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ABSTRACT 

Although the exact solutions for the free vibration problems 
regarding most of the non-uniform beams are not yet obtainable, 
this is not true for the special case when the equation of motion 
of a non-uniform beam can be transformed into that of an equi- 
valent uniform beam.  The nonlinearly tapered beam studied 
in this paper is a single-tapered beam with constant depth h0 
and varying width b(x) along its length in the form ( )b x   

4
0[1 ( )]b x L , where b0 is the minimum width,   is the taper 

constant, x is the axial coordinate and L is the total beam length.  
For the case of no concentrated elements (CEs) attaching to it, 
the exact solution for its lowest several natural frequencies and 
the associated mode shapes has been appeared in the existing 
literature, however, the exact solution for the free vibrations of 
the last tapered beam carrying various CEs in various boundary 
conditions (BCs) is not found yet due to complexity of the prob-
lem.  This is the reason why this paper aims at studying the title 
problem by using the continuous-mass transfer matrix method 
(CTMM).  It is different from the general uniform (or multi-step) 
beam carrying various CEs in that the nonlinearly tapered beam 
itself as well as the attached translational and rotational CEs 
must all be transformed into the equivalent ones in the deriva- 
tions.  In addition to the solution accuracy, one of the salient merits 
of the proposed method is that the order of the characteristic- 
equation matrix keeps constant (4  4) and does not increase 
with the total number of the CEs or the beam segments such as in 
the conventional finite element method (FEM), so that it needs  

 
Fig. 1.  The vortex wind generator developed by Vortex Bladeless (2015). 

 

 
less than 0.2% of the CPU time required by the FEM to achieve 
the exact solutions.  The CEs on the nonlinearly tapered beam 
include lumped masses (with eccentricities and rotary inertias), 
translational springs and rotational springs.  The formulation of 
this paper is available for various classical or non-classical BCs.  
In addition to comparing with the existing available data, most 
of the numerical results obtained from the proposed method are 
also compared with those of the FEM and good agreement is 
achieved. 

I. INTRODUCTION 

According to the report of Owano (2015), the Vortex Bladeless 
company has developed a bladeless wind turbine as shown in 
Fig. 1.  Instead of turning the parts, the bladeless turbine oscillates 
to produce movement and displacement.  The system is based 
on the same principles as an alternator - electromagnetic induc- 
tion.  The inventors multiply the movement and speed magneti-
cally (without any gear assemblies or ball bearings), and trans- 
form the “mechanical energy” of the structure into electricity.  
From Fig. 1.  one sees that the “vortex wind generator” is dif- 
ferent from the conventional wind turbine in that it has no spin- 
ning blades and looks like nothing except for a nonlinearly 
tapered beam oscillating in the wind.  It is evident that the “me- 
chanical energy” of an oscillating beam carrying concentrated 
elements (CEs), such as the point masses with eccentricities and 
rotary inertias, is dependent on its natural frequencies and mode 
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shapes, and the latter are dependent on the magnitudes and dis- 
tributions of the attached CEs. 

The title problem of this paper is useful for the development 
of the last vortex wind turbine.  Furthermore, the free vibration 
characteristics of an “oscillating beam” are also dependent on 
its boundary conditions (BCs), and for a clamped-free (C-F) 
beam such as the vortex wind turbine shown in Fig. 1, the 
“nonclassical” (or non-zero) BCs presented in this paper can 
provide its lower end (at i = 1) with variable translational 
stiffness (0  0  kr,1  ) and rotational stiffness (0  kr,1  ) 
to achieve various natural frequencies and associated mode 
shapes.  Thus, in addition to the theory regarding the CEs, the 
theory regarding the non-classical (or non-zero) BCs presented 
in this paper will also be useful for the development of the vor- 
tex wind turbine. 

