated first by aligning the robot’s gripper with the object’s 
long edge.  Then, IBVS was initiated to keep tracking the mov- 
ing object using an eye-in-hand configuration so that the object 
could be kept in the field of view. 

For the robot arm to grasp moving objects on a conveyor, 
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encoder information from the conveyor motor is usually used 
to acquire the velocity of the objects (Wang et al., 2015; Lin  
et al., 2016).  Furthermore, an eye-to-hand configuration is often 
adopted to track the trajectories of the object (Husain et al., 
2014; Zhang and Shen, 2014).  In this study, an eye-in-hand 
configuration was used and the space position of the object was 
estimated through the image information.  Moreover, the Kalman 
filter was employed to acquire the velocity of the moving object.  
In image processing for extraction of important image features, 
algorithms such as Speeded-Up Robust Features (SURF) (Wang 
et al., 2015), support vector machines (Zhang and Shen, 2014), 
or optical flow (Allen et al., 1993) are often used.  In this study, 
an object tracking algorithm (i.e., CAMshift) proposed by Bradski 
(1998) was employed, which uses a color histogram as its tar- 
get model.  This algorithm may not be easily influenced by the 
changes in the target shape.  It uses color probability so that it 
can efficiently solve the problem of the target being in motion 
or partly sheltered.  Although CAMshift can rapidly achieve the 
purpose of the target tracking, it only relies on back-projection.  
Therefore, it would fail in some cases, e.g., the object’s color is 
changed by the environment or similar-color objects are de-
tected, which can influence the result.  In addition, it would lose 
the target.  Therefore, Joshi et al. (2004) improved CAMshift 
with the SURF algorithm to make it more robust.  In this study, 
for the sake of robustness, the minimum area rectangle method 
in EmguCV was integrated with CAMshift owing to its simplicity 
and easy implementation. 

The rest of the paper is organized as follows.  In Section II, 
digital image processing methods are introduced.  Then, both 
visual servoing and the Kalman filter are described in Section 
III.  In Section IV, experimental results of grasping moving ob- 
jects on a conveyor are shown.  Finally, the conclusion and future 
work are given in Section V. 

II. IMAGE PROCESSING 

A six-axis robot arm (TX60L) from Staubli, with a gripper mo- 
dule having a camera inside attached to its end effector, was 
used as the eye-in-hand robot manipulator in the study.  For the 
Staubli robot manipulator, only the point-to-point control com- 
mand with blending move is available to the user, and, hence, 
it will be used here to track moving objects on a conveyor.  From 
the captured images, digital image processing techniques are ap- 
plied for detecting the object and extracting the object’s features 
for tracking purposes. 

In this study, two major methods were used in the digital im- 
age processing.  The first one was the CAMshift algorithm, and 
the other was the minimum area rectangle method.  To realize 
the automatic tracking of a moving object on a conveyor, it is im- 
perative to detect whether an object is on the conveyor.  Note 
that background subtraction is a technique in the field of image 
processing for extracting the foreground (the target object).  It 
is a widely used approach for detecting moving objects in videos 
from static cameras.  Therefore, in the beginning of the process 
when the robot arm is at the start point, background subtraction 

is first used to detect whether an object is moving on the con- 
veyor.  If so, the resulting image of the object from the back-
ground subtraction further goes through a binarization process 
and then a gravity method is employed to acquire the center co- 
ordinates of the moving object.  The detected object is then tracked 
continuously using both the CAMshift algorithm and the mini- 
mum area rectangle method when moving on the conveyor. 

1. CAMshift Algorithm 

CAMshift is a well-known object-tracking algorithm.  When 
a target is chosen, the tracking window would keep following it.  
CAMshift uses color information to track the moving target.  It 
is mainly based on back-projection and the mean shift algorithm 
(or called Meanshift).  Meanshift is a method which can find 
the local maximum of the probability function using iteration ap- 
proach for one picture, but CAMshift can work in a sequence of 
images.  CAMshift uses a color histogram as its target model.  
The extracted image contains many numbers of pixels, and each 
pixel has associates with a set of values for the hue, saturation, and 
value (HSV) components.  Through back- projection, CAMshift 
can generate a color probability of this image from the hue his- 
togram distribution.  Then, it would produce a grayscale image, 
which means that the lighter pixels most possibly belong to the 
target model.  In addition, CAMshift uses a rectangular tracking 
window in EmguCV, which is a cross-platform .NET wrapper 
for the OpenCV image processing library, to highlight the tar- 
get object.  Calculation of the window’s location is an iterative 
and converging process.  Each time, the new window is com- 
puted according to the window of the last frame.  The location of 
the new window is determined by the difference between the 
two windows, and it needs to be smaller than the preset thres- 
hold.  Fig. 1 shows a block diagram of the CAMshift algorithm. 

