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ABSTRACT 

In this paper, a nonlinear beam equation containing an inte- 
gral term of the deformation energy, which is unknown before 
the solution is found, is investigated under different boundary 
conditions.  First, we set the unknown integral term as a scalar 
variable and then develop a weak-form integral equation to solve 
the integral.  By using the sinusoidal functions as test functions 
and bases of the numerical solution, we obtain a fast-convergence 
iterative scheme.  Due to the orthogonality of the sinusoidal func- 
tions, the expansion coefficients of the numerical solution are in 
the closed form.  The proposed iterative algorithms converge 
quickly and provide highly accurate numerical solutions of the 
nonlinear beam equation containing the integral term, as con-
firmed using five numerical examples. 

I. INTRODUCTION 

In engineering design, beams have a role in nonlinear envi-
ronments and when subjected to nonlinear conditions (Ma and 
da Silva, 2004; Dang and Luan, 2010; Dang et al., 2010; Dang 
and Huong, 2013).  Moreover, this problem arises in the study of 
the transverse vibration of a hinged beam (Woinowski-Krieger, 
1960; Feireisl, 1992; Dang and Luan, 2010): 

 ( ) 2
0 0

( ) ( ) ( ) ( ), 0 ,ivy x b y x dx y x p x x        


  (1) 

 (0) ( ) 0,y y   (2) 

 (0) ( ) 0,y y     (3) 

where  and b0 are constants and p(x) is an external load.  The 
boundary conditions (BCs) are the simply supported type.  In 
this paper, we develop a fast-convergence iterative method for 
solving the fourth-order nonlinear ordinary differential equation 
(ODE) for a nonlinear beam, with an integral term employed. 

In previous studies, weak-form integral equations have been 
successfully used with different test functions and trial functions 
for solving ODEs.  Liu et al. (2017) developed the weak-form 
integral equation method (WFIEM) to determine the singular so- 
lution to problems.  The WFIEM and exponentially and polyno- 
mially fitted trial solutions, which are designed to automatically 
satisfy the BCs, can provide an accurate numerical solution of 
the singular beam equation.  Liu et al. (2016) transformed the 
linear ODE of motion into a linear parabolic-type partial differ-
ential equation and then used Green’s second identity to derive 
a boundary integral equation in terms of the adjoint Trefftz test 
functions.  The advantages of this transformation to a weak-form 
integral formulation were observed when Liu et al. tested some 
nonlinear inverse vibration problems with a long time span and 
under high noise.  Moreover, Liu (2016) utilized the WFIEM 
to determine the singular solution.  The WFIEM provided ac- 
curate and stable solutions for highly singular third-order pro- 
blems.  Liu and Li (2017) employed a fast iterative method to 
solve a nonlinear beam equation under nonlinear BCs of mo- 
ments and obtained highly accurate results.  In this paper, we 
extend this idea by using the sinusoidal functions as test func- 
tions and bases for developing a powerful beam solver for a 
nonlinear beam equation containing an integral term of the de- 
formation energy. 

II. TEST FUNCTIONS 

To solve Eqs. (1)-(3), our first step is to define the integral 
term as an unknown variable: 
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 2
0 0

: ( ) .b y x dx  


 (4) 

Then, we derive an iterative sequence to determine k, which 
converges to . 

Thus, we have a new linear-like fourth-order ODE, which is 
given as follows: 

  ( ) ( ) ( ) ( ), 0 .ivy x y x p x x         (5) 

Let 

 ( , ) : sin ,
j x

v x j j


 


 (6) 

be the test functions. 
By multiplying Eq. (5) by v(x, j) and integrating the resul-

tant from x = 0 to , we obtain the following equation: 

 
 ( )

0 0

0

( ) ( , ) ( ) ( , )

( , ) ( ) .

ivy x v x j dx y x v x j dx

v x j p x dx

   



 



 


 (7) 

Integrating by parts the first integral term on the left-hand side 
four times and using Eqs. (2) and (3), we obtain the following: 

 

( )

0

0 0

0

0

0

( )

0

( ) ( , )

( ) ( , ) ( ) ( , )

( ) ( , ) due to (0, ) ( , ) 0

( ) ( , ) due to (0) ( ) 0

( ) ( , ) due to (0, ) ( , ) 0

( ) ( , )

iv

iv

y x v x j dx

y x v x j y x v x j dx

y x v x j dx v j v j

y x v x j dx y y

y x v x j dx v j v j

y x v x j dx

   

    

     

      































due to (0) ( ) 0.y y  

 

  (8) 

Furthermore, we obtain: 

 

0 0

0

( ) ( , ) ( ) ( , ) due to (0, )

( , ) 0

( ) ( , ) due to (0)

( ) 0.

y x v x j dx y x v x j dx v j

v j

y x v x j dx y

y

   

 



 

 



 







 (9) 

Then, we can derive a simple weak-form integral equation 
to solve y(x) in Eqs. (1)-(3). 