Comparing with the uniform beams, the literature concerning 
the exact solutions for the free vibrations of the non-uniform 
beams is relatively rare, particularly for those of the “loaded” 
non-uniform beams with various concentrated elements (CEs) 
attached.  Among the various non-uniform beams, the linearly 
tapered beams and the stepped beams are most popular.  Since 
the title of this paper is relating to the nonlinearly tapered beams, 
only a little literature regarding the linearly tapered beams and 
the stepped beams is mentioned here.  For the (bare or loaded) 
linearly tapered beams, either with exact or approximate solu-
tions, the works of Cranch and Adler (1956), Naguleswaran 
(1992), Craver and Jampala (1993), Auciello (1996), Auciello 
and Maurizi (1997), Wu and Chen (2003), and Wu and Chiang 
(2004) are relevant; on the other hand, for the stepped beams, 
the works of Tong and Tabarrok (1995c), Rosa et al. (1995b), 
Naguleswaran (2002), Lin (2006) and Mao (2011) are related.  
The literature regarding the “loaded” uniform beams (carrying 
various CEs) presented by Liu and Huang (1988), Wu and 
Chou (1999), and Lin (2008) is also useful for the free vibration 
analyses of the “loaded” non-uniform beams. 

For the variable section beams, Cranch and Adler (1956) 
have presented the exact solutions for free vibrations of seven 
bare beams by using the Bessel functions or power series, but 
most of them are for linearly tapered beams with exponents  
n = 1, 2 and 3/2, and only two solutions are for the nonlinearly 
tapered beams.  Instead of the foregoing Bessel-function solu-
tions, Abrate (1995a) presented the exact solution for the free 
vibration of a nonlinearly tapered bare beam by using the con- 
ventional uniform-beam theory, where the equation of motion 
for the nonlinearly tapered beam must be transformed into that 
for the equivalent uniform beam, first.  Based on the last exact 
solution given by Abrate (1995a), Wu and Hsieh (2000) de- 
termined the approximate natual frequencies and mode shapes 
of the nonlinearly tapered loaded beam (carrying multiple point 
masses) by using the analytical-and-numerical-combined 
method (ANCM).  In addition, Banerjee and Williams (1985) 
have derived the exact Bernoulli-Euler dynamic stiffness matrix 
for a range of tapered bare beams, however, their stiffness ma- 
trix for various tapered beam elements are seldom used, be- 
cause, in practice, each non-uniform beam is replaced by an 

equivalent stepped beam composed of a number of uniform 
beam segments for the conventional finite element analysis.  
Recently, Torabi et al. (2013) perform the free vibration ana- 
lysis of a nonlinerly tapered cantilever Timoshenko loaded beam 
(carrying multiple concentrated masses) by using the differential 
quadrature element method (DQEM), but it is similarly to the 
conventional FEM in that their results are the approximate so- 
lutions instead of the exact ones. 

From the foregoing literature reviews it is seen that the exact 
solution for the free vibrations of a nonlinearly tapered “loaded” 
beam (carrying various CEs) is not yet obtained, and this is the 
reason why the title problem is studied here.  First of all, the 
equation of motion for the entire nonlinearly tapered bare beam 
is transformed into that for the equivalent uniform bare beam, 
then the latter equivalent uniform bare beam is subdivided into 
several beam segments according to the positions of all sets of 
CEs, and, in succession, the displacement function for each equi- 
valent uniform beam segment is derived.  Next, considering the 
effects of the ith set of CEs (consisting of a lumped mass mi with 
eccentricity ei and rotary inertia Ji, a translational spring with 
stiffness kt,i and a rotational spring with stiffness kr,i, for i = 1 to 
n  1), the compatibility equations for the displacements and 
slopes as well as the equilibrium equations for the shear forces 
and bending moments at each intermediate attaching node i  
(for the ith set of CEs) are derived, and, based on the theory of 
continuous-mass transfer matrix method (CTMM) presented by 
Bapat and Bapat (1987) and Wu and Chen (2008), the transfer 
matrix for the two adjacent beam segments joined at node i is 
obtained.  Finally, the combination of all transfer matrices for 
all the intermediate attaching nodes along the beam length and 
those for the two nodes at the both ends of the entire tapered 
beam produces a characteristic equation of the form [W]{}1 = 0.  
Now, from the frequency equation W = 0 one may determine 
the rth natural frequency of the entire nonlinearly tapered loaded 
beam, r (r = 1, 2, 3, ), and corresponding to each frequency 
r one may obtain the associated vector for the constants of the 
first beam segment, {}1 = [A1, B1, C1, D1]