The following are some formulas that show how to calculate 
the center’s coordinates of the tracking window: 

0-order moment: 

 00 ( , )
x y
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where I(x, y) is the value of each pixel in the back-projection.  
Then, the center’s coordinates (xc, yc) are given as 

 10 00 01 00/ , /c cx M M y M M   (1) 

The coordinates of the center point are used to build a rectangle 
as the tracking window, with length L and width W given as 

 002 / 256W M  (2) 
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Fig. 1.  Block diagram of the CAMshift algorithm. 

 
 

 1.2L W  (3) 

As mentioned earlier, background subtraction can detect an 
initial target object on the conveyor.  With the location of the 
target object and a suitable size for the initial search window, 
CAMshift is then applied for tracking the object moving with 
the conveyor. 

2. Minimum Area Rectangle Method 

Once CAMshift is working, a tracking window, which is a 
rectangle, can be acquired.  However, this tracking window can- 
not represent the target itself well, especially when the object 
has a certain inclination.  But we do know where the target is 
(inside the tracking window), and it can keep track of the tar- 
get in the image plane.  The minimum area rectangle method 
which is a method from OpenCV library (opencv.org, 2018) can 
generate another bounding rectangle with a minimum rectangle 
area and any inclination by a set of points.  However, using only 
back-projection, it may have some noises, which is the problem 
with color probability.  Therefore, we combine the tracking win- 
dows from the CAMshift algorithm and the minimum area rec- 
tangle using the intersection operation to generate a new rectangle 
that is more robust and has useful information about the object.  
More specifically, any object point (x, y) inside the minimum  

(a)

(b)  
Fig. 2. Tracking of an object: (a) tracking window from CAMshift; (b) com- 

bined results of CAMshift and the minimum area rectangle method. 

 

 
area rectangle is a true point of the object as long as 

 2 2 2 2( ) ( ) ( ) ( )
2 2c c

L W
x x y y      (4) 

Fig. 2 illustrates results the application of the CAMshift and 
minimum area rectangle algorithms to a target object.  It can be 
seen clearly that, if only the CAMshift algorithm is used, the track- 
ing window is not good enough to represent the object (red rec- 
tangle in Fig. 2(a)).  If only the minimum area rectangle method 
is applied, the rectangle would be easily influenced by noises.  
However, if both methods are combined, the result is better 
(the red rectangle in Fig. 2(b)). 

III. CONTROLLER DESIGN 

1. Visual Servoing 

In this study, image-based visual servoing was employed, 
which is based on the error between the current and the desired 
feature points on the image plane.  The goal of the visual servoing 
process is to minimize the image error e(k), so that the current 
image feature f(k) can reach the desired feature points fd(k): 

 ( ) ( ) ( )de k f k f k   (5) 

In the IBVS structure, there is a feature space control law, 
which uses the image error e(k) as input and generates the cor- 
responding robot control command.  In the following compu- 
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Fig. 3. Perspective projection model (Oc is the origin of the camera frame 

and OI is the origin of the image plane). 

 
 

tation, there is a relationship between the changing rate of the 
feature point in the image plane and the end effector velocity 
in the task space.  First, assume the camera is in a static environ- 
ment.  When the camera moves in the task space with a linear ve- 

locity [ , , ]T
x y zT T T T  and angular velocity [ , , ]T

x y z    , 

the velocity of a point [ , , ]TP x y z  relative to the camera frame 

can be expressed as 

 
dP

P T
dt

    (6) 

Using the classical perspective projection model in Fig. 3, one 
obtains 

 
u x

v yz

   
   

