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ABSTRACT 

This study developed and evaluated an integrated inventory 
model incorporating production programs and maintenance to 
model an imperfect process of a deteriorating production system 
in firm’s activities of inbound logistics and production.  Two pre- 
ventive maintenance activities are performed during each pro- 
duction run period: perfect preventive maintenance and imperfect 
preventive maintenance.  The perfect preventive maintenance’s 
probability depends on the number of imperfect maintenance 
operations performed resulting from the last renewal cycle.  The 
occurrence of a failure causes defective products which have a 
certain number of the ability of rework and not to be rework, 
and those cannot rework will lead to shortages.  Experiments 
showed that the model optimizes the number of shipments and 
costs.  The model is applied in various special cases to evaluate 
failure rate, including Weibull, geometric and learning effect.  
Finally a numerical example is presented. 

I. INTRODUCTION 

To determine what activities enhance firm performance and 
customer value, Porter (1985) suggested a value chain analysis 
that groups firm activities into primary activities and support ac- 
tivities.  Primary activities that directly create value for custo- 
mers include inbound logistics, operation/production, outbound 
logistics, marketing/sales and service.  Support activities, includ- 
ing procurement, technology development, human resource man- 
agement and infrastructure, enhance primary activities for better 

coordination and process improvement.  However, to maximize 
the customer value and minimize the firm cost, cooperation with 
the activities of upstream vendor and downstream retailer is re- 
quired (Porter, 1985).  That is, a supply chain must be constructed. 

A supply chain is a complex system that consists of component/ 
raw material suppliers, manufactures, wholesalers/distributors 
and retailers involved directly or indirectly to fulfill customer 
requests (Chopra and Meindl, 2004).  In today’s business, a close 
cooperation with each supply chain member is necessary to de- 
crease cost, especially the joint total inventory cost.  Just-in-time 
(JIT) manufacturing is a useful technique for achieving coope- 
ration target.  A JIT system is characterized by high quality, small 
lot sizes, frequent delivery, short lead time, and close supplier ties. 

In the context of supply chain management, Bowersox et al. 
(2002) reported that managers can minimize total costs by build- 
ing integrated logistics models that include order processing, 
inventory, transportation, warehousing, materials handling, pack- 
aging and facility network.  This study investigated inventory 
cost in activities of inbound logistics and production in a supply 
chain.  The inbound logistic activities begin from moving raw 
materials from venders to firm’s storage place and then move 
again to the plant for manufacturing.  Accordingly, inventory costs 
include inbound logistic costs of material handling, transportation- 
in, order processing, storage space, and carrying in addition to 
the cost of purchasing.  Coyle et al. (2003) indicated that a classic 
interface area between inbound logistics and production relates 
to the length of the production run, which in turn decides the 
production lot quantity in each run.  Lambert and Stock (1999) 
showed that the costs of production lot quantities include the 
costs of setup time, inspection, capacity lost due to changeover as 
well as materials handling, scheduling, and expediting.  Therefore, 
the cost of production lot quantities will become part of inven-
tory cost. 

Although high product quality is the main concern of cus-
tomers, the literature on the Integrated Inventory Model usually 
assume that all products produced by the vender have perfect 
qualities.  However, failure process often occurs in every work- 
place.  Accordingly, it is realistic to assume that production some- 
times is imperfect.  Such a production process is called imperfect 
production. 

A stable production quantity requires good condition of the 
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whole production system.  For a good production system, the 
manufacturer must perform preventive maintenance strategy.  
In reliability engineering, the optimal determination of preven-
tive maintenance (PM) strategy is important because it can slow 
degradation of the system during operation and extend the sys-
tem lifetime. 

Unexpected breakdown of production equipment is inevita-
ble.  Following each failure, one of two breakdown policies is 
taken: (1) perform a major repair or (2) take a minimal repair, 
considering minimization of maintenance cost.  The major re-
pairs reset the system failure intensity and are very expensive.  
Therefore, the main goals should be performing minimal repairs 
and restoring the system to operational status. 

We divided the literature review into three parts: (1) JIT 
system, (2) Integrated inventory and (3) Imperfect production 
and preventive maintenance policy. 