T, from the equation 
[W]{}1 = 0, and, in turn, those of the other beam segments, 
{}1 = [A1, B1, C1, D1]

T (with i = 2 to n).  It is obvious that the 
substitution of all constants, Ai, Bi, Ci and Di (i = 1 to n), into 
the displacement functions for all the associated beam segments 
will determine the rth mode shape of the entire nonlineraly ta- 

pered loaded beam, ,1
( ) ( ) / ( )

n

r r i ii
Y x V x x


  , where Vr,i(x) 

and i(x) are the rth mode shape and transformation function 
for the ith equivalent uniform beam segment, respectively. 

To show the availability of the presented approach (CTMM), 
several numerical examples are studied, and it is found that all 
results of the CTMM are very close to those of the existing li- 
terature or the FEM.  Because the order of the characteristic- 
equation matrix derived from the CTMM keeps constant (4  4) 
instead of increasing with the total number of CEs or beam seg- 
ments, the computer memory and the CPU time required by the 
CTMM are much less than those required by the FEM for achiev-
ing the same accuracy. 
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(b) Front view  
Fig. 2. A nonlinearly tapered free-free (F-F) beam with taper constant  = 0.5 and carrying n1 identical sets of CEs, with each set of CEs consisting of 

a lumped mass im (with eccentricity ei and rotary inertia Ji), a translational spring with stiffness kt,i and a rotational spring with stiffness kr,i, 
at each node i (i = 1 to n+1). 

 
 

II. EQUATION OF MOTION AND 
DISPLACEMENT FUNCTION 

The sketch for the nonlinearly tapered free–free (F-F) beam 
for the present study is shown in Fig. 2.  It is composed of n 
nonlinearly tapered beam segments (denoted by (1), (2), , 
(i1), (i), (i1), , (n)) and n1 nodes (denoted by 1, 2, , 
i1, i, i1, , n1).  Furthermore, each node i is attached by a 
set of concentrated elements (CEs) consisting of a lumped mass 
mi (with eccentricity ei and rotary inertia Ji), a translational spring 
with stiffness kt,i and a rotational spring with stiffness kr,i.  For the 
free transverse vibration of the ith beam segment (cf. Fig. 2), 
its equation of motion is given by (Meirovitch, 1967) 

 
2 22

2 2 2

( , ) ( , )
( ) ( ) 0i i

i i i i

y x t y x t
E I x A x

x x t


  
  

   
 

 (for 1i ix x x   ) (1) 

where Ei, i and Ai(x) are the Young’s modulus, mass density and 
cross-sectional area of the ith beam segment, respectively, and 
Ii(x) is the moment of inertia of the cross-sectional area Ai(x) 
located at the axial coordinate x. 

According to Abrate (1995a) and Wu and Hsieh (2000), if 
Ii(x) and Ai(x) take the following forms 

 
4

2 4
0 0 0( ) ( ) 1 (1 )i i

x
I x I x I I x

L
  

        
  

 

 (for 1i ix x x   ) (2) 

 
4

2 4
0 0 0( ) ( ) 1 (1 )i i

x
A x A x A A x

L
  

        
  

 

 (for 1i ix x x   ) (3) 

with 

 2( ) (1 )i x x   , L   (4a, b) 

then Eq. (1) can be transformed into 

 
4 2

0 04 2

[ ( ) ( , )] [ ( ) ( , )]
0i i i i

i i

x y x t x y x t
E I A

x t

 


 
 

 
 

 (for 1i ix x x   )  (5) 

In the above equations, A0 is the smallest cross-sectional area 
of the entire beam at x = 0, I0 is the corresponding smallest mo- 
ment of inertia of A0, L is the total beam length,  is a positive 
taper constant to represent the variation of the entire beam along 
the beam length. 

