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ABSTRACT 

This paper proposes a passive fuzzy controller design me- 
thodology for stabilization of the nonlinear lift feedback fin 
stabilizer system of a ship.  The proposed design approach is 
developed based on multiplicative noised Takagi-Sugeno fuzzy 
model and parallel distributed compensation control technique.  
Applying the Itô’s formula and the sense of mean square, the 
sufficient conditions are developed to analyze the stability and 
to design the controller for stochastic nonlinear systems.  The 
sufficient conditions derived in this paper belong to the linear 
matrix inequality forms which can be solved efficiently by con- 
vex optimal programming algorithm.  Besides, the passivity 
theory is applied to discuss the effect of external disturbance 
on the system.  Finally, the proposed systematic design method 
is applied to the fuzzy controller design of lift-feedback-fin sta- 
bilizer systems of a ship.  The simulation results of lift-feedback- 
fin stabilizer control system of a ship show that the proposed 
passive fuzzy controller design method is effective. 

I. INTRODUCTION 

When a ship is sailing on the sea, its violent rolling caused 
by sea waves may deeply affect the comfort of passengers.  
Thus, roll motion is one of the most important ship motions.  
Large amplitude rolling motion would make the crew feel un- 
comfortable and may cause damage to the cargoes and vessels.  
In order to reduce the rolling motion of the vessel, the effec- 
tiveness of fin stabilizer was investigated (Jin et al., 1994; Tzeng 
and Wu, 2000; Yu and Liu, 2002; Xiu and Ren, 2003; Jin et al., 

2006; Liang et al., 2008; Perez and Goodwin, 2008; Wang  
et al., 2008).  The fin stabilizer is an effective device widely 
used in reducing rolling of a ship.  It can generate held-up mo- 
ment initiative to resist sea wave disturbances to reduce rolling 
of a ship.  The PID-based control approach for the fin stabilizer 
systems was investigated in (Jin et al., 1994).  Applying the 
internal model control method, a ship stabilizing fin controller 
has been developed in (Tzeng and Wu, 2000).  In Yu and Liu 
(2002), the active disturbance rejection control method was 
used to find a stabilizing fin controller.  Besides, sliding mode 
control (Jin et al., 2006), model predictive control (Perez and 
Goodwin, 2008), fuzzy control approach (Xiu and Ren, 2003; 
Liang et al., 2008; Wang et al., 2008), and Lyapunov’s direct 
method (Karakas et al., 2012), have been employed to deal 
with the stabilization problem for the nonlinear fin stabilizer 
systems of a ship, respectively.  Extending the PID control 
technique, some PID-based mixed control methods have been 
studied in (Liang et al., 2008; Ghassemi and Dadmarzi, 2010) 
for the fin stabilizer systems.  Without loss of generality, lift 
feedback fin stabilizer is the most effective ship roll reducing 
equipment.  Some control approaches for the lift feedback fin 
stabilizer system have been investigated in the literature (Xiu 
and Ren, 2003; Yao et al., 2003; Zhang et al., 2003; Liang et al., 
2008; Wang et al., 2008). 

Many researchers use the concept of probability to describe 
the stochastic behavior of systems.  The Itô stochastic differ-
ential equation (Eli et al., 2005) is also employed to charac-
terize the structure of stochastic systems with multiplicative 
noises.  With Itô stochastic differential equation, the structure 
of stochastic systems is more representative and understandable.  
The lift feedback fin stabilizer systems of a ship considered in 
(Jin et al., 1994; Tzeng and Wu, 2000; Yu and Liu, 2002; Xiu 
and Ren, 2003; Yao et al., 2003; Zhang et al., 2003; Jin et al., 
2006; Liang et al., 2008; Pe-rez and Goodwin, 2008; Wang  
et al., 2008; Ghassemi and Dadmarzi, 2010; Karakas et al., 
2012) did not consider the multiplicative noises.  Concerning 
stochastic process regarding multiplicative noise terms, the pro- 
cesses of differentiation and integration are similar to the ana- 
lysis of deterministic functions, but they require some extra 
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care in the evaluation of limits.  The detail explanations for eva- 
luation of limits can be referred to (Eli et al., 2005).  During 
past decades, the stability of stochastic systems can be analyzed 
by the Itô’s formula (Eli et al., 2005).  Unfortunately, most of 
the fruitful results are accomplished for the linear stochastic 
systems.  However, many physical systems are nonlinear which 
usually presented by complex dynamic equations. 