1. JIT System 

In the highly competitive globalized environment of today, 
supply members with a quick customer response are likely to 
gain market share.  Accordingly, supply chain members attempt 
to manage their supply chain effectively.  A JIT system is an ef- 
fective way to achieve this target (Hahn et al., 1983).  With a 
close ties relationship with suppliers, Banerjee (1986) proposed 
a model which incorporated with JIT purchasing and JIT manu- 
facturing and found that a joint integrated inventory replenish-
ment policy had significantly higher efficiency compared to 
independently derived policies for a buyer and a supplier.  Mar-
tinich (1997) also described the substantial benefits of estab-
lishing a long-term sole-supplier relationship with a supplier.  Ha 
and Kim (1997) addressed the necessity of integration between 
buyer and supplier for effective implementation of the JIT sys-
tem.  They developed an integrated lot-splitting model to faci- 
litate multiple shipments in small lots.  Comparisons with the 
existing approach in a simple JIT environment showed that the 
integrated approach can reduce the total cost for the vendor and 
the buyer over the existing approaches.  Khan and Sarker (2002) 
proposed a two-stage integrated inventory system to incorporate 
the JIT concept in the conventional joint batch-sizing problem.  
Pan and Yang (2002) presented an integrated model with con-
trollable lead time in a JIT environment.  Yang (2007) proposed 
a single buyer and a single vendor integrated inventory model 
order policy and used fuzzy theory to forecast productivity and 
demand. 

2. Integrated Inventory 

The advantages of the integrated inventory model include 
improved quality, lowered inventory cost, technology sharing and 
reduction of lead time.  Harris (1913) proposed the Economic 
Order Quantity (EOQ) model to minimize total inventory cost, 
including purchasing cost, carrying cost, ordering cost and stock- 
out cost.  Many researchers then extended this model to fit in with 
the conditions in the actual business environment.  Correspond-
ingly, this paper will research the EOQ and economic produc-
tion quantity (EPQ) in manufacturers of integrated supply chain 

model. 
The first integrated inventory model was published by Goyal 

(1976), who deduced that the optimal order time interval and 
production cycle time can be obtained by supposing that the 
supplier’s production cycle time is an integer multiple of the 
customer’s order time interval.  In 1988, Goyal extended the 
Banerjee (1986) model by relaxing the lot-for-lot policy and 
assumed that the economic production quantity of the vendor 
must be an integer multiple of the purchase quantity of the buyer, 
which results in a lower joint total relevant cost.  Ramasesh (1990) 
separated the total order cost of the EOQ model into the cost of 
placing a contact order with multiple small lots shipments.  Lu 
(1995) developed a one-vender multi-buyer integrated inven- 
tory model with the objective of minimizing the total annual 
costs incurred by the vendor subject to the maximum cost that 
the buyer may be prepared to incur.  Lu also proposed a heuristic 
solution for the single-vendor multi-buyer integrated inventory 
problem.  Ha and Kim (1997) presented an integrated lot-splitting 
model of facilitating multiple shipments in small lots, one- 
vender, one-buyer, under deterministic conditions for a single 
product, and compared it with existing models of the JIT en-
vironment.  Yang et al. (2013) considered the time of the in-
ventory model with single buyer and single vendor.  In their 
model, the inventory cost changes with inventory cycle time.  Yang 
and Lin (2012) proposed a single-vendor and multiple buyer 
integrated inventory model with a normal distribution of lead 
time demand. 

3. Imperfect Production and Preventive Maintenance Policy 

To maintain global competitiveness, manufacturers require 
a production policy that effectively controls inventory levels 
in the face of uncertainty regarding production failure and de- 
mand.  Porteus (1990) assumed that the probability of a shift from 
the “in-control” state to the “out-of-control” state has a given 
value for each production item.  This study developed models 
for two maintenance activities: (1) performing a major repair, 
and (2) performing a minor repair, considering minimization 
of maintenance cost. 