From Wu and Hsieh (2000), it is seen that, in addition to the 
positive taper constant , Eq. (4) can also accommodate the 
negative taper constant if it is replaced by 

 2( ) ( )i x x     (for 1i ix x x   ) (6) 

with 

 1.0  , if 0L    (7a) 
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 1.0 L   , if 0L    (7b) 

For convenience, Eq. (5) is rewritten below 

 
4 2

0 04 2

( , ) ( , )
0i i

i i

v x t v x t
E I A

x t


 
 

 
 (for 1i ix x x   ) (8) 

where 

 ( , ) ( ) ( , )i i iv x t x y x t  (9) 

For free vibrations, one has 

 ( , ) ( ) j t
i iv x t V x e  , ( , ) ( ) j t

i iy x t Y x e   (10a, b) 

where Vi(x) and Yi(x) are the amplitude functions of vi(x,t) and 
yi(x,t), respectively,  is the natural frequency of the entire non- 

linearly tapered beam, t is time and 1j   . 

Substituting Eqs. (10a, b) into Eqs. (8) and (9), one obtains 

 4   ( ) ( ) 0i i iV x V x    (for 1i ix x x   ) (11) 

 ( ) ( ) ( )i i iV x x Y x  (for 1i ix x x   ) (12) 

with 

 4 2
0 0( )i i iA E I    (13) 

where the primes denote differentiations with respect to the axial 
coordinate x. 

The solution of Eq. (11) takes the form (Meirovitch, 1967) 

( ) (cos cosh ) (cos cosh )

(sin sinh )

(sin sinh )

i i i i i i i

i i i

i i i

V x A x x B x x

C x x

D x x

   

 

 

   

 

 

 (14) 

where Ai, Bi, Ci and Di are the constants for the ith equivalent 
uniform beam segment. 

From Eqs. (6) and (12), one obtains 

  ( )  ( ) ( ) ( )  ( )i i i i iV x x Y x x Y x      (15a) 

   ( )  ( ) ( ) 2  ( )  ( ) ( )  ( )i i i i i i iV x x Y x x Y x x Y x          (15b) 

  ( )   ( ) ( ) 3  ( )  ( )

3  ( )   ( ) ( )   ( )

i i i i i

i i i i

V x x Y x x Y x

x Y x x Y x

 

 

    

   
 (15c) 

( ) 2 ( )i x x      , 2( ) 2i x   , ( ) 0i x   (16a-c) 

III. TRANSFER MATRIX FOR AN 
INTERMEDIATE ATTACHING NODE i 

For the nonlinearly tapered beam shown in Fig. 2, the con-
tinuity of displacements and slopes, as well as the equilibrium 
of shear forces and bending moments for the two adjacent beam 
segments, (i1) and (i), joined at the intermediate attaching node 
i for the ith set of CEs (located at x = xi) require that 

 1( ) ( )i i i iV x V x   (17a) 

 1( ) ( )i i i iV x V x   (17b) 

 
1 0 1 0 ,

,

( ) ( ) ( )

 ( )

i i i i i i e i i i

r i i i

E I V x E I V x F Y x

K Y x

   


 (17c) 

 1 0 1 0 , ,( ) ( ) ( ) ( )i i i i i i t i i i e i i iE I V x E I V x K Y x F Y x       (17d) 

where ( )i iY x  is the “transformed” displacement function asso- 

ciated with the translational CEs (such as mi and kt,i) located at 
x = xi given by Eq. (A.6) (in the Appendix A at the end of this 
paper) 

 2( ) ( ) ( )i i i i iY x V x x  (18a) 

and ( )i iY x  is the derivative of ( )i iY x  associated with rotational 

CEs (such as Ji and kr,i) as one may see from Eq. (A.7).  Fur-
thermore, the expressions for the parameters kt,i, kr,i and Fe,i are 
respectively given by Wu and Chen (2008) 

 2
, ,t i t i iK k m  , 2 2

, , ( )r i r i i i iK k J m e    , 2
,e i i iF m e  

  (18b-d) 

In the above equations, kt,i and kr,i denote the translational 
and rotational effective stiffnesses due to the associated CEs 
attached to node i [such as kt,i, kr,i and mi (with ei and Ji)], re- 
spectively, and Fe,i denotes the centrifugal force due to eccen-
tricity ei of the lumped mass mi. 

