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ABSTRACT 

This paper proposes a filter bank multicarrier (FBMC)-based 
underwater transmission scheme for voice and image signals.  
In this scheme, FBMC transmission technology, low-density 
parity-check (LDPC) channel coding, adaptive binary phase shift 
keying (BPSK) modulation or offset quadrature amplitude mo- 
dulation (OQAM), and a power assignment mechanism are in- 
tegrated into an underwater voice and image transmission system.  
The bit error rates (BERs) of voice and image signals for under- 
water transmission are required to be less than 10-3, and 10-4, 
respectively.  The BER performances of the proposed scheme 
in an underwater acoustic channel were demonstrated through 
simulations, and the power saving ratios for the underwater 
transmissions of voice and image signals were explored.  The 
simulation results show that the proposed underwater transmis-
sion system can achieve a lower transmission-power consump- 
tion or a higher transmission data rates compared to a system 
without the power assignment mechanism.  The results also in- 
dicate that the proposed system can be used for advanced under- 
water signal transmissions. 

I. INTRODUCTION 

Multicarrier (MC) transmission technology has attracted much 
attention in the last few decades because it can be used to trans- 
mit high data rates.  Prashant et al. (2015) demonstrated that MC 
transmission technology plays an important role in underwater 
acoustic (UWA) communications, and explores the suitability, 
Doppler compensation, and diversity schemes of MC transmis- 
sion for UWA communication.  The multipath signal propaga-
tion and time variability of the UWA channel have a significant 
impact on the bit error rate (BER) and data rate performances 
of the transceiver. 

Orthogonal frequency-division multiplexing (OFDM), a type 
of MC transmission technology, has been the primary transmis- 
sion scheme for the fourth generation (4G) mobile communi- 
cation.  Behrouz (2011) demonstrated that OFDM yields large 
side lobes, which result in relatively high intersymbol interference 
(ISI).  Filter bank multicarrier (FBMC) is an advanced modula- 
tion scheme that utilizes modulated filter banks at both the trans- 
mitter and receiver ends to minimize side lobes and interference.  
Although FBMC modulation is more complex than OFDM, it 
has enhanced spectral efficiency of subcarrier signals, and lower 
intercarrier interference (ICI) compared to OFDM.  Kim et al. 
(2016) described a quadrature amplitude modulation (QAM)- 
FBMC wave design, which has a superior spectral efficiency, com- 
pared to cyclic prefix (CP)-OFDM.  FBMC based on offset QAM 
(FBMC-OQAM) has been considered for use in high speed mo- 
bile communications.  The features of FBMC radio access tech- 
nology include low latency, high reliability, and high spectral 
efficiency.  Furthermore, FBMC-OQAM systems have enhanced 
inter-subcarrier orthogonality.  Hamid et al. (2011) demonstrated 
an FBMC uplink multiuser system using excellent frequency lo- 
calized filters to achieve a high efficiency without the need for 
any interference cancellation scheme.  The BER performance 
of FBMC-based multiple access networks is better than that of 
OFDM-based multiple access networks. 

The use of low-density parity-check (LDPC) codes is an ad- 
vanced error correction method employed to achieve reliable 
communication.  An (n, j, k) LDPC is a code of block length n, 
in which each column contains a small fixed number, j, of ele- 
ments equal to 1, and each row contains a small fixed number, k, 
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of elements equal to 1, with the code rate defined as (k-j)/k 
(Gallager, 1962).  Gallager demonstrated the influence of code 
length with target transmission BERs on the computation time and 
complexity constraints.  Brink et al. (2004) studied the perfor- 
mance of irregular LDPC codes with a code rate of 1/2, in a 
multiple-input multiple-output (MIMO) fading channel using 
Gray-mapped quadrature phase-shift keying (QPSK) modula-
tion.  Optimum design methodologies for the joint iterative de- 
coding, channel, modulator, and detector were illustrated.  LDPC 
codes were introduced into communication systems by Franceschini 
et al. (2009) after achieving significant insights into the behavior, 
statistical approach, and graphical representation. 