Lam and Yeh (1993) presented algorithms for deriving op-
timal maintenance policies that minimize the mean long-run 
cost-rate in continuous-time Markov deteriorating systems.  Five 
maintenance strategies were considered, including failure replace- 
ment, age replacement, sequential inspection, periodic inspec- 
tion, and continuous inspection.  Tseng (1996) demonstrated a 
Perfect maintenance that can increase the reliability of a dete-
riorating system.  Through perfect maintenance, the production 
system is returned to a like-new state after following each PM 
action.  Sheu et al. (2006) considered periodic preventive main- 
tenance policies, which maximizes the availability of a repair-
able system with major repair at failure.  The three categories 
of preventive maintenance are imperfect preventive maintenance 
(IPM), perfect preventive maintenance (PPM) and failed pre- 
ventive maintenance (FPM).  The probability that preventive 
maintenance is perfect depends on the number of imperfect main- 
tenance activities performed since the previous renewal cycle 
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and on the probability that preventive maintenance remains im- 
perfect is not increasing.  Liao et al. (2009) presented an inte- 
grated EPQ model that incorporated EPQ and maintenance 
programs.  This model considered imperfect repair, preventive 
maintenance and rework on the damage of a deteriorating pro- 
duction system as well as various special cases, such as the 
maintenance learning effect.  The model in Liao et al. (2009) 
was then extended in Liao (2012) by relaxing the model of a 
backorder owing to rejection of defective parts after a failure.  
This study found that the optimal policy condition demonstrated 
was more flexible than previously described policies.  The au-
thors also discussed the effects of number of non-reworkable 
defective products, minimal repair cost, and other factors.  Khan 
et al. (2011a) developed an EOQ model that considers (a) cost 
of inspection; (b) cost of Type I errors and; (c) cost of Type II 
errors.  After being classified by the inspector and buyer, the 
defective items would be salvaged as a single batch and sold at 
a lower price.  In addition, Khan et al. (2011b) presented a paper 
that reviewed literature relevant to extensions of the EOQ mo- 
del for items of imperfect quality.  The review herein provides 
a useful resource for researchers currently to engage in the work 
of inventory systems with imperfect item. 

II. GENERAL MODEL 

To construct the model, relevant notations are defined as 
follows: 

 
D average demand per year 

P production rate, P > D 

Q order quantity 

T time of inventory cycle 

Ch inventory cost rate per unit per year 

Cv vendor’s production cost per unit 

Cp purchaser’s purchase cost per unit 

Qd Number of non-re workable defective products at each failure

Rb Backorder cost per unit 

Qrw Number of re-workable defective products at each failure 

Rrw Rework cost per unit 

Cm Minimal repair cost at each failure 

Co purchaser’s ordering cost 

Cs vendor’s set-up cost 

Cpm cost of each PM 

R breakdown rate of unit 

M 
integer number of lots of items delivered form 
vender to purchaser 

jP  probability of j PM are imperfect maintenance 

Pj 
probability of j PM is perfect maintenance which following 

the (j-1) imperfect PM: 1j j jp p p   production run period.

 
Moreover, the following assumptions are made. 
 

(1) The demand rate, setup cost, ordering cost and holding cost 
are known constants. 

(2) Backorder is permitted during the inventory depletion pe- 
riod. 

(3) The original system begins operating at time 0.  The pro-
duction process begins in an in-control state and produces 
perfect items. 

(4) Setup cost Cs is incurred at the start of each inventory cycle.  
PM is performed following the production run period.  The 
cost of each PM is Cpm. 

(5) A system has two types of PM at cumulative production 
run time j.  T( j = 1, 2, 3 ) based on outcome. 
 type-I PM (imperfect PM) results in the system having 

the same failure rate as before PM, with probability jp . 

 type-II PM (perfect PM) makes the system as good as 
new, with probability 1j j jp p p  . 

(6) Following a perfect PM, the system returns to age 0. 
(7) If failure occurs before the scheduled PM, the system shifts 

into the ‘‘out-of-control’’ state, then minimal repair can be 
made immediately.  Minimal repair merely restores the sys- 
tem to a functioning state following failure, so the produc- 
tion process returns to the in-control condition.  The backorder 
occurs because of insufficient production following rejec- 
tion of defective parts.  The minimal repair cost at each fail- 
ure is Cm while the backorder cost per unit is Rb.  The number 
of defective products at each failure is Qd. 

(8) The repair times are negligible. 
 
Let Dj denote the maintenance and backorder cost, including 

the backorder and minimal repair cost among the (j-1)-th PM 
and j-th PM (production run period of inventory cycle j), and 
the PM cost of the j-th PM (inventory depletion period of in- 
ventory cycle j).  Let Y1, Y2,  denote independent copies of Y.  

Finally, let 
1 jj
E D




    denote the expected minimal repair 

and backorder cost.  The expected failure number of periodic 
time T is : 

 1

1 1
11

( )
jTj

j j
jj

P
r t dt

P

 
 



 
 (1) 

Proof: 
 
The 

 1

1 1
11

( )
jTj

j j
jj

P
r t dt

P

 
 
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can be rewritten as 
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Forming T is finite, 
  
 

1F j T

F jT


 is finite, and there exists  

a finite number V that satisfies 
  
 

1
1

F j T
V

F jT


  , for j = 1,  

2, . 

