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ABSTRACT 

When ships are flooded or equipped with a heavy object, the 
floating structures are excessively inclined, and the immersion, 
heel, and trim affecting the hydrostatic restoration performance 
are very large.  In those cases, the assumption that the position 
and orientation are independent of each other is not valid.  There- 
fore, nonlinear governing equations were formulated by sequen-
tial linearization to calculate the static equilibrium position of 
floating structures with excessive inclination.  The equations are 
represented using a plane area, a primary moment, and a mo- 
ment of inertia of the water plane area, and the immersion, heel, 
and trim are fully coupled.  The position and orientation of the 
floating structure are obtained by iterative calculation.  This 
paper describes the derivation procedure of the equations and 
proves the accuracy and efficiency of the equations by com-
paring with a commercial S/W, which uses a numerical method 
for determining hydrostatic restoring coefficients. 

I. INTRODUCTION 

Most problems related with the wave-induced motions or sea 
loads are solved assuming that the initial position of the float- 
ing structures is on an even keel.  When the floating structures are 
flooded or the floating crane is lifting a heavy cargo as shown 
in Figs. 1(a) and (b), the assumption of the even keel condition 
is not valid anymore because the flooded floating structure or 
floating crane lifting a heavy cargo will be inclined at a large 
angle owing to the flooding or the weight of the cargo.  This large 
angle of inclination results in motions that are quite different 
from those of the floating structure on an even keel.  It is for this 
reason that we need to determine the initial position and orientation  

(a) A flooded ship (b) A floating crane lifting 
a heavy cargo  

Fig. 1.  Examples of large inclined floating structures. 
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Fig. 2. Flow diagram of the dynamic response analysis of a floating struc- 

ture (Cha et al., 2010a, 2010b). 

 
 

of the floating cranes with large angles of inclination. 
Fig. 2 shows the flow diagram of the dynamic analysis pro- 

gram developed by the authors of this paper (Cha et al., 2010a, 
2010b).  The position and orientation, such as the immersion, 
heel, and trim, of the floating offshore structures in static equili- 
brium should be determined in advance before dynamic analysis 
is conducted.  In the first phase of dynamic analysis, therefore,  
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Fig. 3. An example of coupled heel and immersion of a floating structure 

in the case of a large inclination of the heel. 

 
 

the initial position and orientation are determined by static ana- 
lysis.  Then, dynamic analysis of the floating offshore structures 
is performed by solving the equations of motion at every time 
step in the second phase.  In this study, the focus is on the first 
phase of the static analysis. 

When the immersion, heel, and trim are large, they are cou- 
pled to each other.  For example, when the floating structure 
heels with a large angle and the deck are immersed, as shown 
in Fig. 3, the floating structure does not only heel, but also 
changes the draft, because the immersed volume and emerged 
volume are different.  Therefore, we cannot assume that the im- 
mersion, heel, and trim are uncoupled, and we focus on this non- 
linear hydrostatic analysis of the floating structure considering 
the large angle of inclination. 

II. RELATED WORK 

Singh and Sen (2007) considered the wave amplitude for cal- 
culating the hydrostatic force.  However, they did not conduct 
hydrostatic analysis, as the initial position of the ship was as- 
sumed as an even keel state.  Moreover, they did not consider 
the large angle of inclination. 

Kim and Kim (2009) also considered the wave amplitude for 
calculating the hydrostatic force and large angle of inclination.  
However, they did not conduct hydrostatic analysis as the ini- 
tial position of the ship was assumed to be in an even keel state. 

Lee and Roh (2009), and EzCOMPART (2010), which is a 
commercial program for naval architectural calculation, can 
determine the static equilibrium state of the floating structure.  
This program calculates the static equilibrium state considering 
the hydrostatic forces.  However, hydrostatic analysis is carried 
out using a purely numerical method that is slower than the 
analytic method. 

Bronsart (2008) considered hydrostatic analysis.  He derived 
the equations for calculating the changes in the hydrostatic forces 
caused by immersion, heel, and trim using an analytic method 
and used them to calculate the static equilibrium state, which was 
faster than carrying out hydrostatic analysis using a purely nu- 
merical method.  However, he derived the changes in the hydro-

static forces when the ship was in an upright position and assumed 
that the heel and trim angles were small. 