Theorem 1. For the nonlinear problem, Eqs. (1)-(3), the so-
lution y(x), , and the given function p(x) satisfy the following 
integral equations: 

 
 

4 2

0

0

( ) ( , )

( , ) ( ) , .

j j
y x v x j dx

v x j p x dx j

  
         
     

 









 



 (10) 

 
Proof: 

From Eq. (6), we obtain the following: 

 
2 4

( )( , ) ( , ), ( , ) ( , ).ivj j
v x j v x j v x j v x j

          
    

 

Substituting Eqs. (8) and (9) into Eq. (7) and using the afore- 
mentioned equation, we derive Eq. (10). 

III. TWO SIMPLE ITERATIVE ALGORITHMS 

For a simply supported beam, the trial functions in Eq. (6) 
automatically satisfy the BCs given in Eqs. (2) and (3). Hence, 
the trial solution of the simply supported beam is as follows: 

 
1

( ) sin .
m

k
k

k x
y x c





  
 (11) 

To determine the expansion coefficients [cj (j = 1, , m)], 
we substitute Eq. (11) into Eq. (10); let j = 1, , m; and use the 
orthogonality of the following equation: 

 
0

sin sin ,
2 jk

j x k x
dx

  
 

 
 (12) 

where  jk is the Kronecker delta symbol.  Consequently, we 
can derive the following equation: 

  
4 2 0

2
( , ) ( ) ,

1, , .

jc v x j p x dx
j j

j m

  


         
     







 



 (13) 

We can also solve Eqs. (1)-(3) by deriving an iterative al-
gorithm to determine , such that the sequence k converges to 
the true value of . 

Two types of iterative algorithms can be developed.  The 
first iterative algorithm is extremely simple and is described as 
follows: 

 
(i) Define m, 1, and an initial estimate of , for example 0 = 0. 
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(ii) For k = 0, 1, , calculate the following: 

  
4 2 0

2
( , ) ( ) ,

1, , ,

jc v x j p x dx
j j

j m

  


         
     







 



 

and 

 
1

( ) cos ,
m

j
j

j j x
y x c

 



    
 

(iii) Substitute the expression for yʹ(x) into Eq. (4) and calcu-
late the following: 

 2
1 0 0

( ) .k b y x dx   


 

If the following convergence criterion, 

 1 1,k k      (14) 

is satisfied, the iteration is stopped.  If the criterion is not satis-
fied, step (ii) of the next iteration is performed. 

 
The iterative process of the second iterative algorithm is de- 

scribed as follows: 
 

(i) Define m, ε2, and an initial estimate of c, for example c0 = 0. 
(ii) For k = 0, 1, , calculate the following: 

 
1

( ) cos ,
m

j
j

j j x
y x c

 



    
 

and 

 2
0 0

( ) .b y x dx  


 

(iii) Substitute the expression for  into Eq. (13) and calculate 
cj as follows: 

  
4 2 0

2
( , ) ( ) ,

1, , .

jc v x j p x dx
j j

j m

  


         
     







 



 

If the following convergence criterion, 

  21
1 2

1

,
m

k k
k k j j

j

c c 




   c c  (15) 

is satisfied, the iterations are stopped.  If the criterion is not sat-
isfied, perform step (ii) of the next iteration. 

 
The two described algorithms are different.  One algorithm 

generates the sequence of k directly, whereas the other gen-
erates the sequence of ck.  When ck is known, we can substitute 
it into Eq. (4) to determine the numerical solution of y(x). 

IV. NUMERICAL EXAMPLES OF SIMPLY 
SUPPORTED BEAM 

1. Example 1 

In this example, we consider the simply supported beam ex- 
ample of Dang (2010): 

 2

0

2
( ) , ( ) 4sin .y x dx p x x





    (16) 

We employ  = 2, the same as that used by Dang (2010).  
The exact solution in x [0, ] is as follows: 

 ( ) sin .y x x   (17) 

The exact value of  is 1. 
For m = 10 and 1 = 10−10, the first iterative algorithm converges 

after 36 iterations, as indicated by the solid line in Fig. 1(a).  By 
comparing the numerical and exact solutions, the maximum nu- 
merical error in y(x) is 9.37  10−12, as indicated by the solid line 
in Fig. 1(b), and the absolute error in  is 3.76  10−11. 