 
Notably, 
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 11
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jj
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P
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therefore, this series 

 1

1 1
11

( )
jTj

j j
jj

P
r t dt

P

 
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 
 

The proof is complete. 

 
We have 

 11
,j mj

E D Y jT C



     (2) 

and 

 
 

11

1

1 1
11

, ( 1)

( )

jj

jTj
m d b j j

jj

E D j T Y jT

P
C Q R r t dt

P





 
 



    

 



 
 (3) 

From Eq. (3), we get 

 
 

11

1

1 0
11

, ( 1)

( )

jj

jTj j
m d b j

jj

E D j T Y jT

P P
C Q R r t dt

P





 




    


 


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 (4) 

1. The Vendor’s Total Expected Cost 

Fig. 1 shows the inventory level of this model.  Once the ven- 
der receives an order, the vender produces the items immedi-
ately until quantity reach to mQ.  The item delivered from ven- 
der to buyer by each Q unit, and there are m lots will deliver in 
an inventory cycle.  The vendor average inventory can be eva- 
luated as follows: 

mQ/P

m
Q

mQ/D Time

Q/D

qu
an

tit
y

Accumulated
inventory for vendor

Accumulated
inventory for buyer

 
Fig. 1.  Inventory model for vendor. 
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P D P
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  
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       
  

  (5) 

Hence, the vendor has an expected annual holding cost of: 

 
2

1 1
2h v

Q D D
C C m

P P

            
 (6) 

According to the assumptions and notations, the total expected 
annual cost for vendor is 

 

hoding cost set up cost PM cost

minimal repair cost

backorder cost rework cost.

VTEC   



 

 

The various costs of vender model are derived as follows: 
 

(a) Holding cost: 
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We have 

 
mQ

T
D

  

and 
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 (8) 

(b) Set up cost: 

 sC

T
. 

(c) PM cost is: 

 pmC

T
. 

(d) Minimal repair cost is: 
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(e) Backorder cost: 

 1
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(f) Rework cost: 
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. 

In the proposed production system strategy, the cycle time 
for each production lot is T.  At time (D/P)T, the machines stop 
producing products, and delivery of lot size m begins during 
time (1-D/P)T.  The PM is performed after production run pe- 
riod during time (1-D/P)T.  If failure occurs before the scheduled 
PM, the system shifts into the ‘‘out-of-control’’ state, and an im- 
mediate repair is made. 

Fig. 2 shows the production System of the PM Strategy. 
The total cost incurred by the vendor can be calculated by the 

following equation: 

: The system returns to age 0

: Imperfect PM

qu
an

tit
y

quantity

(1-D/P)T
timeD

P T

 
Fig. 2.  Production System of PM Strategy. 
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2. The Purchaser’s Total Expected Cost 

 ordering cost holding costPTEC    

The various costs of buyer model are derived as follows: 
 

(a) Ordering cost of each cycle is: 

 oC m

T
 

(b) Holding cost: 

 
2h p

Q
C C  

In addition we have 

 
mQ

T
D

  

and 

 
2h p

TD
C C

m
 (10) 

Therefore, the above equation obtains the cost expected by 
the buyer as follows: 
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Adding TECV and Cp obtains the joint expected annual cost 
as follows: 
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  (12) 

Using the partial derivatives of JTEC(T, m) to optimize in- 
ventory run time T and m as described in Sheu et al. (2006) and 
Yang (2010) reveals a finite and unique optimal solution that 
minimizes JTEC. 
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Let 
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For second order partial derivatives, if Eq. (15) > 0, than 
JTEC will be a local minimal solution. 
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Proof: See Appendix 1. 

III. PROBABILITY MODEL 

1. Geometrically Distribution 

This study applied the Geometrically Distribution type II 

PM proposed by Nakagawa (1979).  0 11; , 0 1,jP P q q     

1q q  .  The break down cost is as follows: 
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For second order partial derivatives, if Eq. (19) obtains a value 
larger than 0, than JTEC will exist a local minimal solution. 
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Proof: See Appendix 2. 

