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ABSTRACT 

An improved ant colony optimization (ACO) algorithm is 
proposed in this paper for improving the accuracy of path plan- 
ning.  The main idea of this paper is to avoid local minima by 
continuously tuning a setting parameter and the establishment 
of novel mechanisms by means of partial pheromone updating 
and opposite pheromone updating.  As a result, the global search 
of the proposed ACO algorithm can be significantly enhanced 
to derive an optimal path compared to the conventional ACO 
algorithm.  The simulation results of the proposed approach 
perform better in terms of the short distance, mean distance, and 
success rate towards optimal paths.  To further reduce the com- 
putation time, the proposed ACO algorithm for path planning 
is realized on a FPGA chip to verify its practicalities.  Experi- 
mental results indicate that the efficiency of the path planning 
is considerably improved by the hardware design for embedded 
applications. 

I. INTRODUCTION 

Path planning is an important topic with navigation (Velagic 
et al., 2006; Lu et al., 2012; Lee et al., 2014) which has at-
tracted much attention in recent years.  In general, path planning 
can be formulated as: according to a given start node and a de- 
sired destination in known/unknown environments, a collision- 
free path is obtained.  The path planning can be broadly divided 
into two categories: one is global path planning (Chesi and Hung, 
2007; Tsai et al., 2011; Hsu et al., 2013; Azimirad and Shorakael, 

2014; Hou, 2014; Hsu et al., 2016) which determines a feasible 
path in a global environment; the other is local path planning 
(Chu et al., 2012; Yu et al., 2013; Su et al., 2014) which uses 
sensors to detect obstacles and finds a local collisionfree path. 

The researchers had developed several path planning me- 
thods, including A* algorithm (Bennewitz et al., 2002; Seo  
et al., 2009; Wang et al., 2015), D* algorithm (Ferguson & Stentz, 
2005; Ferguson & Stentz, 2006; Guo et al., 2009), potential 
field method (Barraquand et al., 1992; Ge & Cui, 2002; Sahin 
Conkur, 2005), and swarm intelligence technique (Huang et al., 
2014).  The A* algorithm is a simple and efficient approach.  
However, the path built by A* algorithm may be too close to 
obstacles, and the robot might probably collide with obstacles 
in practical aspect.  The D* algorithm not only provides the 
shortest path, but also recovers itself immediately when the en- 
vironment changes.  However, it results in heavy computational 
time.  The potential field algorithm pre-processes the map and 
obtains the vector fields based on the directions to the destina- 
tion.  However, there exists a local minimal problem when it 
comes to concave obstacles.  The swarm intelligence technique 
was originally inspired in social behavior in nature.  It is suitable 
and popular for solving optimization problems.  C. A. Sierakowski 
et al. (Sierakowski et al., 2005) proposed two case studies of 
swarm intelligence techniques to solve the problem of optimi- 
zation of path planning in mobile robotics.  In (Huang et al., 
2014), a hybrid Taguchi deoxyribonucleic acid (DNA) swarm 
intelligence was developed for solving the inverse kinematics 
redundancy problem of six degree-of-freedom (DOF) humanoid 
robot arms. 

The ACO algorithm is a member of the swarm intelligence 
algorithm family and is developed from observations of a social 
behavior of ants in nature.  Recently, various researches (Wen 
et al., 2005; Tan et al., 2007; Shi et al., 2008; Porta Garcia et al., 
2009; Cai et al., 2010; Tseng, 2015) combined intelligent me- 
thods with the ACO algorithm to build the globally optimal path.  
Porta Garcia et al. (Porta Garcia et al., 2009) presented a pro-
posal to solve the problem of path planning for mobile robots.  
The selection of the optimal path relies in the criterion of ant 
colony optimization and fuzzy cost function evaluation.  Wen 
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et al. (Wen et al., 2005) proposed an improved ant colony algo- 
rithm for low altitude penetration aircraft path planning.  Tan 
et al. (Tan et al., 2007) used the MAKLINK graph theory, the 
Dijkstra algorithm, and the ant colony system to generate the 
globally optimal path of mobile robots.  In (Tseng, 2015), an en- 
hanced ant colony optimization (EACO) algorithm was pro-
posed to improve the deadlock caused by the cliffs, insufficient 
exploration rates, and slower convergence rates in the three- 
dimensional map.  In (Cai et al., 2010), a dynamic path planning 
algorithm based on biphasic ACO with fuzzy control in the en- 
vironment was introduced.  In (Shi et al., 2008), an ACO-PSO 
hybrid algorithm was demonstrated to resolve the path plan-
ning problem for deep-sea mining robots.  However, the above 
methods fail to solve the local minimal problem. 