The Takagi-Sugeno (T-S) fuzzy model (Takagi and Sugeno, 
1985; Tanaka and Wang, 2001) has been attracting increasing 
attention in the study and application of the stabilization of non- 
linear systems.  With applying the T-S fuzzy model, the non- 
linear systems can be approximated by simple linear subsystems 
and determined membership functions.  According to T-S fuzzy 
model, the Itô’s formula can also be employed to analyze the 
stability of nonlinear stochastic systems.  Besides, the Parallel 
Distributed Compensation (PDC) concept (Tanaka and Wang, 
2001) was employed to design the fuzzy controllers for many 
nonlinear systems which are modeled by T-S fuzzy models 
(Teixeira and Zak, 1999; Kim and Kim, 2002; Wang et al., 
2004; Chang et al., 2012; Chang and Hsu, 2016; Chiu, 2014; 
Zhang et al., 2007).  However, the nonlinear stochastic systems 
considered in (Teixeira and Zak, 1999; Kim and Kim, 2002; 
Wang et al., 2004; Zhang et al., 2007; Chang et al., 2012; 
Chang and Hsu, 2016) were investigated with more complex 
limitations without external disturbance effects on systems.  
Considering the external disturbances, a PDC-based fuzzy con- 
trol technology is developed in this paper for the nonlinear 
stochastic systems which are constructed by the stochastic T-S 
fuzzy models. 

In general, the disturbance effect on systems is usually caused 
by some external factors which may make the system unstable.  
For attenuating the effect of disturbances, the H control scheme 
(Jeung et al., 1998; Chang and Chang, 2006) was applied to 
control the linear and nonlinear systems.  Besides, the passivity 
theory (Lozano et al., 2000) was also employed to propose a 
general form for achieving disturbance attenuation perform-
ance.  Via different definitions of supply function of passivity, 
the systems can be stabilized for achieving different types of 
attenuation performance with requirement energy.  In general, 
the strict input passive type (Li et al., 2005; Chang et al., 2009; 
Chang et al., 2011; Chang et al., 2013; Chang et al., 2015) is 
usually used to constrain the disturbance effect and to study the 
stability of fuzzy systems.  Therefore, the concept of strictly in- 
put passive property (Li et al., 2005; Chang et al., 2009; Chang 
et al., 2011; Chang et al., 2013; Chang et al., 2015) is employed 
to analyze the stability of nonlinear stochastic systems and to 
achieve attenuation performance in this paper. 

Considering the nonlinear lift feedback fin stabilizer system 
of a ship with multiplicative noises, the fuzzy modeling ap-
proach and Itô stochastic differential equation are used in this 
paper to establish the stochastic T-S fuzzy model.  The purpose 
of this paper is to design a passive fuzzy controller for the non- 
linear lift feedback fin stabilizer system of a ship that is con- 
structed by the T-S fuzzy model with multiplicative noises.  By 
using Itô’s formula, PDC concept and strictly input passive 

theory, the stability conditions of proposed control problem can 
be derived in term of Linear Matrix Inequality (LMI) (Boyd  
et al., 1994).  The main contribution of this paper is to develop 
a PDC-based fuzzy control approach, which can be solved by 
the LMI technique, such that the nonlinear lift feedback fin 
stabilizer system of a ship can achieve asymptotical stability in 
mean square and strictly input passivity constraint.  In order to 
demonstrate the effectiveness and application of the proposed 
fuzzy control method, a control simulation for the nonlinear 
lift feedback fin stabilizer control system of a ship is provided. 

