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ABSTRACT 

The automatic recognition of traffic flow regions can provide 
decision support for ships’ automatic route design and route plan- 
ning.  This study analyzes the characteristics of ships’ trajectory 
structures and builds a course and distance model.  Pearson 
correlation coefficients are used for measuring the similarities 
of the models and clustering trajectories, and kernel density es- 
timation is used for estimating the probability density of clustered 
trajectories.  An automatic recognition algorithm for traffic flow 
regions is proposed.  This study examines ships’ automatic iden- 
tification system data in Laotieshan channel, China.  The traffic se- 
paration scheme regions and traffic intersectional regions are 
recognized automatically, and the obtained results show good 
agreement with actual circumstances, thus verifying the appli-
cability of the algorithm. 

I. INTRODUCTION 

Marine traffic refers to the combination of ships’ motions and 
behaviors in designated water areas.  An analysis of marine traf- 
fic characteristics provides decision-support information for ships’ 
automatic routing design and route planning (Qi, 1991).  In 
marine transportation, ships’ traffic flow represents the summa-
tion of vehicles, such as ships, that are in continuous motion with 
certain fluid characteristics (Liu et al., 2014).  Position, direction, 
width, density, and speed are the five basic characteristics of ships’ 
traffic flow (Wu and Zhu, 2004). 

According to the Safety of Life at Sea Convention, from 2002 
onward, international voyage ships weighing over 300 gross tons 
and domestic cargo and passenger ships weighing over 500 tons 
have been required to install automatic identification system 
(AIS) equipment.  AIS equipment is also being installed in an 

increasing number of fishing vessels.  Ships’ static, dynamic, and 
voyage information is transmitted automatically and continu-
ously through such systems, which can also receive this infor- 
mation from surrounding ships and exchange information with 
shore-based AIS stations (IMO, 2005).  Owing to the establish- 
ment of AIS base station networks in various countries and the 
emergence of satellite-borne AIS groups, these systems have 
become a nearly real-time source of marine traffic information 
(Pan et al., 2010).  By using AIS data collected over various time 
periods such as a month or a year and performing various cal- 
culations, ships’ trajectory distributions can be determined.  From 
these results, traffic flow positions and distributions can be iden- 
tified, marine traffic characteristics can be determined, and ships’ 
behaviors can be analyzed to study the distribution of ships’ 
speeds and courses (Tang et al., 2015).  Considerable informa-
tion about shipping traffic is hidden within AIS trajectory big 
data (Zhu et al., 2012).  Through analysis of such data, hitherto 
unknown traffic information can potentially be extracted, and 
marine traffic flow regions can be recognized automatically, thus 
providing technical support and a decision-making basis for auto- 
matic routing design and route planning. 

Clustering refers to the process of dividing sets of physical 
or abstract objects into various categories with similar objects.  
Cluster analysis separates groups of data objects into groups 
with higher and lower similarity (Chen et al., 2007).  Trajectory 
clustering seeks out trajectories with the same motion mode and 
measures the similarity among them by analyzing their charac-
teristics and the inner motion mode.  Trajectories with high si- 
milarity can be placed in the same category.  Common clustering 
algorithms such as K-MEANS, BIRCH, and DBSCAN mostly 
cluster sampling positions in a trajectory; however, character-
istics and motion trends cannot be determined from this overall 
perspective (Lee et al., 2007). 

At present, various types of trajectory similarity measurement 
methods are available: methods based on the Euclidean distance 
can only be used for measuring the similarity of trajectories in 
ships of the same length, whereas methods based on longest com- 
mon subsequence, dynamic time warping, Hausdorff distance, 
and one-way distance can be used for measuring the similarity 
of trajectories of ships with different lengths.  Yuan et al. (2011) 
proposed a trajectory clustering algorithm based on structural 
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similarity.  However, all trajectory measurement methods based 
on similarities have disadvantages in that they overemphasize 
the algorithm efficiency; that is, they neglect the characteristics 
of the trajectory and cannot effectively manage abnormal situa-
tions that arise because of data acquisition. 