To address the mentioned problem, this paper proposes an 
improved ACO algorithm for path planning, and the ability of 
global searching of the improved ACO algorithm can be signi- 
ficantly enhanced in building an optimal path.  Simulation re- 
sults reveal the proposed method performs excellently in path 
planning.  Moreover, we realize the hardware circuit design for 
path planning based on the improved ACO algorithm on FPGA 
and build a human-machine interface by the LCD touch module 
(LTM) to complete an embedded system. 

The rest of this paper is organized as follows: Section 2 de- 
scribes the path planning using a conventional ACO algorithm.  
Section 3 exhibits the global optimal path search method based 
on improved ACO algorithm.  The FPGA implementation of im- 
proved ACO algorithm is suggested in Section 4.  The simula-
tion and experimental results of the proposed method are offered 
in Section 5.  Finally, conclusions are drawn in Section 6. 

II. PATH PLANNING USING CONVENTIONAL 
ANT COLONY OPTIMIZATION (ACO) 

ALGORITHM 

In this paper, the conventional ant colony optimization 
(ACO) algorithm is applied to detect the shortest and collision- 
free route.  The environment is represented in a 2-D grid map.  
Firstly, individual ants follow thoughtless paths and achieve poor 
results.  By cooperating with a large number of simulated ants, 
the superior paths can be found gradually. 

1. Environmental Statements 

A grid map is a popular medium to represent an environment, 
where a continuous space is represented by a collection of dis- 
crete nodes similar to a bitmap image.  Fig. 1 shows a grid map 
of a dimension of 10  10 nodes representing an environment, 
where the white areas represent free spaces for a user to move 
and black ones represent obstacles.  To prevent the robot from 
planning a path by using any node outside of the map, we create 
a virtual layer of nodes surrounding the original map as shown 
in Fig. 2, which can be regarded as obstacles during the path 
planning.  When located on the center node, a user can move 
toward eight potential directions as shown in Fig3. 

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99
 

Fig. 1.  A grid map example. 
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Fig. 2.  Diagram of virtual obstacles. 

 
 

 
Fig. 3.  Valid motion directions. 

 
 

2. Description of Conventional Ant Colony Optimization 
(ACO) Algorithm 

The conventional ant colony optimization is an algorithm 
based on the behaviors of ants searching for food, and it is uti- 
lized to solve the optimization problem such as the traveling 
salesman problem (TSP) (Laumond, 1987; Dorigo and Gam-
bardella, 1997; Gong and Ruan, 2004).  The ant system (AS) is 
the first proposed theory in the development of ant algorithm.  
It is also the basis of other ant models.  While walking, ants 
communicate with each other by a chemical substance called 
pheromone, which they deposited along the path.  The path 
travelled down by more ants, the more pheromone will be left 
on the path.  The amount of the pheromone on the path is related 
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to how the following ants choose their next step.  In other 
words, the following ants tend to choose nodes with heavier 
pheromone.  In ant system, each ant builds a path according to 
probabilistic rule at first.  Ants tend to move to nodes closer to 
the destination, which have a greater amount of pheromone.  
Secondly, after all ants complete their tours, a pheromone updat-
ing rule is applied, and it includes two parts: evaporation and de- 
posit.  The two processes continue until a given maximal number 
of iterations is reached. 

The ant colony system (ACS) was proposed to improve AS 
for better performances (Dorigo, 1996; Dorigo and Gambardella, 
1997).  The AS consists of three different parts, namely, pro- 
babilistic transition rule, global pheromone updating, and local 
pheromone updating.  There are two main steps for path plan- 
ning using ACS, namely choosing node and adjusting pheromone. 