Hanen et al. (2014) investigated the BER performance of 
FBMC-OQAM and OFDM under nonlinear distortion due to  
a high-power amplifier, which was simulated by additive white 
Gaussian noise (AWGN) and Rayleigh fading channels.  They 
presented closed-form expressions for the BER of an FBMC- 
OQAM transceiver, with the OQAM symbols time staggered by 
half a symbol period, compared to the QAM symbols.  Nissel and 
Markus (2017) reported on the BER performances of CP-OFDM 
and FBMC-OQAM in time-selectivity and frequency-selectivity 
channels.  They found that FBMC modulation has superior spec- 
tral efficiency with a prototype filter, and other advantages over 
CP-OFDM include better time-frequency localization and im- 
proved BER performance at a high signal to noise ratio (SNR).  
Kwon et al. (2016) proposed a new channel estimation technol-
ogy with an iterative interference cancellation algorithm for an 
FBMC-QAM evolved multimedia broadcast multicast system.  
They used two different prototype filters to achieve better time- 
frequency localized properties for even and odd subcarriers.  
The CP scheme was adopted to combat ISI from adjacent OFDM 
symbols in CP-OFDM modulation.  However, the CP-less FBMC 
system was found to have higher transmission data rates.  Ronald 
et al. (2017) studied the application of the FBMC modulation 
scheme for future mobile communications, focusing on per-
formance evaluation.  They reported that FBMC modulation 
communications is characterized by the flexible allocation of 
available time-frequency resources, ultra-high reliability, and low 
latency.  The features of FBMC-OQAM include maximum sym- 
bol density, time and frequency localizations, and independent 
transmission symbols. 

The UWA channel is a time-varying multipath channel with 
ISI and ICI.  Kumar and Mrinal (2016) reviewed various efficient 
modulation schemes, including OFDM, BPSK, differential phase- 
shift keying (DPSK), and 16-QAM, to overcome the challenges 
of UWA communication technology, which include the achieve- 
ment of a high transmission data rate, low BER, and low latency. 

Amini et al. (2015) proposed a design algorithm for the cost 
function optimization of an FBMC prototype filter for commu- 
nications in doubly dispersive UWA channels.  They found that 
FBMC performs better than OFDM in such channels because 
the length of the CP in an OFDM system increases as the du- 
ration of the UWA channel impulse response increases; with a 
long symbol duration, the OFDM UWA system has a signifi-
cant level of ICI, which leads to a significant degradation in the 

BER performance.  On the other hand, the FBMC UWA system 
can combat ISI and ICI in time-frequency doubly dispersive 
UWA channels by using a prototype filter scheme.  Mohammud 
et al. (2016) evaluated the BER performance of the FBMC- 
OQAM communication scheme in UWA channels and showed 
that, FBMC-OQAM can provide high transmission data rates, 
and achieve excellent bandwidth efficiency.  Li et al. (2009) in- 
troduced a regular LDPC code with a code length of 600, code 
rate of 1/2, row weight of 6, and column weight of 3, by using 
log-likelihood ratio belief-propagation decoding algorithm to 
achieve a transmission BER of 10-5 at an SNR of approximately 
2.8 dB through an UWA channel.  Han et al. (2009) explored the 
(864,432) LDPC code of an underwater digital speech commu- 
nication system with a code rate of 1/2, row weight of 6, and 
column weight of 3.  Underwater digital speech was shown to be 
clear when the SNR is greater than 1.5 dB.  Moreover, a direct- 
mapping orthogonal variable spreading factor (OVSF) transport 
architecture and an MIMO-OFDM transport architecture were 
demonstrated for underwater multimedia signals (Lin et al., 
2010; Lin et al., 2013).  Additionally, Lin et al. (2018) studied an 
FBMC-based underwater transmission scheme for voice signals. 

In this paper, we propose an FBMC-based underwater trans- 
mission scheme for voice and image signals.  In this scheme, 
FBMC transmission technology, LDPC channel coding, adap- 
tive BPSK modulation or OQAM, and a power assignment 
mechanism are integrated into an underwater voice and image 
transmission system.  The remainder of this paper is organized 
as follows.  Section 2 describes the system model of adaptive 
FBMC-LDPC BPSK and OQAM for underwater voice and image 
transmission.  In Section 3, we present the simulation results.  
The conclusions of this paper are presented in Section 4. 