The substitution of the function ( )i iY x  given by Eq. (18a) into 

Eqs. (17c, d) produces 

, ,
1 0 1 0 2 2

,

4

( ) ( ) ( )  ( )

2  
( )

e i r i
i i i i i i i i i

i i

i i r i
i i

i

F K
E I V x E I V x V x V x

K
V x

 

 


     




 (17c)’ 

, ,
1 0 1 0 2 2

,

4

( ) ( ) ( )  ( )

2  
( )

t i e i
i i i i i i i i i i

i i

e i
i i

i

K F
E I V x E I V x V x V x

F
V x

 




     




 (17d)’ 
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In the last two equations, we set i(xi) = i, for simplicity. 
Introducing the function V(x) given by Eq. (14) into Eqs. 

(17a, b) and (17c, d)’, respectively, one obtains 

1 1 1 1 1 1

1 1 1

1 1 1

(cos cosh ) (cos cosh )

(sin sinh )

(sin sinh )
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 

 

   

 
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 (19a) 
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 (19d) 

where 

2
1 0 1

ˆ[ cos cosh ( sin sinh )]i i i i i i i i i iN E I                (20a) 

2
1 0 1

ˆ[ cos cosh ( sin sinh )]i i i i i i i i i iP E I                (20b) 

2
1 0 1

ˆ[ sin sinh (cos cosh )]i i i i i i i i i iR E I               (20c) 

2
1 0 1

ˆ[ sin sinh (cos cosh )]i i i i i i i i i iQ E I               (20d) 

3
1 0 1

ˆ ˆ[ sin sinh (cos cosh )]i i i i i i i i i iN E I             (21a) 

3
1 0 1

ˆ ˆ[ sin sinh (cos cosh )]i i i i i i i i i iP E I             (21b) 

3
1 0 1

ˆ ˆ[ cos cosh (sin sinh )]i i i i i i i i i iR E I              (21c) 

3
1 0 1

ˆ ˆ[ cos cosh (sin sinh )]i i i i i i i i i iQ E I              (21d) 

 , ,2
0 2 4

2  e i i i r i
i i i

i i

F K
E I

 
 

 

 
    

 
 , 

 , ,2
0 2 4

2  ˆ e i i i r i
i i i

i i

F K
E I

 
 

 

 
    

 
, (22a, b) 
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  , ,3
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F
E I


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
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 ,

2
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K



 , , ,

2 4
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ˆ t i e i

i
i i

K F


 


   (24a, b) 

 1 1i i ix   , i i ix  , *
1i i i     (25a-c) 

Writing Eqs. (19a-d) in matrix form, one has 

 1 1[ ] { } [ ] { }i i i iG H     (26) 

where 

 
1 1 1 1 1

{ } [ ] ,

{ } [ ]

T
i i i i i

T
i i i i i

A B C D

A B C D



     




 (27a, b) 

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1

1 1 1 1 1 1 1
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       

      

       

       


      

   
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1 1 1 1 1 1 1 1

h
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i

i i i i i i i i
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 
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 
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  (28) 

* * * *
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 
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 

 

  (29) 

From Eq. (26) one obtains 

 1
1 1 1 1{ } [ ] [ ] { } [ ] { }i i i i i iH G T  
      (30) 

where 

 1
1 1[ ] [ ] [ ]i i iT H G
   (31) 

which represents the transfer matrix between the constants for 
beam segment (i), {}i, and those for beam segment (i-1), {}i-1, 
joined at the intermediate attaching node i. 