1) The Rule of Choosing Node 

The ants choose the next node j by a probabilistic state tran- 
sition rule given by (1). 
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where q is a random number in [0,1], q0 is a design parameter 
which determines preference for exploration and exploitation.  
jD is the inverse of the distance between node j and destina-
tion D.  When the distance is shorter, jD is larger, which means 
that node j is likely to be the next for ants to move on.  j pre-
sents the amount of the pheromone of a node j and will be changed 
over time.   and  are designed parameters which determine 
the relative importance between pheromone and the distance.  
If  = 0, then the ants will choose a node which is the closest to 
the destination as the next node without being affected by phe- 
romone.  As well, if  = 0, a node according to pheromone will 
be chosen.  The values of  and  are determined by trial and 
error, where  is larger than  in general.  Because of the state 
transition rule, there are two behaviors of the ACS to balance 
between the exploration of new edges, the exploitation of a 
priori, and the accumulated knowledge about the problem 
(Dorigo and Gambardella, 1997). 

When q is smaller than q0, the most attractive node, which 
has the greatest amount of pheromone, will be decided by ants, 
and is the closest to the destination as the next node.  The be- 
havior for building a path based on a priori and accumulated 
knowledge from the previous generation is called exploitation. 

When q0 is smaller than q, a node k
jp  is chosen through the 

state transition rule given by (2), which is the same as the 
random-proportional rule in ACS. 
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where k
jp  is the probability of choosing the node j for the next 

node by an ant k.  ( , )j jx y  is the coordinate of the node j, and 

( , )D Dx y  is the coordinate of the destination D.  Obviously, nodes 

with greater pheromone and shorter distance hold higher pro- 

babilities.  By doing so, we favor the choice of a node k
jp  with 

a shorter distance to the destination and a greater amount of 
pheromone through the probabilistic process, rather than solely 
choosing the node with the highest probability for the next 

move.  The shortest path called the globally best path L  is 
constructed after all ants finished the tour. 

  min k

k
L L   (4) 

where kL  represents the distance of a tour built by ant k.  L  
is the shortest distance of the current generation. 

2) The Rule of Adjusting Pheromone 

The pheromone updating is performed after all ants arrived 
at the destination.  It includes two main parts: evaporation and 
deposit. 

A fraction of the pheromone evaporates on all nodes accord-
ing to an evaporation function shown in (5). 

 (1 ) , (0,1)i i       (5) 

where  is the evaporation rate and i presents the amount  
of pheromone of the node j.  As a result, pheromone over- 
accumulation and consequent local minima problem can be pre- 
vented. 

The ACS includes local updating and global updating.  The 
global updating means that pheromone will be deposited on 
the only global best path.  That is, only the ant that has the best 
performance can deposit pheromone.  This helps ants to find 
the shortest path quickly.  Eq. (6) shows the updating function 
combining evaporation and deposit. 

 (1 ) best
i i i         (6) 

 best
i

Q

L
    (7) 

where Q is a designed parameter that is relative to the speed of 
convergence.  The local updating, on the other hand, is defined 
as: 

 0(1 )i i       (8) 
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(a) With local minima problem (b) Without local minima problem  
Fig. 4.  Path planning. 

 
 

The node with partial
pheromone updating 

The current node 

The node with partial
pheromone updating  

Fig. 5.  Diagram of partial pheromone updating. 

 
 

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

The node with opposite
pheromone updating 

The range
of destinations

The current node 

The range
of destinations 

The current node 
The node with opposite
pheromone updating 

The node with opposite
pheromone updating 

The range
of destinations

The current node

The range
of destinations 

The node with opposite
pheromone updating 

The current node 

 
Fig. 6.  Diagram of opposite pheromone updating. 

 
 

where 0 is the initial pheromone.  In other words, pheromones 
will be updated every time when ants move to the next node, 

allowing the ants to explore promising paths and avoid searching 
for a narrow range of the best previous path. 
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III. GLOBALLY OPTIMAL PATH  
SEARCHING METHOD BASED ON  

IMPROVED ACO ALGORITHM 

In conventional ACO algorithm (Dorigo, 1996), the global 
updating mechanism adversely results in a large difference in 
the pheromone amount among nodes because the pheromone 
is deposited only on the global best path.  Therefore, an ant might 
over-follow the globally best ant, leading to a local minimum.  
Figs. 4(a) and (b) display the path planning with and without 
the local minima problem, respectively.  The blue and red nodes 
mean the original and destination nodes, and the black nodes 
reflect the obstacles.  The yellow line, made up of the brown nodes, 
represents the planned path.  In this section, we propose an im- 
proved ACO algorithm by applying two pheromone updating 
mechanisms.  The first one is to update pheromones for nodes 
around the globally best path, whereas the other is to update 
pheromones for nodes on the opposite side to the destination 
of the globally best path. 