II. MODEL DESCRIPTIONS AND  
PROBLEM STATEMENTS 

Based on the Teixeira-Zak’s formula (Teixeira and Zak, 
1999), a nonlinear system can be divided into several local linear 
subsystems via the membership functions and corresponding 
operating points.  Combining these linear subsystems, a T-S fuzzy 
model can be constructed by a set of fuzzy IF-THEN rules.  
The i-th fuzzy rule of the T-S fuzzy model with multiplicative 
noises can be described as the following form: 

 
Rule i: IF x1(t) is Mi1  and xn(t) is Min THEN 

            i i wi iudx t x t u t w t dt x t dq t        A B B A  (1a) 

      i iy t x t w t C D  (1b) 

or 

          

   

r

i i i wi
i 1

i

udx t g x t x t u t w t dt

x t dq t



    

   

 A B B

A
 (2a) 

          
r

i i i
i 1

y t g x t x t w t


  C D  (2b) 

where   
  

  

ie e
e 1

i r

ie e
i 1 e 1

n

n

M x t

g x t

M x t



 





 and   ie eM x t  is the 

grade of membership function of the  ex t  in ieM , ieM  is the 

fuzzy set; n is the premise variable number; iA , iuB , wiB , 

iA , iC  and iD  are constant matrices with the compatible 

dimensions,   n xx t   is the state vector,   nuu t   is the 

input vector,   n yy t   is the output vector, r  is the number 

of fuzzy rules,   nww t   is the external disturbance input 

vector which is assumed as a bounded zero mean signal, the 
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 q t  is a scalar Brownian motion which is defined on com-

plete probability space (Wang et al., 2004).  Let us define 

 E Q a    as the expected value of  Q a .  By referring the 

reference Eli et al., 2005), the properties of    0E dq t  , 

           0E x t dq t E x t E dq t   and     E w t dq t   

      0E w t E dq t   are assumed due to the independent in- 

crement property of Brownian motion. 
Applying the concept of PDC, the fuzzy controller is de-

signed to share the same IF part of the T-S fuzzy model (1).  
The fuzzy controller can be represented as follows: 

 
Rule i: IF x1(t) is Mi1 and  and xn(t) is Min THEN 

    iu t x t F  (3) 

or 

        
r

i i
i 1

u t g x t x t


  F  (4) 

Substituting (4) into (2a), the closed-loop T-S fuzzy model 
with multiplicative noise can be obtained such as 

           

   

r r

i j ij wij
i 1 j 1

i

dx t g x t g x t x t w t dt

x t dq t

 

   

   

 G B

A

 (5) 

where 

 i i j j j i wi wj
ij wij,

2 2
u u   

 
A B F A B F B B

G B  

For achieving the attenuating performance, the passivity 
theory provides a useful and effective tool to design the con-
troller to achieve the energy constraints for the closed-loop 
systems.  In the passivity theory, the supply rate is an important 
role in determining the kind of energy change.  In order to con- 
strain the disturbance energy, the strict input passivity is intro- 
duced in the following definition. 

 
Definition 1 (Chang et al., 2009) 

The system (5) with external disturbance w(t) and output y(t) 
is called strictly input passive if there exists a positive scalar  

and symmetric positive definite matrix T 0 U U  such that 

          p p  T T

 0  0
2  d  d

t t
E y t w t t E w t w t t U  (6) 

for all p 0t   and   0w t  .  The p 0t   is the terminal time and 

the U is a constant matrix with compatible dimensions. 
Matrix U is chosen as an identity matrix to describe dissi-

pative energy.  Moreover, the scalar   is chosen to determine 
the dissipative rate for disturbance input.  Considering the T-S 
fuzzy model (1) with multiplicative noises, the purpose of this 
paper is to find a PDC-based fuzzy controller (3) such that the 
closed-loop system (5) is stable and the passivity constraint 
defined in Definition 1 is achieved.  In the following section, 
some sufficient conditions are derived for finding the above 
passive PDC-based fuzzy controllers. 

III. PDC-BASED FUZZY CONTROLLER DESIGN 
WITH PASSIVITY CONSTRAINT 

The PDC-based fuzzy controller design for T-S fuzzy models 
with multiplicative noise is developed in this section.  The suf- 
ficient conditions for guaranteeing the stability and passivity 
constraint of closed-loop T-S fuzzy models are derived based 
on the Lyapunov theory and passivity theory.  According to the 
closed-loop T-S fuzzy model (5), the stability conditions are 
derived in the following theorem. 

 
Theorem 1 

If there exist symmetric positive definite matrices P  
T 0P  and T 0 U U , feedback gains iF , and dissipation 

rate   satisfying the following stability conditions, then the 
closed-loop T-S fuzzy system (5) is strictly input passive and 
asymptotically stable in mean square. 