Pearson correlation coefficients (PCCs) can be used to quan- 
titatively measure the similarity of two variables X and Y.  They 
have been used by Zhang (2015) to quantitatively analyze rela-
tionships among various living species, Jiao (2009) to analyze 
data on land use in 40 counties in Chongqing, China, and Yang 
(2015) to analyze pollution indexes in Beijing.  Wang (2012) 
introduced PCCs in multicomponent seismic exploration and 
used them to detect the rotation angle and then separate fast and 
slow waves.  Compared with the traditional cross-correlation 
method, the PCC method has higher accuracy, noise immunity, 
and computational efficiency. 

For extracting trajectory characteristics, this study developed 
a course and distance model, used PCCs for measuring the tra- 
jectories’ similarity, clustered ships’ trajectories, applied kernel 
density estimation (KDE) to predict trajectory clusters’ boun- 
daries, and finally proposed a systematic approach for the auto- 
matic recognition of traffic separation schemes and traffic flow 
intersectional regions. 

The proposed model and algorithm afford numerous advan-
tages, such as a track model characterized by fewer parameters, 
a consistent structure, and ease and speed of manipulation.  The 
PCC-based clustering algorithm is simple and adaptable, and the 
use of KDE helps determine the boundaries of every discrete 
point set.  This study examined traffic flow in the Laotieshan 
channel, China.  Two weeks of sample data were used to build 
the track model, and a clustering algorithm was used to auto-
matically identify the main track clusters in these waters.  A 
comparison between the obtained results and the currently used 
traffic lane boundaries in the channel showed good agreement, 
indicating that the boundary estimation algorithm that tracks 
clusters can accurately reflect the geographical position of 
boundaries; this method is therefore highly applicable. 

II. SHIP TRAJECTORY MODEL 

Traffic speed and traffic density are two key parameters for 
measuring traffic flow.  Each traffic flow trajectory can be de- 
scribed through three parameters: course, distance, and position.  
This study determined the relationship between course and dis- 
tance to build a relevant model. 

1. Data Preprocessing 

In this study, AIS data for the Bohai Straits was collected and 
recorded between September 14 and 27, 2015, from a single 
AIS ship station, and was then decoded using selected data in 
the longitude range of 12052′.00 E to 12230′.00 E and latitude 
range of 3730′.00 N to 3900′.00 N.  Some AIS information 
sent by ships beyond the AIS receiving range of coast stations 
or due to AIS equipment failure resulted in mistakes in the tra- 
jectory and potentially the omission of some waypoints (Graveson,  
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Data Cleaning

Data
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AIS Data
Sample

Single Ship’s AIS Data

MMSI

 
Fig. 1.  AIS data preprocessing. 

 
 

2004).  These factors affected the classification and recognition 
of a single ship’s manipulation behavior.  Thus, AIS data clean- 
ing, interpolation, and transfer were necessary to obtain data sets 
that satisfied the requirements.  Fig. 1 shows the preprocessing 
steps for AIS data. 

As Maritime Mobile Service Identity (MMSI) has been im- 
plemented worldwide, the trajectory data from the same MMSI 
must be implemented in the following situations: 

 
(1) As the maximum update interval of a ship’s AIS dynamic 

information is 3 min, when the interval between these ships’ 
position information exceeds 3 min, a segmenting process 
is needed. 

(2) As the length of Laotieshan’s traffic separation scheme is 
9 nm, these should be segmented if the distances between 
ships’ positions exceed 9 nm. 

2. Calculation of Trajectory 

When a ship proceeds along a constant course, its trajectory 
is a rhumb line.  It crosses all meridians of longitudes at the same 
angle, that is, the path has constant bearing as measured rela-
tive to the true or magnetic north.  A ship will typically take a 
course represented by a rhumb line between two waypoints.  
Therefore, connecting all position points of the ships’ AIS data 
forms rhumb lines, as shown in Fig. 2.  The trajectory segments 
O1O2, O2O3, and O3O4 are rhumb lines.  The course and distance 
of the rhumb line between two waypoints can be calculated by 
Eqs. (1) and (2), respectively. 

The course A between every pair of adjacent waypoints in 
the trajectory can be calculated as follows: 

 2 1
1

1 2 1 2 1

sin( )
tan

cos tan sin cos( )
o o

o o o o o

A
 

    



 

 (1) 

Here,  and  are the longitude and latitude of the waypoint, 
respectively. 
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Table 1.  Detailed steps in model for course and distance. 