1. Partial Pheromone Updating 

To address the local minima problem, this paper proposes two 
pheromone diffusion mechanisms, including partial pheromone 
updating and opposite pheromone updating.  Fig. 5 illustrates 
the diagram of partial pheromone updating.  The brown node 
means the current node and the pink nodes signify the partial 
pheromone updating is performed.  It should be noted that 
pheromone updating does not apply to the eight directions of 
nodes around the globally best path because it can cause over- 
exploration and result in a local minimum.  Therefore, only four 
directions are utilized for partial pheromone updating. 

2. Opposite Pheromone Updating 

Besides, an opposite pheromone updating mechanism is uti- 
lized to prevent ants from directly choosing the node closest to 
the destination.  Fig. 6 illustrates the opposite pheromone up-
dating rule, composed of four cases.  The red nodes represent 
the range of destinations, brown node is the current node, and 
the pink nodes imply opposite pheromone updating. 

3. Deadlock of Path Planning 

To prevent a deadlock from planning path, visited nodes are 
sequentially recorded in a prohibited list while ants are moving.  
Ants cannot choose nodes in the list to avoid deadlock led by 
repeating visiting nodes, as shown in Fig. 7.  Although the pro- 
hibited list can prevent repeatedly visiting the same nodes, 
another problem arises in which ants might be trapped in a 
U-type environment as shown in Fig. 8.  To avoid the deadlock, 
ants need to move backward sequentially until they find a fea- 
sible node.  For example, an ant is trapped in node 25 and it has 
nowhere to go forward, as shown in Fig. 8.  Then it goes back 
sequentially via node 35 and node 45.  At last, it stops at node 45 
when it finds that node 56 is feasible for continuing the tour. 

Fig. 9 unveils the flowchart of the improved ACO algorithm 
for path planning.  Given a grid map, we firstly initialize the pa- 
rameters and place the ants at the start.  A number of feasible  

S

D

 
Fig. 7.  The loop situation. 

 
 

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19
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30 31 32 33 34 35 36 37 38 39
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50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99 D

S

 
Fig. 8.  The deadlock situation in U-type environment. 
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destination? 

Build path by
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Calculate distance
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path 
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Is max generation
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Yes

No

No

 
Fig. 9.  The flowchart of the improved ACO algorithm for path planning. 

 
 

nodes are regarded as obstacles for collision avoidance by the 
obstacle extension mechanism.  Ants construct a path through 
probabilistic state transition rule.  The global best path is gener- 
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The Hardware Design
Architecture  

Input Detect
Module

LTM Display
Module

Improved ACO
Algorithm for Path
Planning Module

 
Fig. 10.  The hardware design architecture. 

 
 

touch_point_detector

adc_spi_controller

Input Detect Module 

 
Fig. 11.  Input detect module. 

 
 

ated when all ants reach the destination.  Pheromone updating, 
including partial and opposite pheromone updating, is performed 
for the next generation.  Ants are placed at the start again.  The 
algorithm then repeats the above process continuously until 
the maximal number of generations is reached. 

IV. HARDWARE DESIGN FOR PATH 
PLANNING BASED ON IMPROVED  

ACO ALGORITHM 

We implement the proposed algorithm on a DE2-70 devel-
opment platform combined with a human-machine interface to 
realize the optimal path planning algorithm.  Fig. 10 shows the 
hardware design, architecture, where the modular design is used 
to construct the major components, including an input detect 
module, an improved ACO algorithm for path planning module, 
and a LTM display module.  The input detect module is utilized 
to detect the positions of the start point and the destination through 
user touch on the screen.  Then the improved ACO algorithm 
for path planning module begins to plan an optimal path accord-
ing to the signal from input detect module.  The LTM display 
module is utilized to display the map image and show the results 
of the path on the LCD screen.  More details of these modules will 
be discussed as follows. 

1. Input Detect Module 

The input detect module includes adc_spi_controller and 
touch_point_detector shown in Fig. 11.  The main function of 
adc_spi_controller is to output the information of x and y co- 

Distance
Modules

Pheromone
Module

Transition Calculating Module

Path Building Module 

Distance Calculating Module

Path Comparing Module

Best Path
ModuleEnd Module

Improved ACO Algorithm for
Path Planning Module

 
Fig. 12.  Improved ACO algorithm for path planning module. 