Lee (2015) considered the attitude of the floating structure.  
He applied the orifice flow model.  However, he did not focus 
on the final attitude of the floating structure and computing time, 
but focused on the whole flooding procedure. 

Bogner (2013) also considered the attitude of the floating 
structure.  He used the lattice Boltzmann method to solve the pro- 
blem.  However, he focused on the dynamic motion of the floating 
structure rather than on the static equilibrium state and computing 
time. 

Lee and Han (2002b) presented the optimal layout design 
method for the compartment.  They applied the “Efficient Global- 
Local Hybrid Optimization Method (Lee and Cho, 2002a)” to 
find the optimal solution.  Furthermore, they considered hydro- 
static analysis, using a numerical method, and it is slower than 
the analytic method. 

In this study, we consider hydrostatic analysis.  The equations 
for calculating the changes in the hydrostatic forces caused by 
immersion, heel, and trim are derived using an analytic method, 
and it is used to calculate the static equilibrium state.  In ad-
dition, the changes in the hydrostatic forces are derived when 
the ship is inclined with a large angle. 

III. GOVERNING EQUATION 

1. Derivation of Governing Equation 

The governing equation for calculating the static equilibrium 
state can be derived from the equations of motion for one rigid 
body (Eqs. (1) and (2)). 
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where m is the mass of the body, n
bR  is the rotational transform 

matrix from the vector decomposed with the unit vectors of the 
b-frame to the vector decomposed with the unit vectors of the 

n-frame, /
b

b nω  is the angular velocity vector of the b-frame, 

which is the body fixed frame, with respect to the n-frame, which 

is the inertial reference frame, /
b

G Or  is the position vector of 

center of mass G with respect to point O, which is the origin of 

the body fixed frame, b
OI  is the inertia of mass of the body 

about the point O, n
OF  is a force vector exerted on point O, 

and b
Oτ  is the moment exerted on point O.  The force and mo- 

ment are divided into gravitational, hydrostatic, and hydrody- 
namic forces as follows. 
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 n
O Gravity Hydrostatic Hydodynamic  F F F F  (3) 

 b
O Gravity Hydrostatic Hydodynamic  τ τ τ τ  (4) 

As the velocity, acceleration, and hydrodynamic force are zero 
at static equilibrium, Eqs. (5) and (6) can be obtained from Eqs. 
(1)-(4). 

 Gravity Hydrostatic 0 F F  (5) 

 Gravity Hydrostatic 0 τ τ  (6) 

The gravitational and hydrostatic forces are vertical, and the 
horizontal force and moment about the z-axis are zero.  There- 
fore, we can obtain Eq. (7) from Eqs. (5) and (6) by decomposing 
the force and moment vectors. 
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, (7) 

where T is the horizontal displacement of the body,   is the 
heel angle,  is the trim angle, Fz is the resultant force along 
the z-axis, and T and L are the resultant moments about the 
x-axis and y-axis, respectively.  The solutions of Eq. (13), T*, 
* , and *, are the immersion, heel, and trim of the floating 
structures in the equilibrium state, respectively. 

2. Linearization of the Governing Equation 

As we discussed in the introduction, hydrostatic forces are 
nonlinear coupled functions of the immersion, heel, and trim of 
the floating body, and it is difficult to obtain an analytic solution 
for Eq. (7). 

To find the solution for Eq. (7), the Taylor series expansion 
can be applied.  The Taylor series is a representation of a non- 
linear function that infinitely sums the terms calculated from 
the values of the function’s derivatives at the instantaneous state.  
In an infinite sum series of the Taylor series expansion, only 
the first order is considered, and the series after the first series 
are neglected as it is assumed that the displacement is small.  
Therefore, after the linearization, the series simplifies to 
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A  (8) 

where the elements of the matrix  , ,T  A  are 
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A  (9) 

The matrix ( , , )T  A  is called the hydrostatic restoring co- 

efficients matrix.  The elements of this matrix mean change in 
force and moment with respect to the change in the correspond- 
ing variables, and the equations for calculating the elements can 
be derived through partial derivation, which will be explored in 
chapter 4.  Those equations are the functions of the immersion, 
heel, and trim of the floating body. 

Because Eq. (8) is a linearized equation with an assumption 
of a small displacement, the equation can result in an inaccurate 
solution.  Therefore, iterations are needed to obtain an accurate 
solution. 