 
T T T
ij ij i i wij i

T T
i i

0
* 

   
 

   

G P PG A PA PB C U

I D U U D

 
 (7) 

where * denotes the transposed elements or matrices for sym- 
metric position and I is the identity matrix with compatible 
dimension. 

 
Proof: 

To analyze the stability of the closed-loop T-S fuzzy system 

(5), a Lyapunov function is chosen as       TV x t x t x t P .  

The derivative of   V x t  along the trajectory of (5) can be 

obtained by Itô’s formula (Tanaka and Wang, 2001; Eli et al., 
2005) such as 

           dV x t LV x t dt x t dq t   (8) 

where 

          

       

r r
T T

i j ij ij
i 1 j 1

T T
i i wij2

LV x t g x t g x t x t

x t x t w t

 

 

 

 G P PG

A PA PB 

 (9a) 
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             
r r

T
i j i

i 1 j 1

2x t x t g x t g x t x t
 

 P A  (9b) 

Arranging the (9a), one has 

          
 

 
 

Tr r

i j
i 1 j 1

T T
ij ij i i wij

* 0

x t
LV x t g x t g x t

w t

x t

w t

 

 
  

 

    
    
    



G P PG A PA PB 
 (10) 

Let us take the expectation of (8), then one has the fol- 
lowing equation with the independent increment property of 

Brownian motion (Eli et al., 2005), i.e.,      E x t dq t   

       0E x t E dq t   with    0E dq t  . 

        E dV x t E LV x t dt  (11) 

Integrating both sides of (11) form 0  to tp, one has the 
following equation with zero initial condition. 

        p

0

t

pE V x t E LV x t dt   (12) 

For nonzero external disturbance, i.e.,   0w t  , one can de- 

fine a performance function such as 

         

       

     
 

p

p

p

T T

0

T T

0

0

 ,  , 2  

2

 ,  ,  

t

t

p

t

x w t E w t w t y t w t dt

E w t w t y t w t

LV x t dt V x t

E x w t dt

 





   
 

   

 

   
 







U

U
 (13) 

where 

            T T ,  , 2x w t w t w t y t w t LV x t   U  (14) 

Substituting (2b) and (10) into (14), one can obtain 

         
 

 
 

T
r r

i j
i 1 j 1

 ,  ,
x t x t

x w t g x t g x t
w t w t


 

   
    

      
  (15) 

where 

 
T T T
ij ij i i wij i

T T
i i* 

   
   

   

G P PG A PA PB C U

I D U U D

 
. 

If the condition (7) is satisfied, then one can obtain T < 0 
that implies (x, w, t) < 0.  From (13), the inequality (x, w, t) < 
0 implies 

  ,  , 0x w t   (16) 

or 

          p p  T T

 0  0
2 d d

t t
E y t w t t E w t w t t U  (17) 

Since (17) is equivalent to (6), the system is strictly input 
passive. 

Next, it is necessary to show that the system is asymptoti-
cally stable in mean square.  According to (15), if the condition 
(7) is satisfied, i.e., 0  , then one has   ,  , 0x w t  .  By 

assuming   0w t  , one can find    0LV x t   from (14) due 

to (x, w, t) < 0.  Since   0w t   and    0LV x t  , one can 

obtain the following equation from (11). 

         0E dV x t E LV x t dt   (18) 

Based on the Lemma 6.1 of (Eli et al., 2005), one can find 
that the system is asymptotically stable in mean square driven 
by control law (4).  The proof of this theorem is completed. 

Applying the passivity theory and Itô’s formula, the condi-
tion (7) is developed to analyze the stability of the closed-loop 
T-S fuzzy model (5).  However, the condition (7) cannot be 
calculated by LMI technique.  Thus, the concept of the Schur 
Complement (Boyd et al., 1994) is employed to convert the 
bilinear matrix inequality condition (7) into the LMI problem 
in the following theorem. 

 
Theorem 2 

If there exist positive definite matrices T 0 P P  and 
U 0 , feedback gains iF  and dissipative rate  satisfying the 

following conditions, then the closed-loop T-S fuzzy system (5) 
is strictly input passive and asymptotically stable in mean square. 