   
 (7) 

where  is the focus distance, (u, v) is the feature point coor-
dinate in the image plane, and (x, y) is the coordinate in space.  
In Eq. (7), the unit of (u, v) is length, but we prefer (u, v) in the 
unit of pixel.  To transform the former to pixel units, we rewrite 
Eq. (7) as 

 
/

/
x

y

x su

y sv z

   
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   
 (8) 

where sx and sy are the transformation coefficients of the x and 
y axis in the image plane, respectively.  sx, sy, and  are asso-
ciated camera parameters, which can be measured by experi-
ments.  To simplify Eq. (8), we define 

 / , /x x y ys s      (9) 

Eq. (8) now becomes 
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The relationship between an image point and the velocity of 
P can be calculated according to Eq. (6) and Eq. (10).  The de- 
rivative of the coordinate of P in terms of image feature coor- 
dinate (u, v) is 
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On the other hand, taking the derivative of Eq. (10) and as- 
suming z is constant (as the case in our application), one obtains 
the derivative of the coordinates of the feature parameters using 
Eq. (11): 
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We can rewrite Eq. (12) in vector-matrix form as 
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  (13) 

In this paper, we need to control the robot manipulator to 
grasp the target object in three-dimensional space; hence, at least 
two feature points are required in the image plane.  Here, the two 
feature points at the middle points in the two long sides of the 
rectangle are chosen.  In addition, we further assume that Tz = 
x = y = 0 for in-plane object tracking.  Consequently, the final 
feature points in the image plane can be obtained as 
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Eq. (14) can be represented as 

 img cf J V  (15) 

where f  is the velocity vector of the feature points, imgJ  is 

the image Jacobian matrix, and Vc is the velocity of the camera.  
In this study, to compensate for the image error e(k) in Eq. (5), 

we set / = ( ) /f f t e k t     and solve for the camera velocity 

in Eq. (15): 

 c imgV J f   (16) 

where 

 1( )T T
img img img imgJ J J J   (17) 

It is noted that the velocity of the camera is equal to the ve- 
locity of the end effector because the tool frame and the camera 
frame are moving together.  Next, the velocity of the end effector 
can be transformed to be the displacement of the end effector du- 
ring a sample period.  Then, on the basis of the forward kine- 
matics of the robot arm, the displacement of the end effector 
can be transformed to be the displacement of the end effector in 
the robot base frame.  Finally, with the use of the inverse kine- 
matics, the robot motion control command can be issued to com- 
pensate for the image error for continuous object tracking.  Fig. 4 
shows a block diagram for the image-based visual servoing 
control. 

2. Kalman Filter 

The abovementioned object tracking algorithm using IBVS 
will not perform well for two reasons: (1) The object is not 
stationary, but is moving with the conveyor at a certain speed.  
When the robot controller gets the motion control command 
and moves the robot arm to the desired location, the object has 
already moved to a new location.  (2) For the Staubli robot mani- 
pulator used in the study, only the point-to-point position con- 
trol is available.  Consequently, the robot manipulator tries to 
follow the moving object, but is always left behind with a con- 
stant stop-and-go maneuvering.  To solve these problems, we 
require that the speed of the moving object be known for pre-
dicting the future object position and that blending move be 

included in the point-to-point robot arm control for a smooth 
and continuous tracking. 

To estimate the moving object’s speed, we adopted the Kalman 
filter here because of its robustness against sensor noise and 
disturbance, e.g., the noises in the captured image and the in- 
accuracies in the camera parameters and in the pseudo-inverse 
of the Jacobian matrix in (17).  This algorithm uses a series of 
measurements observed over time, containing statistical noise 
and other inaccuracies, and produces estimates of unknown va- 
riables that tend to be more precise than those based on a single 
measurement alone.  The Kalman filter is also a recursive esti- 
mator.  This means that only the estimated state from the previous 
time step and the current measurement are needed to compute 
the estimate for the current state.  Unlike in batch estimation 
techniques, no history of observations or estimates is required 
for the Kalman filter.  The state of the process is represented by 
two variables.  One is |ˆk kx , which is the state estimate at time k 

given the observations up to and including time k.  The other is 

|k kP , which is the error covariance matrix.  The Kalman filter 

works in a two-step process: “predict” and “update.” 
 

Predict: The predict process uses the state estimate from the 
previous time step to produce an estimate of the state at the cur- 
rent time step. 