Algorithm: Model of Course and Distance 

Input Parameter: Points P1, P2, , Pn % One Point (, ); 

Output Parameter: Array[360] % Size 360 One Unit [A, S]; 

Array[·] = [0, 0]; % initial Array state: zero 

for i = 1:1:n-1  

[Ai, Si] = GetCourseAndDistance (Pi, Pi1); % formula (1) & fomula (2); 

Ai = int(Ai) % Get the integer number of Ai; 

Array[Ai] = [Ai, Si];  

end  

return Array;  
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Fig. 2.  Example of trajectory. 

 
 
The distance S between two adjacent waypoints in the tra-

jectory can be calculated as follows: 

 1 2 1 1 2 1cos sin sin cos cos cos( )o o o o o oS          (2) 

3. Construction of Course and Distance Model 

The course and distance model shows the statistical rela-
tionship between the course and distance of a single trajectory.  
This model consists of 360 data points, the abscissa of which is 
0, 1, 2, , 358, 359; each data point describes the distance 
component of the trajectory in the course. 

For example, if a trajectory contains n points, Eqs. (1) and 
(2) can be used to calculate each segment’s course and distance 
(Ai, Si), i  [1, 2 , n].  The course and distance model consists 
of 360 points.  Assume that point P is the ith point and that its 
coordinate is (Ai, Si), i  [1, 2 , n]; other points’ coordinates 
can be calculated similarly using Eq. (3).  Table 1 shows the 
algorithm. 

  ,
i i i iA AP P A S      
   (3) 

Here, [A] is the round down for course A.  [Ai]  [0, 1, 2 , 
359], i  [1, 2 , n]. 

The model of course and distance has the following advan-
tages: 
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Fig. 3.  Example of the course and distance model. 

 
 

(1) It does not compress the AIS data, thus maintaining the 
integrity of the data and the topological property of the tra- 
jectory points. 

(2) The model has a simple structure, and just 360 data points 
are needed to describe any trajectory. 

(3) The data points of every two trajectories are equal, being 
360, and thus, there is no need to perform interpolation or 
normalization processing for trajectory big data; instead, 
similarity measurements can be performed directly. 

 
Fig. 3 shows the model of course and distance for two tra-

jectories in the Bohai Strait, China. 

III. SHIP TRAJECTORY CLUSTERING 

After course and distance models for every trajectory are built, 
the similarity between models of different trajectories and clus-
ters should be measured.  This study used PCCs to measure the 
similarities in the models in terms of the course and distance of 
every trajectory and as a parameter for clustering. 

1. Pearson Correlation Coefficient 

The PCC quantitatively measures the similarity of variables 
X and Y in the range [1, 1].  X has an entirely positive linear  
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Fig. 4.  PCC values of 1, 1, and 0. 
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Fig. 5.  Other PCC values. 

 
 

correlation with Y if the correlation coefficient is 1, as shown 
in Fig. 4(a).  X has an entirely negative linear correlation with 
Y if the correlation coefficient is 1, as shown in Fig.e 4(b).  X 
and Y have no linear dependency if the correlation coefficient 
is 0, as shown in Fig. 4(c).  However, in most cases, the cor-
relation coefficient obtained using Eq. (4) is neither 1 nor 1; 
Fig. 5 shows some examples of the linear dependency of X and 
Y for other correlation coefficient values. 
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 (4) 

In Eq. (4), X and Y are the set of x and y coordinates of all 
points, respectively;  is the variance, COV is the covariance, 
E() is the standard deviation, and N is the number of samples. 

The necessary and sufficient condition for the existence of 
PCCs is that the standard deviation of the variable is not zero.  
Considering that the standard deviation of the course and dis- 
tance model can be zero only when a ship tracks a circle or when 
it is still, and because of the existence of inaccuracy in the lo-
cator measurement and in the numerical precision of computers, 
the probability of the correlation coefficient not existing is ex- 
tremely low.  When the geographic position or course are not 
considered, similarities in trajectory are mainly determined by 
measurement of structural similarity (Yuan et al., 2011). 

2. Similarity Measurement 

Three groups of trajectories can be compared.  If the struc- 
tures of trajectories are similar and the courses are close, the cor- 
relation coefficient of the course and distance model is greater  
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Fig. 6.  Clustering process. 

 
 

than 0.  If the structures of trajectories are similar and the courses 
differ from each other by 180, the correlation coefficient is less 
than 0.  If the structures of trajectories and the courses are both 
different, the correlation coefficient is again less than 0.  This is 
because the necessary and sufficient condition for the existence 
of PCCs is that the standard deviation of the variable is not zero. 