3. Iterative Calculation 

The sequence of iterative calculations using Eq. (8) is as fol- 
lows. 
(1) The initial immersion T(k), heel  (k), and trim  (k) are given 

when k = 0. 
(2) As we are given T (k),  (k), and  (k), calculate Fz(T

(k),  (k), 

(k)),      ( , , )k k k
T T   , and      ( , , )k k k

L T   .  To check 

whether these values allow a steady condition of the float- 
ing body, check if Eq. (7) is satisfied. 

(3) When Eq. (7) is satisfied, T*, *, and * are set as T (k), 
 (k), and  (k), respectively, and the iteration is completed.  
If Eq. (7) is not satisfied go to next step. 

(4) Determine the hydrostatic restoring coefficients matrix 
( ) ( ) ( )( , , )k k kT  A  using Eq. (9). 

(5) Determine  kT ,  k , and  k  using Eq. (8). 

(6)  1kT  ,  1k  , and  1k   are replaced with    k kT T , 
   k k  , and    k k   respectively.  We set k  = 1k  , 

and go back to step (2). 

IV. DERIVATION OF HYDROSTATIC 
RESTORING COEFFICIENTS MATRIX  

FOR THE FLOATING STRUCTURE  
IN THE EVEN KEEL STATE 

For ease of understanding, the hydrostatic restoring coeffi-
cients matrix will be derived when the floating structure is in 
an even keel state.  The elements of the restoring coefficient 
matrix ( , , )T  A  are the change in Fz, T, and L with respect 

to changes in corresponding variables T,  , and  , and are 
derived using partial derivatives.  In this chapter, the steps for 
deriving each element in the matrix will be explored. 
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1. Change in Displaced Volume with Respect to Immersion, 
Heel, and Trim 

It is known that the hydrostatic force, especially the buoyant 
force, acting on a body is proportional to the weight of the fluid 
displaced by the body, which is Archimedes’ principle, and the 
weight is proportional to the volume in general.  Therefore, the 
change in displaced volume with respect to the immersion, heel, 
and trim will be discussed. 

To derive the change in volume V with respect to immersion, 
an infinitesimal volume dV is taken in the changing volume and 
is integrated along the x and y direction as seen in Fig. 4 and 
Eq. (10). 

 V dV    (10) 

If the floating structure rises by an amount z, then the sub- 
merged volume will decrease; thus, the infinitesimal volume 
dV can be expressed with a negative sign as  dV z dy dx  .  

Therefore, the change in volume V is 

 

  

  
fore port

aft star

x y

x y

V z dy dx

z dy dx

 



 

 



 
 (11) 

To derive the change in volume V  with respect to the heel, 
an infinitesimal volume dV is integrated along the x and y di- 

rection as seen in Fig. 5 and Eq. (12). 
Similar to the case of immersion, an infinitesimal volume dV 

can be expressed with the negative sign as tan   dV y dy dx   .  

Therefore, the change in volume V is 

 

tan   

tan   
fore port

aft star

x y

x y

V y dy dx

y dy dx

 



  

  



 
 (12) 

To derive the change in volume V with respect to the trim, 
an infinitesimal volume dV is integrated along the x and y 
direction as seen in Fig. 6 and Eq. (13). 

The infinitesimal volume dV can be expressed as dV   
tan   x dx dy .  Therefore, the change in volume V is 

 

tan   

tan   
port fore

star aft

y x

y x

V x dx dy

x dx dy

 



 

 



 
 (13) 

2. Partial Derivatives of Restoring Force and Moment 
with Respect to Immersion, Heel, and Trim 

The elements of the restoring coefficient matrix ( , , )T  A  

are derived through partial derivatives of Fz, T, and L with re- 
spect to T, , and . 

 
(1) Change in buoyant force with respect to immersion, heel, 

and trim 
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Fig. 6.  Infinitesimal volume for floating structures in the trim. 

 
 
In the previous section, we derived the change in volume in 

terms of immersion, as seen in Eq. (11).  Using the equation, 
therefore, the change in buoyant force can be equated in the fol- 
lowing way. 

 
  

  

B B

WP

F dF g dV g z dx dy

g z dx dy g z A
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where AWP is the waterplane area. 
Dividing both sides of Eq. (14) with z, we can obtain the 

partial derivative of a buoyant force with respect to the im-
mersion, which is the element (1, 1) of the restoring coefficient 
matrix. 