Predicted state estimate: 

 | 1 1| 1
ˆ ˆ

k k k k k k kx F x B u     (18) 

Predicted covariance estimate: 

 | 1 1| 1
T

k k k k k k kP F P F Q     (19) 

where kF  is the state transition model that is applied to the pre- 

vious state 1ˆkx  , kB  is the control-input model that is applied 

to the control vector ku , and kQ  is the covariance of the pro- 

cess noise. 
 

Update: In the update process, the current prediction is com-
bined with the current observation information to refine the state 
estimate.  This improved estimate is termed the updated state 
estimate. 

Measurement residual: 

 | 1
ˆ

k k k k ky z H x    (20) 

Innovation covariance: 

 | 1
T

k k k k k kS H P H R   (21) 

Optimal Kalman gain: 

 1
| 1

T
k k k k kK P H S 

   (22) 
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Fig. 5.  Block diagram of the grasping system. 

 
 
Updated state estimate: 

 | | 1ˆ ˆ
k k k k k kx x K y    (23) 

Updated covariance estimate: 

 | | 1( )k k k k k kP I K H P    (24) 

where zk is the observation at time k, Hk is the observation 
model, Rk is the covariance of the observation noise, and I is 
the identity matrix. 

In this study, the measurement for the Kalman filter was the 
coordinates of the object from IBVS.  After the iterations of the 
Kalman filter, the state of the object converges to a steady state, 
which has information about the object position and velocity.  
By using the information of the estimated velocity, we can pre- 
dict the object motion and, thus, the robot arm can be controlled 
in advance for tracking and grasping the moving object. 

For a smooth and continuous tracking of the moving object, 
blending move will be included also in the point-to-point robot 
arm control.  In this way, non-smooth stop-and-go robot move- 
ment can be avoided.  In addition, because the camera extracts 
the image much faster than the robot movement, only when the 
current movement of the robot arm is more than 50% finished 
will the new robot command control be issued to the robot arm.  
Finally, as long as the robot manipulator is catching up with the 
object speed and they move synchronously, the robot manipu-
lator will start to approach the object toward the conveyor in 
the z direction.  On the basis of the estimated object speed, the  

6-axis robot arm

conveyor
C#GUI

computer

gripper module
with camera inside

 
Fig. 6.  The experimental setup for object tracking and grasping. 

 
 

robot manipulator can reach the point on the conveyor at just 
the right time that the object gets there with its two-finger grip-
per open wide enough to grasp the object.  The grabbed object 
can be placed at a designated location according to the type of 
the object for classification purposes.  After the introductions 
of machine vision-based digital image processing, visual servo- 
ing, Kalman filter, and the grasping procedure, the overall flow- 
chart for object tracking and grasping on a conveyor using an 
eye-in-hand robot manipulator is shown in Fig. 5.  The integrated 
control algorithms based on this flowchart were implemented 
on a laptop computer using the C# programming language. 

IV. EXPERIMENTAL RESULTS 

The experimental setup for the tracking and grasping of mov- 
ing objects on an unknown speed conveyor using an eye-in- 
hand robot manipulator is shown in Fig. 6.  At the robot arm 
end effector, a two-finger gripper module with a camera inside 
is attached for tracking and grasping the moving object.  An 
unknown target object is placed on the left end of the conveyor 
and moves to the right at an unknown conveyor speed.  The 
conveyor is in the x-y plane of the robot base frame with the x 
axis parallel to the conveyor.  Initially, the robot arm is stretched 
to the left end of the conveyor at its center with a height of 390 
mm in the z axis from the camera to the conveyor.  The camera 
will keep monitoring the conveyor for object detection using 
background subtraction.  To avoid the drawback of IBVS when 
the target object is randomly placed with a large angle orien-
tation, the gripper module will rotate first about the z axis to 
align with the long edges of the object before it tracks the tar- 
get.  Then, the following whole tracking process is in the x-y 
plane.  The final grasping and placement of the object have to 
be done within the workspace of the robot arm. 