II. SYSTEM MODEL 

Fig. 1 schematically shows the proposed FBMC-LDPC un- 
derwater transceiver architecture (UTA) for voice and image 
transmissions.  Packet-by-packet transmission strategies; (2000,  
1000) LDPC code encoder with a code rate of 1/2, a row weight 
of 6, and a column weight of 3; an object-composition petri- 
net (OCPN) model (Woo et al., 1995); adaptive modulation 
through BPSK or 4-OQAM; serial-to-parallel and paralel-to- 
serial schemes; FBMC modulation; and a power assignment 
mechanism are integrated in the UTA.  Table 1 lists the para- 
meters of the proposed UTA scheme.  The PHYDYAS FBMC 
transmission scheme (Bellanger, 2010) is adopted in the proposed 
UTA with a 64-point inverse fast Fourier transform (IFFT) and 
two polyphase networks (PPNs). 

Voice and image signals were input into an (2000, 1000) LDPC 
code encoder, and voice and image LDPC bit streams were ex- 
tracted as outputs.  The outputs were then input to the OCPN 
model, which yield voice and image LDPC packets as outputs 
for the synchronous playback of underwater voice and image.  
The voice and image LDPC packets were input into the adap-
tive BPSK or 4OQAM modulations, which output adaptively 
modulated voice and image LDPC packets.  The adaptively mo- 
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Table 1.  The parameters of the proposed UTA scheme. 

FFT size 64 

FBMC modulation PHYDYAS FBMC scheme (Bellanger, 2010) 

Channel coding (2000, 1000) LDPC code encoder with a code rate of 1/2, a row weight of 6, and a column weight of 3

Adaptive modulation BPSK, 4-OQAM 

Power levels 1/30, 2/30, , 30/30 

BER limits for voice transmission 10-3 

BER limits for image transmission 10-4 

 
 

(a) transmitter

(b) receiver

U
N

D
ER

W
A

TER
 C

H
A

N
N

EL

O
C

PN
 m

od
el

voice 
packets

BPSK/
4OQAM

image
packets

voice 
signal

image
signal

LDPC

LDPC

user 1

S/P

64IFFT

PPN

P/S

power
weight

A1,k,b
x1,k,b (t)

µ1x1,k,b (t)

O
C

PN
 m

od
el

voice 
packets

BPSK/
4OQAM

image
packets

voice 
signal

image
signal

LDPC

LDPC

user N

S/P

64 IFFT

PPN

P/S

power
weight

AN,k,b

xN,k,b (t)

µNxN,k,b (t)

U
N

D
ER

W
A

TE
R

 C
H

A
N

N
EL

SNRz1,k,b
y1,k,b (t) z1,k,b (t)

BPSK/
4OQAM
demod
ulation

voice 
signal

image
signal

nth user

S/P

64 FFT

PPN

P/S LDPC

 
Fig. 1.  Proposed FBMC-LDPC based UTA for voice and image transmission. 

 
 

dulated voice and image LDPC packets were input into the serial- 
to-parallel mechanism, 64-point IFFT, two PPNs, and parallel- 
to-serial mechanism, and adaptively modulated voice and image 
FBMC-LDPC packets were extracted as final outputs.  In the 
proposed UTA scheme, the maximum acceptable transmission 
BER values for voice, and image packets are assumed to be 10-3, 
and 10-4, respectively. 

We assume that there are L users, M FBMC symbols in an 
FBMC-LDPC transmission packet, and N sub-carriers in an 
FBMC symbol for the UTA scheme.  The baseband adaptive 
FBMC transmitted signal is expressed as follows: 

 
1

, , , , ,
1 0

( ) ( )
MN N

l k b l k b k b
b k

x t A t


 
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where , ,l k bA  is a BPSK or 4-OQAM symbol with a symbol pe- 

riod T for the lth user, transmitted on the kth subcarrier at the 
instant bT.  Let , ( )k b t  be the time-frequency term of ptf(t) for 

BPSK modulation, where ptf(t) is the prototype filter impulse 
response, , ( )k b t  can be expressed as follows: 

 
2

, ( ) ( )
j kt

T
k b t ptf t bT e



    (2) 

Let )(, tbk  be the time-frequency term of ptf(t) for 4-OQAM, 

which can be expressed as follows: 

 ,

2

, ( ) ( / 2) k b
j kt jT

k b t ptf t bT e e


    (3) 

where ,k b  is the phase term, which is ( )
2

k b kb
   . 