 
 

ordinates of the positions touched by the users on the screen.  
Then the touch_point_detector will determine the work accord-
ing to the information from the adc_spi_controller. 

2. Improved ACO Algorithm for Path Planning Module 

The improved ACO algorithm for path planning module in- 
cludes distance modules, pheromone module, transition cal-
culating module, path building module, distance calculating 
module, path comparing module, best path module, and end mo- 
dule.  Fig. 12 sets forth the functional blocks of the Improved 
ACO algorithm for path planning module.  The distance module 
is employed to calculate the distances between each node and 
destination.  Then the distance data is stored in RAM.  The phe- 
romone module is applied to store the pheromone of each node 
on the map to RAM and implement pheromone updating after 
a generation is finished.  The transition calculating module cal- 
culates the transition probability after receiving the distance 
data and pheromone data.  The path building module builds the 
path using the transition probability thereafter.  According to the 
transition rules, the path building module consists of two be-
haviors: exploitation and exploration.  Those two behaviors gen- 
erate the next node respectively, and the next final node for an 
ant to go to is chosen by picking a random number.  When the 
next node is produced, the distance calculating module calcu- 
lates the distance of the path that an ant had walked.  Until the 
ant arrives at the destination, the path comparing module com- 
pares the distance of the path to get the optimal path.  The best 
path module is utilized to record the nodes on the optimal path  
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Table 1.  Comparison of shortest distance. 

Case Start/Destination nodes Using conventional ACO algorithm Using the proposed ACO algorithm

Case 1 329/962 476.98 464.55 

Case 2 329/766 320.77 320.77 

Case 3 330/677 455.77 418.49 

Case 4 976/61 629.55 617.13 

Case 5 976/40 531.83 531.83 

Case 6 976/677 460.91 448.49 

 
 

Table 2.  Comparison of mean distance. 

Case Start/Destination nodes Using conventional ACO algorithm Using the proposed ACO algorithm 

Case 1 329/962 502.15 483.68 

Case 2 329/766 326.13 324.28 

Case 3 330/677 474.08 438.99 

Case 4 976/61 655.58 642.56 

Case 5 976/40 543.05 536.10 

Case 6 976/677 489.69 459.68 
 
 

 
Fig. 13.  The control panel. 

 
 

Flash-to-SDR AM Controller

LCD Timing Controller

Show the results of path planning on the LCD Screen

Map Image

Control Panel

LTM Display Module

 
Fig. 14.  LTM display module. 

 
 

for pheromone updating.  The end module will send a signal 
pulse to other modules for initialization when a tour building is 

accomplished. 

3. LTM Display Module 

At first, the map image stored in the flash memory is mani- 
fested on the control panel, which is an application provided 
by Altera.  It connects the DE2-70 platform with computer.  
Fig. 13 shows that we can control the component of DE2-70 plat- 
form via the interface on the computer.  The flash-to-SDRAM 
controller is utilized to store the data of the map from flash to 
SDRAM for other modules to use, including head file, RAW 
data, RGB data etc.  The LCD timing controller determines the 
display timing of image and RGB transformation.  Several steps 
in LTM Display module are demonstrated in Fig.14. 

V. SIMULATION AND  
EXPERIMENTAL RESULTS 

In this section, simulation examples include two kinds of 
comparisons to illustrate the effectiveness and applicability of 
the proposed method.  At first, we compare conventional ACO 
algorithm with the improved approach in terms of path length.  
The software environment is Visual Studio 2008 with OpenCV 
2.2.1 library.  Secondly, to compare the performance gained by 
the algorithm based on a hardware circuit design, we imple-
ment the improved ACO algorithm for path planning with a soft- 
ware design solely written in NIOS II and a hardware design in 
the Verilog language.  Moreover, a DE2-70 development board 
by Altera is utilized as an experiment platform for evaluating 
the performance of the design and implementation of the im-
proved ACO algorithm. 

1. Comparisons of Path Length between Conventional 
and Improved ACO Algorithm 

In the simulation, we design a grid map that has a dimen- 
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(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 4 (e) Case 5 (f) Case 6  
Fig. 15.  Path planning by conventional and improved ACO algorithm. 

 
 

(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 4 (e) Case 5 (f) Case 6  
Fig. 16.  Simulation results of path planning using improved ACO algorithm. 