In the IBVS setting, the image has a size of 320  240 pixels 
and is captured and processed every 110 ms.  The camera para- 
meters x, y in Eq. (10) can be experimentally obtained by 
calibration: first, an object with 56 mm long is placed in front 
of the camera at a distance of 380 mm.  Then the object images 
are captured respectively with the object horizontally and ver- 
tically placed.  Finally, measure the corresponding pixels of the 
object in the image plane in x and y axis respectively, and are 
found to be 50 pixels for both directions.  By Eq. (10), x, y  



 J. Shaw and W.-L. Chi: Automatic Classification of Moving Objects on a Production Line with Robot Manipulator 393 

 

100

0

-100

-200

-300

-400

-500

-600
0 2 4 6

Time (s)

X
 (m

m
)

8 10 12

X1
X2
X3
X4
X5

 
Fig. 7.  Estimation of the x coordinate of an object. 
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Fig. 8.  Estimation of the y coordinate of an object. 

 
 

can be solved to be 339.29 pixels, respectively.  The two desired 
feature points in the image plane fd(k), which are also the de- 
sired locations of the robot’s two fingertips so that the gripper 
can grasp the target, are set near the image center point at co- 
ordinates (145

2

d
 , 131), where d is the width of the enclosing 

rectangle obtained online using both the CAMshift algorithm 
and the minimum area rectangle method.  The convergent con- 
dition of CAMshift algorithm for continuously tracking a mov- 
ing object is met if the distance between previous window and 
new window in each iteration is smaller than 1 pixel or the num- 
ber of iterations reaches 10. 

In the following experiments, four different cases are dis-
cussed.  For the first case, only the IBVS method was applied 
to track a moving object.  In the other three cases, the Kalman 
filter was included for predicting the velocity of the target so 
that tracking and grasping of the object could be successfully 
achieved within the workspace of the robot manipulator. 

Case 1: Tracking Using Only the IBVS Method 

In this case, there were five experiments conducted.  Experi-
ments 1, 2, and 3 had the same object speed, but with different 
y locations to start with.  The purpose was to evaluate the track- 
ing performance of the IBVS method.  In the meantime, experi-
ments 4 and 5 had a slower and faster object speed, respectively, 
compared to experiments 1, 2, and 3.  The x-y coordinates of 
the moving object during the tracking process were calculated 
on the basis of the IBVS result and the location of the robot  
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Fig. 9.  Loci of the feature points in the image plane. 
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Fig. 10.  Time response of the image error. 

 
 

end effector, as shown in Figs. 7 and 8, respectively.  In Fig. 7, 
experiments 1, 2, and 3 indeed had the same object speed in 
the x direction (the same slopes), whereas experiments 4 and 5 
had a slower (smaller slope) and faster (larger slope) object 
speed, respectively.  Likewise, the y coordinate of the moving 
object is illustrated in Fig. 8, where a small oscillation about 
the true y coordinate can be clearly seen for each experiment 
owing to the noises in the image processing and to the com-
putations of the inverse Jacobian matrix and robot kinematics.  
These small oscillations in the y coordinate can be neglected by 
verifying that the IBVS method can indeed track the moving 
object quite well in both the x and the y direction without losing 
the object and divergence. 

However, a drawback of the IBVS method can be easily no- 
ticed by looking at the responses in the image coordinate for one 
of the experiments, say, experiment 1, as an example.  Figs. 9 
and 10 show the responses in the u-v image plane and the time 
response of the image errors, respectively.  In Fig. 9, the loci of 
the two feature points of the object in the image plane during 
the whole tracking process clearly indicate that the robot arm 
kept tracking the object well and did not lose it (without diver-
gence).  Specifically, the final tracking errors were within a small 
bound of 15 pixels in the u direction and nearly zero pixels in 
the v direction.  However, the final tracking error in u was con- 
stant and not converging to zero, meaning the robot arm could 
not catch up with the moving object and was always left behind 
the object.  The same tracking errors in the u and v directions in  
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Fig. 11.  Estimation of the x velocity of an object by the Kalman filter. 
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Fig. 12.  Estimation of the y velocity of an object by the Kalman filter. 

 

 
the time domain of the two feature points are shown in Fig. 10, 
where error convergence to zero in the v direction and a constant 
final error bound in the u direction can again be easily observed.  
Therefore, the robot manipulator could not track and grasp the 
moving object on the conveyor using only the IBVS method. 