3. Examples of Clustering 

With regard to the trajectory, not only its structure and course 
but also its geographic position should be considered.  If the 
structural similarity between two trajectories is high but they 
are far away from each other, it would be meaningless to study 
them.  The course and distance model only considers the tra-
jectory’s structure and course without considering the impact  
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Fig. 7.  Clustering result. 

 

 
of geographical position while clustering, because it measures 
the distances between the geometric centers of trajectories with 
the same structures and courses in different geographic areas.  
These distances between geometric centers are related to the 
traffic flow width.  In this paper, the threshold for the distances 
of geometric centers is 20 nautical miles. 

After a course and distance models are built and the similari-
ties are measured, ships’ trajectories should be clustered.  Fig. 6 
shows a flowchart of the process used for clustering ship trajec-
tories in the Bohai Strait, and Fig. 7 shows the results. 

IV. ESTIMATION OF TRAFFIC FLOW  
REGION BOUNDARIES 

Assorted trajectory clusters obtained through clustering re- 
present different traffic flows and different ships’ behavior.  Ships’ 
trajectory points are a discrete point set distributed in Mercator 
coordinates signifying two-dimensional space.  The point set dis- 
tributes in a close and orderly manner.  In probability statistics, 
it is a basic challenge for a given point set to solve the distribu-
tion probability density function.  Picard (2000) proposed a den- 
sity estimation approach by summing up the loose boundaries 
of a point set.  In this study, KDE was used to estimate the dis- 
tribution of a trajectory cluster in two-dimensional space, thereby 
obtaining the boundaries of trajectory clusters and recognizing 
intersectional regions of traffic flow and traffic lanes. 

1. Kernel Density Estimation 

In statistics, KDE is a nonparametric method used for esti-
mating the probability density function of a random variable 

(Li et al., 2004).  KDE is a fundamental data smoothing prob-
lem in which inferences about a population are made based on 
a finite data sample (Parzen, 1962).  In some fields, such as sig- 
nal processing and econometrics, it is also called the Parzen- 
Rosenblatt window method.  The KDE formula of the density 
function of a point set zj(j  [1, 2 , N]) is given as follows: 

 
1 1ˆ ( ) ( )jx x

f x k
N h h


  (5) 

In Eq. (5), k() is the kernel function, and the most useful kernel 

function is the Gauss kernel function 
21

2
1

( )
2

x
k x e




 , and  

h is the window width or smoothing function.  Kroese et al. 
(2014) presented a linear diffusion kernel density estimator that 
solves problems such as the deviation of boundary estimation 
in the Gaussian kernel function and excessive smoothness of 
density between point sets. 

When Eq. (5) was set to be Gaussian KDE, Eq. (6) was ob- 
tained: 

 

2( )1 def
2

1

1 1 1ˆ ( ; ) ( ; ; )
2

ix x N
t

i
i

f x t e x x t
N Nt









    (6) 

When ˆ ˆlim ( ; ) 0, ( ; ) ( ),
x

f x t f x t x


    and Eq. (7) is ob-

tained: 

 
2

2

1ˆ ˆ( ; ) ( ; ), 0,
2

f x t f x t t x R
x x

 
  

 
 (7) 

Eq. (7) satisfies the heat equation, and (x) is the empirical 
density formula. 

From Eq. (7), ˆ ( ; ) ( )f x t x   is the heat equation based  

on the initial Neumann boundary condition 

1
1

ˆ ˆ( ; ) ( ; ) 0x
x

f x t f x t
x x



 
 

 
 with the defining field of  

[0, 1] . 
Set 

 ( ; ; ) ( ; 2 ; ) ( ; 2 ; )i j j
k

x x t x k x t x k x t  




     (8) 

Then, 

 
1ˆ ( ; ) ( ; ; ), [0, 1]j

k

f x t x x t x
N






   (9) 

If h (window width) in Eq. (5) is sufficiently large, 

 
2 21

/ 2
2

1

( ; ; ) 1 cos( ) cos( )
k t

i j
k

x x t e k x k x


  
 



   (10) 
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When t   and n is sufficiently large, 

 
2 2

1 1
/ 2

1 0

1ˆ ˆ( ; ) 2 cos cos( )
n n

k t
i

k i

i
f x t k f e k x

n n
 

 


 

     
  

   (11) 

where ˆ
if  is the number in the domain , ,
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0, , 1i n  . 