2. Weibull Distribution 

In the Weibull distribution, 0 1; j
JP P q    ( j = 1, 2, ), 

0  q  1, 0 <  < 1.  The costs are broken down as follow: 
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For second order partial derivatives, if Eq. (23) obtains a value 
larger than 0, than JTEC will exist a local minimal solution. 
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Proof: See Appendix 3. 

3. Learning Effect 

In this case, the learning effect decreases as the number of 
PMs increase.  Following the discussion, a probability model 
is developed, and the following assumptions are made: 
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For second order partial derivatives, if Eq. (27) obtains a value 
larger than 0, then JTEC will be a local minimal solution. 
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Table 1.  Parameter setting. 

Parameter Cost/Number Parameter Cost/Number 

D 600 unit/year CPM $20 per run 

P 1000 unit/year Cm $10 each time 

Ch 0.2 per unit Qrw 4 

Cv $20 per unit Rrw $5 per unit 

Cp $25 per unit Qd 1 

Co $20 each order Rb $6 

Cs $30 per run 

r(t) Following a uniform distribution with a = 0.1, b = 0.4

g(t) Following a Gamma distribution with  = 0.02,  = 2

 
 

Table 2.  Basic model with uniform distribution. 

m p = 0.01 p = 0.05 p = 0.1 p = 0.15 

 JTEC T JTEC T JTEC T JTEC T 

1 839.1 0.177 837.1 0.177 834.5 0.177 832.0 0.177
2 747.5 0.258 745.5 0.258 743.0 0.258 740.4 0.258
3 733.1 0.322 731.1 0.322 728.5 0.322 726.0 0.322
4 739.7 0.377 737.7 0.377 735.2 0.376 732.6 0.377
5 754.6 0.426 752.6 0.426 750.1 0.425 747.5 0.426
6 773.2 0.471 771.2 0.471 768.7 0.469 766.2 0.470
7 793.5 0.512 791.5 0.512 789.0 0.510 786.5 0.511
8 814.7 0.550 812.7 0.550 810.2 0.548 807.7 0.550
9 836.1 0.586 834.1 0.586 831.6 0.584 829.2 0.585
10 857.7 0.620 855.7 0.620 853.2 0.618 850.7 0.619
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Proof: See Appendix 4. 

IV. NUMERCIAL EXAMPLE 

The following procedure is used to find the optimal values 
for T and m. 

 
Step 1 Let m be equal to the minimum feasible value, 1. 
Step 2 Calculate T using relation. 
Step 3 Calculate JTEC by embedding the last calculates T and 

m.  If TCm < TCm-1 let m = m  1 and go to step 2; oth-
erwise go to step 4. 

Step 4 Find the minimum JTEC and the corresponding value 
of decision variables T and m as the optimal solution. 

Table 3.  Geometrically model with uniform distribution. 

m p = 0.01 p = 0.05 p = 0.1 p = 0.15 

 JTEC T JTEC T JTEC T JTEC T 

1 827.6 0.177 823.9 0.177 823.8 0.177 813.2 0.177

2 736.2 0.258 732.4 0.258 732.3 0.258 721.4 0.258

3 721.8 0.322 718.1 0.322 718.0 0.322 706.8 0.323

4 728.6 0.377 724.9 0.377 724.8 0.377 713.3 0.378

5 743.5 0.426 739.8 0.426 739.7 0.426 728.1 0.427

6 762.2 0.470 758.5 0.470 758.4 0.470 746.5 0.471

7 782.7 0.511 778.9 0.511 778.9 0.511 766.8 0.512

8 803.9 0.549 800.2 0.549 800.1 0.549 787.9 0.551

9 825.4 0.585 821.7 0.585 821.6 0.585 809.2 0.587

10 847.0 0.619 843.3 0.619 843.3 0.619 830.7 0.621

 
 

Table 4.  Weibull model with uniform distribution. 

m p = 0.01 p = 0.05 p = 0.1 p = 0.15 

 JTEC T JTEC T JTEC T JTEC T 

1 834.9 0.169 830.7 0.177 825.8 0.177 822.1 0.177
2 743.6 0.244 739.1 0.258 734.2 0.258 730.5 0.258
3 729.3 0.322 724.7 0.322 719.8 0.322 716.0 0.322
4 736.0 0.355 731.4 0.377 726.4 0.377 722.6 0.377
5 750.9 0.401 746.3 0.426 741.3 0.426 737.5 0.426
6 769.5 0.443 764.9 0.470 760.0 0.470 756.1 0.471
7 788.5 0.510 785.3 0.511 780.3 0.511 776.4 0.512
8 811.1 0.518 806.5 0.550 801.5 0.550 797.6 0.550
9 832.5 0.552 827.9 0.585 823.0 0.585 819.2 0.574