For this case, if the Kalman filter was included following 
the IBVS method to estimate the state of the moving object 
against all types of noise inherent in this application, the result-
ing estimated x and y velocities for each experiment are shown 
in Figs. 11 and 12, respectively.  Although there did exist cer- 
tain noises in the measurement or computation, the estimated 
velocity still converged to a constant value in both the x and 
the y direction (indeed, the object was moving on the conveyor 
with a constant speed in the x direction only).  Moreover, the 
estimated velocity was quick to converge and, thus, can be used 
for designing the ensuing tracking and grasping algorithms for 
the moving object when it is still within the robot arm workspace. 

The Kalman filter having the performances in Figs. 11 and 12 
are tuned experimentally.  The following parameters are used 
for this filter: 

The initial state estimate and the error covariance matrix are 
chosen for simplicity as  
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Fig. 13. Estimation of the x velocity of an object using different process 

noise parameter Q by the Kalman filter. 
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Fig. 14. Estimation of the x velocity of an object using different obser-

vation noise parameter Rk by the Kalman filter. 

 
 
In fact, the values used are not important because they would 

converge to real values after a few iterations.  Moreover, be-
cause the object is moving with the conveyor, thus both having 
the same velocity, the control vector uk is therefore identically 
zero.  As for the covariance of the process noise Qk and the 
covariance of the observation noise Rk, different values are tried 
experimentally.  The covariance of the process noise Qk is not 
measurable.  We assume that there is a small noise in the pro- 
cess but it cannot be zero.  Assuming Qk = QI be a diagonal matrix 
with diagonal element Q, Fig. 13 shows convergences of the 
estimated x velocity using different diagonal element Q.  The 
case with Q = 0.0001 has a faster and smoother response as com- 
pared to other Q values.  For the observation noise Rk, different 
values are tested.  Again we assume that there is a small noise 
in the observation but it cannot be zero.  Fig. 14 depicts con-
vergences of the estimated x velocity using different observation 
noise parameter.  The case with Rk = 0.02 has the best result with 
no overshoot and fastest settling time and the least SAE (sum 
of absolute error) from the true velocity value.  Consequently, 

 
0.0001 0

0 0.0001
kQ

 
  
  

, 0.02kR   

are chosen for the designed Kalman filter, which produces quite 
satisfactory performances in estimating the x and y axis velo- 
cities as shown in Figs. 11 and 12, respectively. 



 J. Shaw and W.-L. Chi: Automatic Classification of Moving Objects on a Production Line with Robot Manipulator 395 

 

Table 1.  Experiment results for grasping two different objects. 

Experiment number Conveyor speed (mm/s) Kalman Speed (mm/s) Error of speed Total time (s) 

1 (eraser) 46.92 48.28 2.90% 4.56 
2 (poker box) 46.92 48.12 2.56% 4.54 

 
 

Table 2.  Experiment results with different object speeds. 

Experiment number Conveyor speed (mm/s) Kalman Speed (mm/s) Error of speed Total time (s) 

1 56.30 56.11 0.34% 5.25 
2 46.92 49.1 4.65% 4.67 
3 34.40 36.38 5.76% 4.48 
4 15.64 15.23 2.62% 7.66 

 
 

 
Fig. 15. Different objects to be grasped: blackboard eraser (left) and poker 

box (right). 

 

Case 2: Grasping Different Objects for Classification 

In this case, the robot arm tried to grasp different objects.  
On the basis of the data base of the color histogram model for 
each object, the system can automatically identify the moving 
objects by back-projection and grasp them to corresponding 
locations for classification purposes in a conveyor production 
line.  Two experiments were conducted here: one was a black- 
board eraser and another was a poker box with a green cover, 
as shown in Fig. 15.  A video clip showing the experiment re- 
sults of the tracking and grasping algorithms for the two target 
objects was uploaded to the website given in Shaw and Chi 
(2017) for the reader’s reference.  There were two experiments 
in the video involving the two target objects with different speeds 
and different orientation angles.  A snapshot photo taken from 
the video is illustrated in Fig. 16, verifying the target object had 
been successfully tracked and grabbed to a designated place.  
The estimated speed using the Kalman filter, along with the 
actual conveyor speed from the motor encoder, and the time 
spent by the system to complete the task are given in Table 1.  
It was readily observed that the object moving speed was es- 
timated close enough (error  3%) and quickly enough so that 
the robot gripper could be controlled in time to catch up with 
and grasp the moving target on the conveyor. 