 
 T T T T T

i j i i i j wij i i

T T
i i

1

2
* 0 0

* *

u u



     
 

   
 
 
 

XA Y B A X B Y B XC U XA

I D U U D

X



 

  (19) 

where 1X P  and i iY F X . 
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Md Mt
−
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α

 
Fig. 1. The block diagram of lift feedback fin stabilizer control system of 

a ship. 

 
 

Proof: 

Multiplying both sides of (7) by  1,  diag P I , the LMI 

condition (19) can be easily derived by applying the Schur 
complement (Boyd et al., 1994) and setting new variables, i.e., 

1X P  and i iY F X .  Due to the derivations of condition 

(19) is well known, the detailed proof is omitted here. 
Based on the condition of Theorem 2, the fuzzy control gains 

can be obtained via LMI technique by using MATLAB LMI- 
Toolbox.  Hence, the fuzzy controller for T-S fuzzy models with 
multiplicative noise (5) can be designed by PDC concept with 
solving the LMI conditions (19). 

IV. PASSIVE FUZZY CONTROL  
FOR LIFT FEEDBACK FIN STABILIZER 

SYSTEMS OF A SHIP 

A lift feedback fin stabilizer control system of a ship consists 
of a controller, sensor, servo system, fin and etc.  (Xiu and Ren, 
2003).  The lift feedback fin encapsulates the nonlinear and 
uncertain relationship between lift and fin angle, and all the 
other parts are linear blocks.  Thus, all parts except ship can be 
simplified and united to a controller block when a system is de- 
signed.  The block diagram of lift feedback fin stabilizer control 
system of a ship can be shown in Fig. 1. 

Rolling of a ship is mainly caused by sea waves.  Sea waves 
have statistical rule although they are irregular and stochastic.  
In this paper, the main energy of sea waves centralizes in the 
low-frequency range of 0.3-1.25 rad/s by sea wave spectrum 
theory.  Considering the nonlinearities of rolling resilient mo- 
ment and rolling damp moment, we can describe the nonlinear 
model of rolling of a ship as follows: 

 
  3

1 2 1 3

5
5

x x

d s

I I B B C C

C M M

     



     

  

   
 (20) 

 
where  denotes the rolling angle of a ship, Ix and Ix denote 
the mass inertia moment and affixing mas inertia moment re- 
lative to the vertical axes of the ship, Md denotes the distur-
bance moment of sea waves, sM  denotes the stable moment of 
lift feedback fins.  Besides, C1, C3, C5, B1, B2 are constants and 
C1 = Dh, where D denotes the tonnage of a ship and h denotes 
the height of the steady center of rolling of a ship. 

The parameters of a certain ship are D = 1457.26 t, h = 1.15  

0° 10° 20°

1K1
2K1

3K1

z1
 

Fig. 2.  The membership functions of 1
iK . 

 
 

z2
0°/s 10°/s 20°/s

1K2
2K2

3K2

 

Fig. 3.  The membership functions of 2
jK . 

 
 

m, Ix  Ix = 3.4383  106, C3 = 2.097  106, C5 = 4.814  106, 
B1 = 0.636  106, B2 = 0.79  106.  Let Mt = Md  Ms, the 
nonlinear model of this rolling of a ship can be described as 
follows: 

3 5

7

0.185 0.23 0.4874 0.61 1.4

2.9084 10 tM

      



    

 

   
 (21) 

The nonlinear model of rolling of a ship described as (21) 
can be approximated by a T-S fuzzy model as follows: 

          

   

9

i i i wi
i 1

i

udx t g x t x t u t w t dt

x t dq t



    

   

 A B B

A
 (22) 

 
Besides, the output variables are described as follows: 

      y t x t w t C D  (23) 

where the system state vector is  T1 2,x x x , 1x  , 2x   , 

tu M , 1 1z x , 2 2z x  are input variables.  The type of 

membership function may not enormously influence the per-
formance of fuzzy controllers.  In this paper, a triangular type 
membership function is chosen to merge the obtained feedback 

gains.  Thus, the corresponding fuzzy sets for  1 ,  1, 2, 3iK i   
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and  2  ,  j 1, 2, 3jK   are triangular membership functions that 

are shown in Fig. 2 and Fig. 3, respectively. 
The parameter matrices of local linear subsystems are de- 

scribed as follows: 