The heat equation of the kernel density function in two- 
dimensional space is 
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1 2
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 (12) 

2. Example of Boundary Estimation 

KDE can be applied to determine the closeness of trajectory 
points and reflect the traffic flow density through the numerical 
probability density (Rosenblatt, 1956).  As shown in Fig. 8, in 
the Mercator coordinate system, the X–Y axis indicates the po- 
sitions of track points and the Z axis indicates the probability 
density function f(x, y).  The value of f(x, y) represents the den- 
sity of traffic flow.  As the update interval of position informa-
tion in AIS data is changeable, it is necessary to interpolate AIS 
data equidistantly before estimating the kernel density. 

To verify the KDE algorithm, this study uses the traffic flow 
density data from Fig. 9 to estimate the boundary of trajectory 
clusters.  It is easy to obtain the probability density boundary 
by setting the probability density  = 0.05, as shown in Fig. 9.  
The boundaries contain the complete trajectory, and they accu-
rately estimate the traffic flow region trajectory points described 
by the trajectory cluster. 

Table 2.  Analysis of probability density contours. 

 Match Probability Density of 
the Channel Length 

Max Density Percen-tage

North 1.59*10e-9 1.83*10e-9 86.9 

South 1.22*10e-9 1.41*10e-9 86.5 

 
 

4.64

4.62

4.6

4.58

4.56

4.54

4.52
1.345 1.35 1.355 1.36

×107

×106 a(0.05/107) Section View

1.365
X

Y

 
Fig. 9.  Boundary of trajectory cluster. 
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Fig. 10.  Contours of probability density. 

 

3. Recognition of Traffic Lane Region 

The automatic recognition of traffic separation scheme regions 
can provide technical support for auto-routing designs and route 
planning.  This study examines ships’ traffic flow data in the 
Laotieshan Traffic Separation Scheme (TSS) and determines the 
probability density contours.  Fig. 10 shows the estimated width 
and boundary of the Laotieshan TSS; it shows good agreement 
with the actual boundary and has high precision.  As shown in 
Table 2, the width of the traffic lane is the estimated boundary 
corresponding to the Min density, and the length is the estimated 
boundary corresponding to 86% of the Max density. 
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Fig. 11.  Intersection of traffic flow (a). 

 

4. Recognition of Traffic Flow Intersection Regions 

Different trajectory clusters reflect different ships’ behaviors, 
and different ships’ behaviors produce traffic flow with different 
characteristics.  Thus, the automatic recognition of traffic flow 
intersection regions is helpful for marine traffic management.  
Here, we choose the sectional view of 0.02  10−9 density (= 2% 
of max(f(x, y))), as shown in Fig. 11. 

The recognition of traffic flow intersection regions can pro- 
vide technical support and suggestions for route planning.  A 
separation zone can be set up in intersection regions with op- 
posite traffic flows, and when the impact of the crossing traffic 
flow shown in Fig. 12 is considered, the length and width of the 
separation zone can be set as 13 nm and 1.8 nm, respectively. 

Geographic position of water in separation zone: 

North boundary: 

3750.80 N, 12138.00 E 
3747.00 N, 12154.00 E 

South boundary: 

3749.50 N, 12135.08 E 
3745.00 N, 12153.00 E 

V. CONCLUSION 

By using AIS data and data mining technology, this study 
proposes a new approach for the automatic recognition of ma- 
rine traffic flow regions.  In comparison with the traditional 
data mining and clustering method, the proposed traffic model 
affords advantages such as few parameters, minimal data, and 
convenient calculations.  The automatic recognition of traffic 
flow is highly applicable and can provide technical support for 
automatic route design and route planning.  Additionally, it can 
help support supervisory and management departments with de- 
cision making.  Upcoming research will be conducted on the key 
technologies for traffic efficiency of KDE in traffic separation 
schemes and the estimation of the coverage and communication 
efficiency of AIS ship stations. 
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Fig. 12.  Intersection of traffic flow (b). 

ACKNOWLEDGEMENTS 

This work was financially supported under Fundamental 
Research Funds for the Central Universities grant number 
3132016002 and Natural Science Foundation of Liaoning 
Province of China grant number 20170540090. 