 B
WP

F
g A

z



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
 (15) 

Similarly, we derived the change in volume in terms of the heel 
and trim, as seen in Eqs. (12) and (13).  Using the equation, there- 
fore, the change in buoyant force can be equated in the follow- 
ing way. 
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where TWP is the transverse moment of the waterplane area, 
and LWP is the longitudinal moment of waterplane area. 

Dividing both sides of Eqs. (16) and (17) with  and , res- 
pectively, we can obtain the partial derivatives of the buoyant 

force with respect to the heel and trim, which are elements (1, 2) 
and (1,3) of the restoring coefficient matrix. 

 B
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(2) Change in transverse restoring moment with respect to im- 
mersion, heel, and trim 

The change in the transverse restoring moment is equal to the 
moment arm y times the change in the restoring force, and the 
force can be expressed with the change in volume.  Therefore, 
the change in moment is 
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In the previous section, we derived the change in volume in 
terms of immersion and trim, as seen in Eqs. (11) and (13).  Using 
the equations, therefore, the change in buoyant force can be equated 
in the following way. 

 

 

 

T

WP

y g z dx dy

g z y dx dy

g z T

  

 

 

    

   

  


  (21) 

 

tan  

tan  

tan

T

P

P

y g x dx dy

g xy dx dy

g I

g I

  

 

 

 

    

   

  

  


  (22) 

where TWP is the transverse moment of the waterplane area, 
and IP is a product of inertia of the waterplane area. 
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1Gy 1G

G0G0
y

α

r

B0
y

B0

B1

δφ
δφ

B1
y

α

F

F

r

G0
z

(a) (b)  
Fig. 8. The change in the moment arm of (a) gravity and (b) buoyancy 

force. 

 

 
Dividing both sides of Eqs. (21) and (22) with z and , 

respectively, we can obtain the partial derivatives of the trans- 
verse restoring moment with respect to the immersion and trim, 
which are elements (2, 1) and (2, 3) of the restoring coefficient 
matrix. 

 T
WPg T

z





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
 (23) 

 T
Pg I


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


 
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 (24) 

To find the change in the transverse restoring moment due 
to the restoring force with respect to the heel, it is important to 
comprehend that it is made up of two different components: 
one is the change in the moment of the current displaced vo- 
lume, ,1T , due to the change in the moment arm, and the other 

is the change in the displaced volume ,2T . 

The change in the moment of the current displaced volume 
is caused by the shift in gravity and buoyancy force owing to 
the floating structures’ rotation as seen in Fig. 7. 

The moment arm of the gravity and buoyancy force can be 
obtained from a given position in terms of the heeling angle as 
seen in Fig. 8. 

The changed moment arm of gravity 
1Gy  and moment arm 

of buoyancy 
1By  are as follows. 
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Fig. 9. The change in the moment due to change in the displaced volume 

and its moment arm. 
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With the obtained equation for 
1By , the change in the moment 

of the current displaced volume can be found as follows. 
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Next, the moment due to a change in the displaced volume 
is found by calculating the sum of the moment caused by the 
submerged and immersed volume.  The calculation can be pro- 
cessed by taking an infinitesimal volume and integrating it through 
these volumes as seen below. 

The transverse moment arm is as shown in Fig. 9.  The moment 
then can be equated as follows. 
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In the previous section, we derived the change in volume in 
terms of the heel, as seen in Eq. (12).  Using the equations, there- 
fore, ,2T  can be equated in the following way. 
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where IT is transverse moment of inertia of waterplane area. 
As we obtained both ,1T  and ,2T , we can now add both 

moments to find the change in the transverse moment due to the 
buoyant force with respect to the heel. 
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As discussed earlier, the angle is assumed to be considerably 
less than 1, and thus, the trigonometry function is simplified. 
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  (31) 

Dividing both sides of Eq. (31) with , we can obtain the 
partial derivative of the transverse restoring moment with re- 
spect to the heel, which is element (2, 2) of the restoring coef- 
ficient matrix. 