10 852.8 0.626 849.5 0.619 844.5 0.619 840.6 0.620

 
 

Table 5.  Learning curve model with uniform distribution. 

m r = 0.8 r = 0.75 r = 0.7 r = 0.65 

 JTEC T JTEC T JTEC T JTEC T 

1 809.8 0.177 813.3 0.177 820.7 0.177 826.7 0.177

2 718.4 0.258 721.9 0.258 729.6 0.258 735.2 0.258

3 704.1 0.322 707.6 0.322 715.5 0.322 720.8 0.322

4 710.9 0.377 714.4 0.377 722.5 0.376 727.6 0.377

5 725.9 0.426 729.4 0.426 737.6 0.425 742.5 0.426

6 744.6 0.471 748.1 0.471 756.5 0.469 761.1 0.470

7 765.1 0.512 768.6 0.512 777.1 0.510 781.5 0.511

8 786.3 0.550 789.8 0.550 798.5 0.548 802.8 0.550

9 807.8 0.586 811.3 0.586 820.1 0.584 824.2 0.585

10 829.5 0.620 833.0 0.620 841.9 0.618 845.8 0.619

 
 
The data in Table 1 are used to demonstrate how the above 

steps are used to solve an inventory problem. 

1. Numerical Results Sensitive Analysis 

This section shows how the uniform and gamma distributions 
are used to calculate the shot down rate.  Tables 2-9 and Figs. 
3-10 show the results. 
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Fig. 3.  Basic model with uniform distribution. 
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Fig. 4.  Geometrically model with uniform distribution. 
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Fig. 6.  Learning curve model with uniform distribution. 

Table 6.  Basic model with gamma distribution. 

m p = 0.01 p = 0.05 p = 0.1 p = 0.15 

 JTEC T JTEC T JTEC T JTEC T 

1 823.4 0.177 822.1 0.177 820.3 0.177 818.5 0.177
2 732.0 0.258 730.6 0.258 728.9 0.258 727.1 0.258
3 717.7 0.322 716.3 0.322 714.6 0.322 712.8 0.322
4 724.4 0.377 723.1 0.377 721.3 0.377 719.6 0.377
5 739.4 0.426 738.0 0.426 736.3 0.426 734.5 0.426
6 758.0 0.470 756.7 0.470 755.0 0.470 753.2 0.470
7 778.5 0.511 777.2 0.511 775.4 0.511 773.7 0.511
8 799.7 0.549 798.4 0.549 796.7 0.549 794.9 0.549
9 821.2 0.585 819.9 0.585 818.1 0.585 816.4 0.585
10 842.8 0.619 841.5 0.619 839.8 0.619 838.1 0.619

 
 

Table 7.  Geometrically model with gamma distribution. 

m p = 0.01 p = 0.05 p = 0.1 p = 0.15 

 JTEC T JTEC T JTEC T JTEC T 

1 816.7 0.177 813.8 0.177 813.3 0.177 812.8 0.177
2 725.4 0.258 722.4 0.258 721.9 0.258 721.2 0.258
3 711.2 0.322 708.1 0.322 707.6 0.322 706.8 0.322
4 718.1 0.376 714.9 0.377 714.3 0.377 713.5 0.377
5 733.1 0.425 729.9 0.425 729.3 0.426 728.4 0.426
6 751.9 0.469 748.7 0.470 748.0 0.470 747.1 0.470
7 772.4 0.510 769.1 0.511 768.4 0.511 767.5 0.511
8 793.7 0.548 790.4 0.549 789.6 0.549 788.7 0.549
9 815.2 0.584 811.9 0.584 811.1 0.585 810.1 0.585
10 836.9 0.618 833.6 0.618 832.8 0.619 831.7 0.619

 
 

Table 8.  Weibull model with gamma distribution. 