 1

0 1

0.4874 0.185

 
    

A , 2

0 1

0.5073 0.185

 
    

A , 

 3

0 1

0.5272 0.185

 
    

A , 4

0 1

0.4874 0.225

 
    

A , 

 5

0 1

0.5073 0.225

 
    

A , 6

0 1

0.5272 0.225

 
    

A , 

 7

0 1

0.4874 0.265

 
    

A , 8

0 1

0.5073 0.265

 
    

A , 

 9

0 1

0.5272 0.265

 
    

A , 7

0

2.9084 10u 

 
   

B , 

 
0

0.05w

 
  
 

B , 
0 0

0
45


 
 
 
  

A ,  1 0C  and 1D . 

For starting analyzing and designing, one can choose the 
supply rate   = 1 and U = 1.  Solving the sufficient condition of 

(19) via MATLAB LMI-Toolbox, the matrix T 0 P P  can 
be obtained as follows: 

 
2.9831 0.519

0.519 1.0747

 
  
  

P  (24) 

Let iF  denoted the state feedback gain of the local thi  mo- 

del.  Thus, the corresponding PDC-based fuzzy controller can 
be obtained as follows: 

        
9

i i
i 1

u t g x t x t


  F  (25) 

where the controller gains are solved as follows: 

  1 147.0585 69.0424F , 

  2 146.1067 69.0424F , 

  3 145.1549 69.0424F , 
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Fig. 4. Responses of nonlinear model of rolling of a ship (Real system: 
blue solid, T-S fuzzy mode: red dashed). 

 
 

  4 147.0585 67.1293F , 

  5 146.1067 67.1293F , 

  6 145.1549 67.1293F , 

  7 147.0585 65.2162F , 

  8 146.1067 65.2162F , 

  9 145.1549 65.2162F . 

To assess the effectiveness of the PDC controller, we apply 
the controller to control the original lift feedback fin stabilizer 
system of a ship.  Simulations indicate that the control law can 
balance the lift feedback fin stabilizer system of a ship with the 
multiplicative noises.  Moreover, the simulation results are 
presented in Fig. 4, in which the blue The Fig. 4 shows the 
responses by each degree of the ship and its corresponding 
time.  The results in Fig. 4 are obtained with the initial condi-

tion 
T

(0) 0
18

x
    

. 

In the simulations, the external disturbance w(t) is chosen 
as a zero mean white noise with variance one.  From the si- 
mulation results, the effect of the external disturbance on the 
proposed system can be criticized as follows: 

 
    
    

p

p

 T

 0

 T

 0

2   d
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  d

t

t

E y t w t t

E w t w t t






U
 (26) 
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The ratio value of (26) is bigger than determined dissipation 
rate  = 1, one can find that the condition (6) of Definition 1 is 
satisfied.  Therefore, the considered nonlinear lift feedback fin 
stabilizer fuzzy control system of a ship (22) with multiplica-
tive noises can achieve asymptotical stability in mean square 
and strict input passivity constraint by the proposed fuzzy 
controller (25).  Therefore, the systematic design and stability 
analysis of a lift feedback fin stabilizer fuzzy control system of 
a ship is validated to be effective in this paper. 

V. CONCLUSIONS 

In this paper, the passive fuzzy controller design method-
ology for a nonlinear lift feedback fin stabilizer system of a 
ship was studied.  The considered nonlinear system was con- 
structed by a stochastic T-S fuzzy model with multiplicative 
noises.  Applying passivity theory and Itô’s formula, the ex-
ternal disturbance and multiplicative noise characteristics can 
be analyzed by the energy concept and the stochastic differ-
ential equation.  Based on the PDC concept, the proposed fuzzy 
controller design approach was carried out by solving the LMI 
stability conditions.  Therefore, the control design problem can 
be solved efficiently in practice by MATLAB LMI-Toolbox and 
convex programming techniques.  In the numerical example, a 
lift feedback fin stabilizer system of a ship was introduced to il- 
lustrate the usefulness and effectiveness of the proposed fuzzy 
control design methodology. 
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