Thus, the adaptively modulated FBMC signal using the power 
assignment mechanism can be expressed as follows: 

 
1

, , , , ,
1 0

( ) ( )
MN N

l k b l l k b k b
b k

x t A t 


 

   (4) 

where l is the transmission power weighting of the lth user.  
The received signal is expressed as follows: 

 , , , ,( ) ( )* ( ) ( )l k b l k by t x t h t w t   (5) 

where h(t) is the underwater multipath tap-delay line channel 
impulse response, w(t) is the additive white Gaussian noise, 
and ‘*’ is the convolution operation.  The signal received through 
the PPNs is expressed as follows: 

 *
, , , , , ,( ) ( )* ( )l k b l k b l k bz t y t t  (6) 

The SNR of the l-th user, 
, ,l k bZSNR , is detected using the double 

window detection algorithm (Terry and Heiskala, 2002).  The 
proposed power assignment mechanism for the FBMC-LDPC 
UTA scheme is summarized as follows: 

 
Step 1: According to the output information obtained from the 

OCPN model, calculate the packet rates for voice, and 
image underwater transmission. 

Step 2: Select the appropriate modulation mode that satisfies 
the requirements for voice and image transmission 
over a UWA channel. 

Step 3: Assign the initial value of l as 15/30 for voice, and 
image packets. 

Step 4: Measure the received 
, ,l k bZSNR  for voice, and image 

packets. 
Step 5: If the measured 
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Fig. 2. BER performance of the FBMC-LDPC UTA scheme with a PCE 

and CEEs of 5% and 10%. 
 
 

 the threshold SNR at which the required BER for voice 
or image packets is achieved, then update 

 l  as l l    . 

 If 
1

30l  , go to Step 4; otherwise, go to Step 7. 

Step 6: If the measured 
, ,l k bZSNR  of the received signal is less 

than the threshold SNR at which the required BER for 
voice, or image packets is achieved, then update l as 

l l    .  If 1l  , go to Step 4; otherwise, go to 

Step 8. 
Step 7: Downgrade the modulation mode.  If the modulation 

mode is not 4-OQAM, go to Step 4. 
Step 8: Upgrade the modulation mode.  If the modulation mode 

is not BPSK, go to Step 4. 

III. SIMULATION RESULTS 

We adopted an underwater channel model (Zhang et al., 2008) 
with a transmission distance of 1 km, carrier central frequency 
of 11.5 kHz, and underwater channel bandwidth of 3.9 kHz.  
Fig. 2 shows the BER performance of the FBMC-LDPC UTA 
scheme with perfect channel estimation (PCE) and channel es- 
timation errors (CEEs) of 5% and 10%.  The symbols ‘o’, ‘’, 
‘*’, ‘’, ‘’, and ‘x’, in Figs. 2-8, respectively, denote BPSK 
modulation with PCE, BPSK modulation with a CEE of 5%, 
BPSK modulation with a CEE of 10%, 4-OQAM with PCE, 
4-OQAM with a CEE of 5%, and 4-OQAM with a CEE of 10%.  
The BER performances of BPSK modulation are better than that 
of 4-OQAM.  Furthermore, the BER performances degraded as 
the CEE increased.  The power-saving ratio of the FBMC- 
LDPC UTA scheme is defined as follows: 

 (1 ) 100%lPS     (7) 
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Fig. 3. Transmission power weighting of the FBMC-LDPC UTA scheme 

with a BER of 10-3, for PCE and CEEs of 5% and 10%. 
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Fig. 4. Power saving ratios of the FBMC-LDPC UTA scheme with a BER 

of 10-3, for PCE and CEEs of 5% and 10%. 
 
 
Figs. 3 and 4, show the transmission power weighting and 

power saving ratios of the FBMC-LDPC UTA scheme with a BER 
of 10-3, for PCE and the aforementioned CEEs.  Figs. 5 and 6, 
show the transmission power weighting and power saving ra- 
tios of the FBMC-LDPC UTA scheme with a BER of 10-4, for 
PCE and the aforementioned CEEs.  The transmission power 
weighting of OQAM is greater than that of BPSK under BERs 
of 10-3 and 10-4, and the power saving ratio of OQAM is less than 
that of BPSK under BERs of 10-3 and 10-4.  As the AWGN in- 
creases, the transmission power weighting increases and power 
saving ratio decreases.  As the CEE increases, the transmission 
power weighting increases and power saving ratio decreases.  
The MSE of the original and received voice signals is expressed 
as follows: 

  
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Fig. 5. Transmission power weighting of the FBMC-LDPC UTA scheme 

with a BER of 10-4, for PCE and CEEs of 5% and 10%. 
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Fig. 6. Power saving ratios of the FBMC-LDPC UTA scheme with a 

BER of 10-4, for PCE and CEEs of 5% and 10%. 