m p = 0.01 p = 0.05 p = 0.1 p = 0.15 

 JTEC T JTEC T JTEC T JTEC T 

1 819.2 0.177 817.6 0.177 816.4 0.177 813.1 0.177
2 727.8 0.258 726.2 0.258 725.0 0.258 721.6 0.258
3 713.5 0.322 711.9 0.322 710.6 0.322 707.3 0.322
4 720.3 0.377 718.7 0.377 717.4 0.377 714.0 0.377
5 735.2 0.426 733.7 0.426 732.4 0.426 729.0 0.426
6 753.9 0.470 752.3 0.470 751.1 0.470 747.7 0.470
7 774.4 0.511 772.8 0.511 771.5 0.511 768.1 0.511
8 795.6 0.549 794.1 0.549 792.8 0.549 789.3 0.549
9 817.1 0.585 815.5 0.585 814.3 0.585 810.8 0.585
10 838.8 0.619 837.2 0.619 835.9 0.619 832.5 0.619

 
 
Tables 2-5 and Figs. 3-6 exhibit the results of four models 

with uniform distribution and show that, when lot size m is 3, JTEC 
decreases.  Therefore, the corresponding values for the decision 
variables T and m are the optimal solution, and the range of JTEC 
is 704-733. 

Tables 6-9 and Figs. 7-10 exhibit the results of our models 
with gamma distribution and show that, when lot size m is at 3,  
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Table 9.  Learning curve model with gamma distribution. 

m r = 0.8 r = 0.75 r = 0.7 r = 0.65 

 JTEC T JTEC T JTEC T JTEC T 

1 809.6 0.177 813.2 0.177 818.1 0.178 824.2 0.178
2 718.3 0.258 721.8 0.258 725.9 0.259 731.7 0.259
3 704.0 0.322 706.5 0.322 710.9 0.323 716.5 0.324
4 710.8 0.377 713.3 0.377 717.1 0.379 722.6 0.380
5 725.8 0.425 728.3 0.425 731.6 0.428 736.9 0.429
6 744.5 0.470 747.0 0.470 749.9 0.473 755.0 0.474
7 765.0 0.511 767.5 0.511 769.9 0.514 774.9 0.516
8 786.2 0.549 788.7 0.549 790.8 0.553 795.6 0.554
9 807.7 0.585 810.2 0.585 811.9 0.589 816.6 0.591

10 829.4 0.618 831.9 0.618 833.2 0.623 837.8 0.625
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Fig. 7.  Basic model with gamma distribution. 
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Fig. 8.  Geometrically model with gamma distribution. 

 
 

JTEC also decreases.  Therefore, the corresponding values for 
the decision variables T and m are the optimal solution, and the 
range of JTEC is 704-717. 

The results essentially show that, in the Weibull model with 
either uniform or gamma distribution, an increase in the main- 
tenance factor causes a decrease in JTEC.  However, in learning 
curve model, the basic value of maintenance factor differs from 
other model.  That is, if the maintenance factor decreases, JTEC 
increases.  The maintenance factor increases can lead to a decrease 
in system error rates and a reduction in preventive maintenance 
costs. 

Table 10.  Eight different cases for sensitive analysis. 

Case Full Name 

1 Basic model with uniform distribution 

2 Geometrically model with uniform distribution 

3 Weibull model with uniform distribution 

4 Learning curve model with uniform distribution 

5 Basic model with gamma distribution 

6 Geometrically model with gamma distribution 

7 Weibull model with gamma distribution 

8 Learning curve model with gamma distribution 
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Fig. 9.  Weibull model with gamma distribution. 
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Fig. 10.  Learning curve model with gamma distribution. 

 

2. Sensitivity Analysis 

This section uses sensitivity analysis to analyze our integrated 
inventory mode with three key impact factors: D/P, Cpm and Qd. 

Since P > D, we want to understand the impact of D/P on the 
integrated inventory cost and the size of production scale.  As 
the scale of production increases, economic efficiency increases.  
The Cpm is preventive maintenance cost.  We use sensitive ana- 
lysis by considering how preventive maintenance cost affects the 
integrated inventory cost.  Qd is the quantity of non-reworkable 
defective products at each failure.  Sensitive analysis reveals how 
the quantity of non-re workable defective products affects inte- 
grated inventory cost. 
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Table 11.  Sensitive analysis of D/P ratio for JTEC. 