For m = 50 and 2 = 10−10, the second iterative algorithm 
converges after 35 iterations, as indicated by the dashed line in 
Fig. 1(a).  By comparing the numerical and exact solutions, the 
maximum numerical error in y(x) is 1.88  10−11, as indicated 
by the dashed line in Fig. 1(b), and the absolute error in  is 
7.51  10−11. 

2. Example 2 

In this example, we consider the following problem (Dang, 
2010): 

 2 2

0

2
( ) , ( ) .y x dx p x x





    (18) 

Again, we employ  = 2, the same as that used by Dang (2010).  
No closed-form solution to the problem exists. 

For m = 50 and 1 = 10−10, the first iterative algorithm converges 
after 33 iterations, as indicated by the solid line in Fig. 2(a).  The 
numerical solution is represented by the solid line in Fig. 2(b).  
The value of  is 0.94976254, which is similar to the values 
obtained by Dang (2010) and Shin (1998). 

V. NUMERICAL ALGORITHM FOR  
THE TWO-END FIXED BEAM 

Here, we consider a two-end fixed beam subjected to the  
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Fig. 1.  (a) Convergence rates and (b) numerical errors for the simply supported nonlinear hinged beam. 
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Fig. 2.  (a) Convergence rates and (b) numerical solutions for the simply supported and fixed-end beams of examples 2 and 4, respectively. 

 
 

following BCs: 

 (0) ( ) 0,y y    (19) 

 (0) ( ) 0.y y     (20) 

1. Basic Equations of the Two-End Fixed Beam 

Integrating by parts the first integral term on the left-hand 
side of Eq. (7) four times and using Eqs. (19) and (20), we 
obtain the following equation: 

 

( )
00 0

0

0

( ) ( , ) ( ) ( , ) ( ) ( , )

( ) ( , ) due to (0, ) ( , ) 0

( ) ( , ) (0) (0, ) ( ) ( , )

ivy x v x j dx y x v x j y x v x j dx

y x v x j dx v j v j

y v j y v j y x v x j dx

   

    

        

 





 







 

 

 

0

0

( ) ( , ) (0) (0, )

( ) ( , ) due to (0, )

( , ) 0

( ) ( , ) (0) (0, )

( ) ( , ) due to (0, )

( , ) 0.

y v j y v j

y x v x j dx v j

v j

y v j y v j

y x v x j dx v j

v j

     

  

 

     

  

 









 



 



 

  (21) 

Therefore, we can derive a simple weak-form integral equa- 
tion for y(x) and p(x) to solve Eqs. (1), (19), and (20) for the 
fixed-end beam. 

 
Theorem 2. In the problem described by Eqs. (1), (19), and 
(20), y(x), , and p(x) satisfy the following integral equations: 
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 
4 2

0

0

( ) ( , )

( ) ( , ) (0) (0, ) ( , ) ( ) , .

j j
y x v x j dx

y v j y v j v x j p x dx j

  
         
     

      









 

  

 (22) 

 
Proof. 

By substituting v(iv)(x, j) = (j)4v(x, j)/4 into Eq. (21) and 
equating Eq. (9) to Eq. (7), we prove Theorem 2. 

 
In Eq. (22), we can expand the solution of y(x) as follows: 

2
1 2

1

( ) 1 1 sin ,
m

m m k
k

x x k x
y x c x c x c


 



          
   

  
 (23) 

which automatically satisfies the first BC [Eq. (19)].  Here, the 
expansion coefficients are unknown [cj ( j = 1, , m  2)] and 
must be determined.  From Eq. (23), we obtain the following 
equation: 

2

1 2
1

2 3
( ) 1 2 cos .

m

m m k
k

x x k k x
y x c c x c

 
 



         
   

   
 (24) 

From the second BC [Eq. (20)], we obtain the following 
equations: 

 1
1

0,
m

m k
k

k
c c






  
 (25) 

 1 2
1

cos( ) 0.
m

m m k
k

k
c c c k

  


   


 (26) 

To determine the expansion coefficients, we must derive m 
other algebraic equations.  By substituting Eq. (23) into Eq. (22), 
letting j = 1, , m, and using the orthogonality in Eq. (12), we 
can derive the following equation: 

 

 

2
1 20 0

4 2

0

1 ( , ) 1 ( , )
2

1
[ ( ) ( , ) (0) (0, )

( , ) ( ) ].

j m m

x x
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  (27) 

Eqs. (25)-(27) can be arranged into an (m  2)-dimensional linear 
system as follows: 
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This system can be used to determine the expansion coef-
ficients [ck (k = 1,…, m  2)], where 
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The dimensions of A, B, C, and D are m  m, m  2, 2  m, 
and 2  2, respectively.  The components of these matrices are 
as follows: 
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  (30) 

We can exactly solve Eq. (28) by using the Drazin inversion 
formula. 
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Fig. 3.  (a) Convergence rates and (b) displacement and numerical errors for the fixed-end nonlinear hinged beam. 