 
 

signal, and N is the length of the original voice signal. 
Fig. 7 shows the mean square error (MSE) of the original 

and received voice signals with PCE and the aforementioned 
CEEs.  The image MSE (IMSE) of an m  n image signal is de- 
fined as follows: 

  
1 1

2

0 0

1
( , ) ( , )

m n

i j

IMSE I i j K i j
mn

 

 

   (9) 

where I(i, j) is the matrix containing the pixel values of the ori- 
ginal image signal, and K(i, j) is matrix containing the pixel 
values of the received image signal.  The peak SNR (PSNR) (in  
dB) is defined as follows: 

 
2

10

( ( , ))
10 log ( )

Max I i j
PSNR

IMSE
  (10) 
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Fig. 7. MSE of original and received voice signals with PCE and CEEs of 

5% and 10%. 
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Fig. 8. PSNRs of original and received image signals with PCE and CEEs 

of 5% and 10%. 

 
 
Fig. 8 shows the PSNR of the original and received image 

signals with PCE and the aforementioned CEEs.  Figs. 9-11 
show the voice signal received using OQAM for BERs of 10-1, 
10-2, and 10-3, respectively, with the corresponding MSEs of the 
original and received voice signals being 1608400, 18795, and 
0.00002984, respectively.  The CEE in the proposed FBMC- 
LDPC UTA scheme is 5%.  With a BER of 10-3, the MSE of the 
original and received voice signals is approximately 10-5, the re- 
ceived voice signals are clearly audible and can be used in UWA 
voice transmission.  Figs. 12-15 show the voice signal received 
using OQAM for BERs of 10-1, 10-2, 10-3, and 10-4, respectively, 
with the corresponding PSNRs of the received image signals 
being 36.86 dB, 43.24 dB, 54.77 dB, and 64.68 dB, respectively.  
The CEE in the proposed FBMC-LDPC UTA scheme is 1%.  
For a BER value of 10-4, the PSNR of the received underwater 
image signals is approximately 60 dB; the received image sig- 
nals are clearly visible, and can be used in UWA image trans- 
mission. 
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Fig. 9. Voice signal received using 4-OQAM with a CEE of 5%, BER of 

10-1, and MSE of 1608400. 
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Fig. 10. Voice signal received using 4-OQAM with a CEE of 5%, BER of 

10-2, and MSE of 18795. 
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Fig. 11. Voice signal received using 4-OQAM with a CEE of 5%, BER of 
10-3, and MSE of 0.00002984. 

IV. CONCLUSION 

In this paper, an FBMC/LDPC UTA scheme using adaptive  
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Fig. 12. Image signal received using 4-OQAM with a CEE of 1%, BER 

of 10-1, and PSNR of 36.86 dB. 

 

 

 
Fig. 13. Image signal received using 4-OQAM with a CEE of 1%, BER 

of 10-2, and PSNR of 43.24 dB. 
 

 

 
Fig. 14. Image signal received using 4-OQAM with a CEE of 1%, BER 

of 10-3, and PSNR of 54.77 dB. 

 

 
BPSK modulation or 4-OQAM, in addition to a power assign- 
ment mechanism, was demonstrated to achieve a high quality 
of service for voice and image signal transmission.  The BER 
performance, transmission power weighting, and power sav-
ing ratios for the proposed FBMC/LDPC UTA scheme were 
explored.  Furthermore, the MSE values of the original and re- 
ceived voice signals, and the PSNR values of the received image 
signals were studied.  Simulation results show that the proposed 
FBMC/LDPC UTA scheme is excellent for the transmission of 
underwater voice and image signals. 

 
Fig. 15. Image signal received using 4-OQAM with a CEE of 1%, BER 

of 10-4, and PSNR of 64.68 dB. 
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