 T T
B

I
gV z

V





       

 (32) 

However, Eq. (32) does not include the effect due to the change 
in the moment arm of the gravity.  Considering gravity, Eq. (33) 
was obtained. 
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where m is the mass of the floating structures. 
(3) Change in longitudinal restoring moment with respect to 

immersion, heel, and trim 
In the hydrostatic restoring coefficients matrix ( , , )T  A , 

element (1, 1), (1, 2), (1, 3) respectively represent the partial 
derivatives of the restoring force along the z-axis with respect to 
immersion, heel, and trim.  Element (2, 1), (2, 2), (2, 3) respec- 
tively represents the partial derivatives of transverse restoring 
moment with respect to immersion, heel, and trim.  The deriva- 
tion of the first and second row is explained in the previous 
chapter.  The third row represents the partial derivatives of the 
longitudinal restoring moment with respect to immersion, heel, 
and trim.  The elements in the third row correspond to the partial 
derivatives of the transverse restoring moment with respect to 
immersion, trim, and heel, respectively, and can be obtained in 
the same manner. 

Therefore, the elements (1, 1)-(3, 3) of the hydrostatic restor- 
ing coefficients matrix ( , , )T  A  are as follows. 
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For ease of understanding, a small inclination was used for 
the explanation.  However, the derived equations are all valid for  
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any attitude of the floating structure, as the restoring coefficients 
matrix A is composed of the instantaneous water surface pro- 
perties, which can be calculated in any attitude of the ship. 

V. DERIVATION OF THE HYDROSTATIC 
RESTORING COEFFICIENTS MATRIX FOR 
THE FLOATING STRUCTURE WITH THE 

LARGE ANGLE OF INCLINATION 

In chapter 5, the hydrostatic restoring coefficients matrix was 
derived when the floating structure was in an even keel state.  
In other words, the elements of the matrix were derived as-
suming the floating structure’s trims and heels about the y- and 
x-axis of the water surface fixed frame, as shown in Fig. 10(a). 

However, the floating structure may not be in an even keel state.  
To define the inclination of the floating structure with a large an- 
gle, body fixed local coordinates, named x’y’z’-coordinates, are used.  
When the orientation of the floating structure is defined in terms 
of local coordinates, the inclined floating structure trims and heels 
not about y- and x-axis, but about y'- and x'-axis of the body fixed 
frame as shown in Fig. 10(b).  Therefore, the hydrostatic restoring 
coefficients matrix should be transformed.  The relationship be-
tween the rotation about the water surface fixed frame and body 

fixed frame is shown in Fig. 11 and Eq. (43). 
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Including the immersion, Eq. (43) can be expressed as a 
matrix multiplication as follows. 
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Substituting Eq. (44) into the second term of the right-hand 
side of Eq. (8), the hydrostatic restoring coefficients matrix can 
be finally derived as follows. 
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  (45) 

where the partial derivatives are defined in Eqs. (34)-(42). 

VI. MEANING OF THE  
LINEARIZED GOVERNING EQUATION  

FOR STATIC ANALYSIS 

Eq. (8) is the linearized governing equation of motion for the 
floating structure, and the equation is rewritten as follows. 
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A  (46) 

Fz, T, and L in Eq. (46) mean the force along the z-axis, the 
moment about the x-axis, and the moment about the y-axis, 
respectively.  T, , and  in Eq. (46) mean the infinitesimal 
immersion along the z-axis, the infinitesimal heel about the 
x-axis, and the infinitesimal trim about the y-axis, respectively.  
As mentioned in section 5, however, we want to calculate the  
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Table 1. Parameters of 4800TEU container carrier for case study. 

Parameters Values Unit 

Length 274.7 (m) 

Breadth 32.2 (m) 

Depth 27.1 (m) 

Draft 12 (m) 

COG (-40.0, 5.0, 9.0) ((m), (m), (m)) from midship, centerline, and keel 

Load 110,000 (Mg) 

 
 

Table 2.  Computer specification for case study. 

Components Specification 

CPU Intel Core i7 (3.50 GHz) 

RAM 8 GB 

OS Windows 8 64 bit 

 
 

following using Eq. (46): the infinitesimal immersion T', heel 
', and trim  ', which correspond to the z'-axis, x'-axis, and 
y'-axis; herein, ' and ' are Euler angles.  Therefore, we de- 
rive Eq. (44) using the relationship between the rotation about 
the water surface fixed frame and body fixed frame, and sub-
stituting Eq. (44) into Eq. (46), we obtain Eq. (47). 
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 (47) 

Using the hydrostatic restoring coefficients matrix A', the 
position and orientation of the inclined floating structure in the 
static equilibrium state can be determined.  Then, this position and 
orientation are utilized as the initial condition for the second phase 
of the dynamic analysis.  To calculate the elements of the hy- 
drostatic restoring coefficients matrix, polyhedron integration, 
which approximates a hull surface to a set of polyhedrons, is used.  
This method gives more accurate volume values because the 
B-spline curve is used for defining the hull surface (Lee et al., 
2007; Lee et al., 2010). 