   Ratio   

Case 0.4 0.5 0.6 0.7 0.8 

1 636.3152 686.8782 733.1380 775.0945 812.7478
2 625.2388 675.7124 721.8903 763.7726 801.3593
3 638.1779 685.7748 729.3210 768.8163 804.2609
4 607.4517 657.9488 704.1482 746.0050 783.6542
5 620.9754 671.490 717.7055 759.6219 797.2391
6 614.6158 665.0889 711.2665 753.1484 790.7348
7 616.8299 667.3389 713.5493 755.4610 793.0741
8 607.3481 657.8448 704.0439 745.9455 783.5494
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Fig. 11.  Sensitive Analysis of Basic Model with Uniform Distribution. 
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Fig. 12.  Sensitive analysis of Geo model with uniform distribution. 

 
 
We demonstrated eight different cases (Table 10) and per-

taining results are shown on Table 11 and Table 12. 
Table 11 shows that the joint total cost increases as demand 

and production ratio D/P increases because the D/P ratio is in- 
fluenced by the holding cost and purchase cost.  Table 12 shows 
that increasing the preventive maintenance cost Cpm causes an 
increase in the joint total cost. 

When the number of non-re workable defective products Qd 
increases, the joint total cost increases.  Because the backorder  

Table 12.  Sensitive analysis of PM cost for JTEC. 

   Cpm   

Case 15 20 25 30 35 

1 717.6458 733.1380 748.6302 764.1244 779.6147
2 706.3720 721.8903 737.4086 752.9269 768.4453
3 712.8633 729.3210 745.7786 762.2362 778.6939
4 688.6357 704.1482 719.6606 735.1731 750.6855
5 702.1984 717.7055 733.2126 748.7196 764.2267
6 695.7467 711.2665 726.7863 742.3061 757.8259
7 698.0405 713.5493 729.0581 744.5668 760.0756
8 688.5314 704.0439 719.5565 735.0690 750.5816
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Fig. 13.  Sensitive analysis of Weibull model with uniform distribution. 
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Fig. 14.  Sensitive analysis of learning curve model with uniform distribution. 

 
 

cost is higher than the reduction in holding cost of Qd, the total 
joint total cost increases as Qd increases.  Figs. 11-18 exhibit 
the sensitive analysis results of eight different case and show 
that, of the three impact factors, the D/P ratio has the most in- 
fluence in the integrated model. 

V. CONCLUSION 

An effective supply chain that cooperates with the activities 
of upstream vendor and downstream buyer will maximize the 
customer value and minimize the inventory cost.  Accordingly,  
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Fig. 15.  Sensitive analysis of basic model with gamma distribution. 
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Fig. 16.  Sensitive analysis of Geo model with gamma distribution. 

 
 

this study developed an integrated model of a production pro- 
cess with one vendor and one buyer based on the concept of 
EOQ and EPQ.  The preventive maintenance strategy of produc- 
tion process fail and minimal repair were also considered to im- 
prove the accuracy of the model.  The data showed the integrated 
model can determine the influence of re-workable defective pro- 
ducts at each failure and backorder with non-re workable de- 
fective products at each failure. 

The sensitivity analysis shows that, of the three impact fac- 
tors, the D/P ratio has the highest influence on the joint total 
expected cost with integrated model.  In addition, four preven-
tive maintenance probability and two shot down probability are 
using in the proposed model.  A numerical example showed that, 
when m = 3, we can find the corresponding value of the decision 
variables T and m as the optimal solution and the range of joint 
total expected cost.  If the vendors and the buyers need to apply 
this model in the future, they can choose our model of the pro- 
bability according to their demand. 

To expand the applicability of the proposed model, future 
studies are suggested to investigate problems involving multiple 
vendors or multiple buyers.  Also, different actual data can be 
applied to enhance the theory of this model.  Finally, researchers 
are encouraged to expand its applications to other domains such 
as preventive maintenance time interval, permissible delay in  
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Fig. 17.  Sensitive analysis of Weibull model with gamma distribution. 
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Fig. 18.  Sensitive analysis of learning curve model with gamma distribution. 

 
 

payments and test error. 
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the Eq. (15)>0. 
Since Eq. (13) value of T minimizes JTEC (T, m), and T can 

be obtained by solving the Eq. (12). 
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the Eq. (19) > 0. 
Since Eq. (18) value of T minimizes JTEC (T, m), and T can 

be obtained by solving the equation Eq. (16). 
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the Eq. (23) > 0. 
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Since Eq. (22) value of T which minimizes JTEC (T, m), 
and T can be obtained by solving the Eq. (20). 
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the Eq. (27) > 0. 
Since Eq. (26) value of T which minimizes JTEC (T, m), 

and T can be obtained by solving the Eq. (24). 
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