 
 

sion of 32  36 nodes and 60 ants are utilized in the experiment.  
 and  are selected as 1.0 and 5.0, respectively.  The evapo-
ration rate  and the constant Q are selected as 0.5 and 300, 
respectively.  The conventional and improved ACO algorithms 
both run 1,500 generations.  There are six cases for pairs of dif- 
ferent starting and destination nodes.  All the nodes are evenly 
distributed on the map and the distance between any two adja-
cent nodes is normalized to 1 (or 1 unit block).  Thus, the path 
length is represented in terms of the number of unit blocks.  
The optimal path is the shortest distance from the start node to the 

destination node.  Fig. 15 exhibits the simulation results of path 
planning by the conventional and improved ACO algorithm for 
six cases, where S and D indicate the start and destination, re- 
spectively.  The red path is generated by the conventional ACO 
algorithm and the blue one is generated by the proposed ap-
proach.  It is observed that the desired paths can be obtained by 
using the proposed approach.  Besides, the simulation is executed 
for forty times to calculate the shortest distance and mean dis-
tance.  Tables 1 and 2 reveal the simulation results for compa- 
risons between the conventional and improved ACO algorithm.   
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Table 3.  Comparisons of execution time between hardware and software design. 

Case Start/Destination nodes Software design Hardware design Performance improvement

Case 1 121/823 13,377.66 ms 20.39416 ms 655× 

Case 2 430/837 9647.545 ms 19.91856 ms 484× 

Case 3 10/296 8300.585 ms 18.3741 ms 451× 

Case 4 799/412 5236.364 ms 17.89496 ms 292× 

Case 5 75/260 3762.713 ms 16.59286 ms 226× 

Case 6 421/606 3538.006 ms 16.59035 ms 213× 

 
 

The start
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(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4  
Fig. 17.  FPGA implementation of path planning using improved ACO algorithm. 

 
 

It is noticed the improved ACO algorithm overcomes the pro- 
blem of local minimum encountered by conventional ACO al- 
gorithm.  Consequently, the improved ACO algorithm is favor- 
able in terms of shortest and mean distances for cases 1 to 6 
through 40 independent simulations. 

2. Comparisons of Execution Time between Hardware 
and Software Design 

Secondly, the improved ACO algorithm is utilized to plan a 
path by pure software design with NIOS II and pure hardware 
design with Verilog language.  There are six cases for pairs of 
different start and destination nodes.  Twenty independent si- 
mulations are performed for path planning by pure software 
design and pure hardware design respectively.  Fig. 16 reflects 
the results of paths planning by the proposed algorithm.  Table 3 
shows that the consuming time of pure hardware design is much 
less than the pure software designs.  It is proved that the hard- 
ware design not only exactly enhances the performance, but 
also significantly increases the improvement in the longer path 
planning.  That is because the distance of the path is calculated 
after the ants finish the tours in software flowchart.  In hard-
ware, the distance of the path is calculated when ants walk to 
the next node at the same time.  It is evident that the much 
more time is consumed by pure software design. 

3. FPGA Implementation with DE2-70 of Improved ACO 
Algorithm 

In the experiment, we use a market map to illustrate the ef- 
fectiveness of the proposed ACO-based path planning algorithm 
and its FPGA implementation with the DE2-70 platform.  There 
are four cases for the different start, relay, and destination nodes 

shown in Fig. 17.  The user can touch the positions they want 
to visit and then press the “Start” button to search a glo- 
bally optimal path.  The green nodes are the positions touched by 
the user, and the red nodes represent the globally optimal path.  
By the experiments, the feasibility of the proposed method is il- 
lustrated. 

VI. CONCLUSIONS 

This paper proposes an improved ant colony optimization 
(ACO) algorithm for path planning by establishing two phe- 
romone updating mechanisms including partial pheromone up- 
dating and opposite pheromone updating.  The simulation results 
of path planning convey that the improved ACO algorithm is 
qualified to solve the problem of optimizing to a local minimum.  
To further accelerate the computational speed of the path plan- 
ning, the improved ACO algorithm is implemented on a FPGA 
chip.  Furthermore, a real-time path planning embedded system 
with a DE2-70 platform by hardware design is established.  Fi- 
nally, a map mimicking a supermarket floor plan is utilized as 
an example to implement path planning for solving daily life 
problem.  By touching the positions of merchandise on the screen 
of DE2-70 platform, users can get the shortest path between the 
merchandise to avoid wasting time on looking for the objects. 
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