VII. CASE STUDY 

To prove the efficiency of the equations derived in this pa- 
per, hydrostatic analysis was performed for a 4800TEU Con-
tainer Carrier, and main dimensions of the container carrier is 
shown in table 1.  In fact, although the title of this paper includes 
“floating crane,” it is easy to calculate the static equilibrium of 
the barge of a floating crane.  Therefore, a container carrier was  

Table 3. Calculation results of hydrostatic analysis. 

Position and Orientation Results 

Immersion 2.75 (m) 

Heel 36.37 (Degree) 

Trim 4.94 (Degree) 

 
 

 
Fig. 12. The position and attitude of the 4800TEU Container Carrier in static 

equilibrium state. 

 
 

chosen as an example, and for that example, it is more difficult to 
calculate the equilibrium position than for the barge, since the 
hull shape is more complicated.  The hull surface geometry is 
defined by B-Spline curves in 30 section points in the longitudi-
nal direction.  The parameters used in the calculation are tabulated 
as follows. 

The specification of the computer in which the case study was 
performed is described in Table 2. 

1. Static Analysis Results 

The static equilibrium position and orientation for the case 
study are calculated as shown in Fig. 12.  The total calculation 
time was approximately 0.987 s after eight iterations, and the 
results are tabulated in Table 3. 
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Fig. 13. Comparison of calculation time obtained in this paper and that of a the related study (EzCompart, 2010), the immersion of the 4800TEU 

Container Carrier. 
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Fig. 14. Comparison of the computation time obtained in this paper and that of a the related study (EzCompart, 2010), the heel of the 4800TEU Con-

tainer Carrier. 
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Fig. 15. Comparison of the computation time obtained in this paper and that of a related study (EzCompart, 2010), the trim of the 4800TEU Container 

Carrier. 

 
 

2. Calculation Performance Analysis 

The calculation performance of the equations was analyzed 
by comparison with a commercial program (EzCOMPART, 2010), 
which obtains the partial derivatives of the hydrostatic force using 

a numerical method including complex mesh generation algo- 
rithm for calculating the immersed volume under waterplane sur- 
face (Otomo at al., 2014).  The numerical calculation was tested 
by varying the incremental value by 10-1, 10-3, 10-5, 10-7, 10-9, 
10-11, and 10-13.  The variation in calculation time was observed 
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from 6.703 to 25.049 s. 
The calculation time using the equation derived in this study 

was approximately 1/7 to 1/25 of that of the numerical method 
for the same results, as shown in Figs. 13-15. 

The method proposed in this paper did not cause any nu-
merical problem as the hydrostatic restoring coefficients are 
derived analytically.  However, the required iteration numbers 
in the compared program were different according to the chosen 
incremental value, and the calculation was not converged when 
the incremental values were less than 10-13 or larger than 10-3.  From 
the above graph, it can be seen that the calculated final values 
of the immersion, heel, and trim using the proposed algorithm 
are the same as those obtained using a commercial program.  
From this, it was confirmed that the exactness of the proposed 
algorithm is the same as that of the commercial program. 

VIII. CONCLUSIONS 

In this paper, nonlinear governing equations were derived 
using sequential linearization to calculate the static equilibrium 
position of floating structures with excessive inclination.  The 
immersion, heel, and trim were fully coupled in the equations, 
and a plane area, primary moment, and the moment of inertia of 
the water plane area were also included.  To verify the equa-
tions, static analysis for a 4800TEU Container Carrier was per- 
formed.  The case study result shows that the calculation with 
the equations is more efficient than other algorithms that use nu- 
merical methods for determining partial derivatives of the hy- 
drostatic force.  In future, the design of a compartment will be 
considered for calculation of the hydrostatic equilibrium by ap- 
plying the optimization algorithm (Lee et al., 2002a, Yazdani 
et al., 2016). 
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