 
 
From the Drazin inversion formula, we obtain the following: 
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 (32) 

Because em1 = em2 = 0, Eq. (32) can be simplified to 
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The two types of iterative algorithms thus described are si- 
milar to the algorithms described in Section 3. 

2. Example 3 

In this example, we consider the following equation: 

 2( ) 12 12 22.p x x x     (34) 

The exact solution in x  [0, 1] is 

 4 3 2( ) 2 .y x x x x    (35) 

In this example, the values of  and b0 in Eq. (1) are taken 
as 103/105 and 1, respectively.  The exact value of  obtained 
is 2/105. 

For m = 100 and 1 = 10−10, the iterative scheme converges 
after four iterations, as displayed in Fig. 3(a).  The numerical er- 
ror is represented by the dashed line in Fig. 3(b), and its maxi- 
mum value is 4.02  10−8.  The absolute error inf  is 2.07  10−8. 

3. Example 4 

In this example, we consider the following equation: 

 2 2

0

2
( ) , ( ) .y x dx p x x





    (36) 

We employ  = 2, the same as that used by Dang (2010).  
No close-form solution exists.  For m = 50 and 1 = 10−10, the 
first iterative algorithm converges after 10 iterations, as indi-
cated by the dashed line in Fig. 2(a).  The numerical solution is 
represented by a dashed line in Fig. 2(b), and  = 0.222553 is 
determined.  Under the same load, the deflection of the fixed- 
end beam is much smaller than that of the simply supported beam. 

VI. CANTILEVER BEAM AND EXAMPLES 

1. Basic Equations for a Cantilever Beam 

For the cantilever beam, we have the following BCs: 

 (0) (0) 0,y y   (37) 

 ( ) ( ) 0.y y     (38) 

The trial solution for a cantilever beam is as follows: 
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In this equation, the conditions y(0) = 0 and yʺ() = 0 are 
automatically satisfied. 

Through a simple derivation, we can obtain 
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Then, we can derive the following result: 

 
Theorem 3. In the problem described by Eqs. (1), (37), and 
(38), y(x), , and p(x) satisfy the following integral equations: 
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From Eq. (39), we obtain the following: 
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Because the conditions y (0) = 0 and yʺ() = 0 are automa- 
tically satisfied, we only impose two other BCs [yʹ(0) = 0 and 
yʹʺ() = 0]: 
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By the same logic, we obtain the following: 
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where 
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  (47) 

2. Example 5 

In example 5, we consider the following:  

 2( ) 48 24 .p x x x   (48) 

The exact solution in x  [0, 1] is as follows: 

 4 3 2( ) 4 6 .y x x x x    (49) 

Here, the values of  and b0 in Eq. (1) are taken as 1 and 
7/72, respectively.  The exact value of  is determined to be 1. 

For m = 150 and 1 = 10−9, the iterative scheme converges after 
11 iterations, as displayed in Fig. 4(a).  The numerical error is 
represented by a dashed line in Fig. 4(b), and its maximum er- 
ror is 1.49  10−2.  The absolute error in  is 9.98  10−3. 

VII. CONCLUSIONS 

In this paper, we derived simple and effective iterative me- 
thods for numerically solving nonlinear beam problems that in- 
clude an unknown deformation energy term in the governing 
equation.  We introduced different linear systems in the solutions 
by subjecting the simply supported beam, two-end fixed beam, 
and cantilever beam to different BCs.  The closed-form coeffi- 
cients in the numerical solution were obtained by using the 
orthogonal property of test functions and the Drazin inversion 
formula.  These coefficients reduced the computational com-
plexity of the problems and increased the speed of convergence 
of the proposed algorithm.  Five numerical examples were used 
to examine the stability and accuracy of the presented iterative 
algorithms. 
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Fig. 4.  (a) Convergence rates and (b) displacement and numerical error for the cantilever nonlinear beam. 
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