REFERENCES 

Chen, J. D., X. F. Meng and C. F. Lai (2007). Clustering objects in a road 
network. Journal of Software 18(2), 332-344. 

Graveson, A. (2004), AIS-An Inexact Science, Journal of Navigation, 57, 
339-343. 

Jiao, Q. D., Q. Y. Yang and Y. B. Feng (2009). Research on land-use division 
of Chongqing based on pearson hierarchical clustering. Journal of Southwest 
University 31(6), 173-178. 

Kroese, D. P., C. Joshua and C. Chan (2014). Statistical Modeling and Com-
putation: Joint Distributions, Springer, New York. 

Kroese, D. P., T. Taimre and Z. I. Botev (2011). Handbook of Monte-Carlo 
methods. John Wiley & Sons, New York. ISBN: 978-0-470-17793-8. 

Lee, J. G., J. W. Han and K. Y. Whang (2007). Trajectory Clustering: A Parti-
tionand-group Framework. Proceeding of the 2007 ACM SIGMOD In-
ternational Conference on Management of Data. Beijing, China, 593-604. 

Li, C. H., Z. H. Sun, G. Chen and Y. Hu (2004). Kernel Density Estimation and 
Its Application to Clustering Algorithm Construction, Journal of Com-
puter Research & Development 41(10), 1712-1719. 

Liu, Z., J. X. Liu, F. Zhou and Z. W. Guo (2014). Behavior Characteristics of 
Vessel Traffic Flow and its Realization in Marine Traffic Organization, 
Journal of Dalian Maritime University 40(2), 22-26. 

Pan, J. C., Z. P. Shao and Q. S. Jiang (2010). Application of Data Mining 
Technology in Analysis of Marine Traffic Characteristics, Navigation of 
China, 33(2), 60-62. 

Parzen, E. (1962). On Estimation of a Probability Density Function and Mode, 
The Annals of Mathematical Statistics, 33(3), 1065. 

Picard, N. and A. Bar-Hen (2000). Estimation of the envelope of a point set 
with loose boundaries, Applied Mathematics Letters 13(07), 13-18. 

Qi, C. X. (1991). Ship Transportation Safety at inland waters, Dalian: Dalian 
Maritime University, 48-50. 

Rosenblatt, M. (1956). Remarks on Some Nonparametric Estimates of a Den- 
sity Function, The Annals of Mathematical Statistics 27 (3), 832. 

Tang, C. B., B. L. Zhong, Q. R. Tang (2015). Fulfillment on Diagrams of Po- 
sition Distribution for Ship Speed Based on AIS, Journal of Guangzhou 
Maritime Institute 23(1), 5-8. 

Wang, K., X. Feng and C. Liu (2012). Wave Filed Separation of Fast-slow 
Shear Waves by Pearson Correlation Coefficient Method, Global Geology 



 W.-F. Li et al.: Automatic Recognition of Marine Traffic Regions 91 

 

31(2), 371-376. 
Wu, Z. L. and J. Zhu (2004). Marine Traffic Engineering, Dalian: Dalian Mari- 

time University, 57-58. 
Yang, N., D. G. Ji and S. J. Li (2015). The Application of Pearson Correlational 

Analysis Method in Air Quality Analysis of Being- Tianjin-Hebei Region. 
Agricultural Science & Technology 16(3), 590-592. 

Yuan G., S. X. Xia, L. Zhang, Y. Zhou (2011). Trajectory Clustering Algorithm 

Based on Structural Similarity, Journal of Communications 32(9), 103-109. 
Zhang, Y. L., Y. Dang, P. G. He (2015). Quantitative Analysis of the Relationship 

of Biology Species Using Pearson Correlation Coefficient, Computer En-
gineering and Its Application 33, 79-83. 

Zhu, F. X., Y. J. Zhang, Z. J. Gao (2012). Research on ship behaviors based on 
data mining, Journal of navigation of China 35(2), 50-54. 

 
 
 


	AUTOMATIC RECOGNITION OF MARINE TRAFFIC FLOW REGIONS BASED ON KERNEL DENSITY ESTIMATION
	Recommended Citation

	AUTOMATIC RECOGNITION OF MARINE TRAFFIC FLOW REGIONS BASED ON KERNEL DENSITY ESTIMATION
	Acknowledgements

	untitled