Case 3: Grasping an Object with Different Unknown Speeds 

In this case, the robot arm tried to grasp the target object with 
different moving velocities, from low to high conveyor speed, 
for evaluating both the system robustness in speed variation 
and the response time (Shaw and Chi, 2017).  Four different ve- 

Angle of object detected:
20 degree (CW)

Object speed estimated:
38.24 mm/s

 
Fig. 16.  Snapshot photo during experiment. 

 
 

locities were tested, and the results are summarized in Table 2.  
Note that the Kalman filter estimated all four speeds well, and, 
hence, the robot was successful in tracking and grabbing each 
object within the workspace.  The reason why the spent times of 
experiments 1 and 4 were longer than those of other experi-
ments was that the estimated speed was slower than the actual 
one; hence, the robot arm spent more time to catch up with the 
target. 

Case 4: Grasping an Object with Different Orientation Angles 

In this case, there were five different orientation angles of 
the object that the robot had to work with, indicating that the 
object can be randomly placed on a conveyor.  As mentioned 
earlier, the IBVS method usually does not have a good per-
formance in tracking an object with a large orientation angle.  
Therefore, the robot arm will be controlled to rotate about the z 
axis in the first move to align with the long edges of the object 
before it tracks the target.  This move can make the object an- 
gle small enough for the IBVS method to begin with.  In this 
way, the system can grasp a moving object at any orientation 
angle it is placed no matter how large the angle is.  Table 3 sum- 
marizes the performance of the experiments (Shaw and Chi, 2017).  
It was noted that the objects in experiments 1 and 2 had coun- 
terclockwise angles, whereas the objects in experiments 4 and 
5 had clockwise angles.  The total times for the task completion 
of the counterclockwise objects were shorter than those of the 
clockwise objects.  The reason why the clockwise objects were 
slower to catch up was that the camera was installed side by side 
and in front of the gripper.  After the first gripper rotation move- 
ment, the distance between the object and the gripper module  
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Table 3.  Experiment results with different angles of the object. 
Experiment number Orientation angle Conveyor speed (mm/s) Kalman speed (mm/s) Error of speed Total time (s)

1 -68˚ 46.92 49.23 4.92% 5.02 
2 -28˚ 46.92 49.11 4.67% 4.90 
3 1˚ 46.92 49.10 4.65% 4.67 
4 20˚ 46.92 47.86 2.00% 5.11 
5 58˚ 46.92 46.7 0.47% 5.68 

 
 

of the clockwise objects was longer, hence costing more time 
to track the target.  In addition, the bigger the angle of the ob- 
ject was, the more time was needed to finish the task. 

V. CONCLUSIONS AND FUTURE WORKS 

In this study, we combined the CAMshift algorithm, minimum 
area rectangle method, visual servoing method, and Kalman 
filter for grasping moving objects on a conveyor with an un-
known speed using an eye-in-hand robot manipulator having a 
two-finger gripper module attached to it.  The developed track-
ing and grasping algorithm was applied experimentally to vali- 
date its performance.  According to the obtained results, it was 
readily observed that the robot arm was capable of grasping  
a moving object on the conveyor, no matter at what speed the 
object was moving and how large the orientation angle it was 
placed, to a desired location on the basis of its color histogram 
model.  The robot arm would approach toward the conveyor and 
grasp the target if the estimated velocity by the Kalman filter was 
convergent. 

It is noted that the rectangle bounding the object is computed 
by combining methods of the CAMshift and the minimum area 
rectangle for robustly tracking the moving target.  Hence ob-
jects with much-like rectangular shapes are more likely to be suc- 
cessfully grasped by the designed two-finger gripper.  More study 
and experiments are needed if objects other than rectangular 
shape are used.  In addition, the SURF algorithm (Joshi et al., 
2004; Shaw and Cheng, 2016) and/or shape-related features will 
be included to help identify more general objects, instead of re- 
lying only on the color information, as used in this study.  Fi- 
nally, a gripper with a force sensor installed can be employed 
for the robot arm for grasping an object using the right grabbing 
force without deforming it too much or crushing it (Shaw and 
Dubey, 2016). 
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