From Eq. (30), one has 

 
1 1 1 2 2

1 2 2 1 1 1

{ } [ ] { } [ ] [ ] { }

[ ] [ ] [ ] [ ] { } [ ]{ }

n n n n n n

n n

T T T

T T T T T

  

 
    

 

 

   
 (32) 
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where 

 

11 12 13 14

21 22 23 24

1 2 2 1

31 32 33 34

41 42 43 44

[ ] [ ] [ ] [ ] [ ]n n

T T T T

T T T T
T T T T T

T T T T

T T T T

 

 
 
 

   
 
 
 

  (33) 

IV. EQUATIONS REGARDING NON-CLASSICAL 
BOUNDARY CONDITIONS 

For convenience, the BCs of a beam with its ends attached 
by various CEs as shown in Fig. 2 are called the non-classical 
BCs.  On the contrary, for a beam without any CEs attached to 
its ends, its BCs are called the classical BCs.  The equations 
regarding the non-classical BCs of a nonlinearly tapered beam 
are derived in this section, and those regarding the classical 
BCs are derived in the Appendix B at the end of this paper. 

1. The BCs for a Free-Free (F-F) Beam 

For a free-free (F-F) beam, the BCs at its left end (i.e., at left 
end of the 1st beam segment) are given by 

 

2
1 0 1 1 1

,1 1 ,1 1

[  (0) 6 (0) 4 (0)]

(0)  (0) 0e r

E I V V V

F Y K Y

   
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 (34a) 

 

3 2
1 0 1 1 1

,1 1 ,1 1

[  (0) 12 (0) 6 (0)]

(0) (0) 0t e

E I V V V

K Y F Y

   

  
 (34b) 

where 

     (34c) 

In Eq. (34a) or (34b), the first term is the BC for the left free 
end without any CEs as shown in Eq. (A.9a) or (A.9b) in the 
Appendix B at the end of this paper, while the 2nd and 3rd terms 
are the bending moments or shear forces due to the CEs as one 
may see from Eqs. (17c, d). 

The substitution of the function Yi(xi), with i = 1, given by 
Eq. (18a) into Eqs. (34a, b) yields 
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 (35a) 
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
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 (35b) 

In Eqs. (35a,b), we set 1(0) = 1, for simplicity. 
Substituting Eq. (14) into Eqs. (35a, b), one obtains 

 11 1 12 1 13 1 14 1 0S A S B S C S D     (36a) 

 21 1 22 1 23 1 24 1 0S A S B S C S D     (36b) 

where 

2 2 4
11 1 0 ,1 1 1 1 ,1 112 2 4e rS E I F K       , 2

12 1 0 12S E I    

  (37a, b) 

 2
13 1 0 1 1 ,1 18 2 rS E I K     , 14 0S   (37c, d) 

3 2 4
21 1 0 ,1 1 1 1 ,1 124 2 4t eS E I K F       , 22 0S   (38a, b) 

2 2
23 1 0 1 1 ,1 112 2 eS E I F      , 3

24 1 02 iS E I    (38c, d) 

Similarly, the BCs at right end of the entire beam (i.e., at right 
end of the nth beam segment) are given by 
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 (39b) 

where 

 ( )L      (40) 

In Eq. (39a) or (39b), the first term is the BC for the right 
free end without any CEs as shown in Eq. (A.14a) or (A.14b) 
in the Appendix B at the end of this paper, while the 2nd and 
3rd terms are due to the CEs as one may see from Eqs. (17c, d). 

Substituting the function ( )i iY x , with i = n, given by Eq. 

(18a) into Eqs. (39a, b), one obtains 
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 (41b) 

For simplicity, we set n(L) = n in the last two equations. 
The substitution of Eq. (14) into Eqs. (41a, b) leads to 

 11 12 13 14 0n n n nU A U B U C U D     (42a) 

 21 22 23 24 0n n n nU A U B U C U D     (42b) 

where 
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2. The BCs for a P-P Beam 

The BCs at the left end of the entire P-P beam are given by 

 1(0) 0V   (47a) 
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 (47b) 

It is noted that Eq. (47b) is the same as Eq. (34a) for the left 
free end with bending moment to be equal to zero. 

Substituting the function ( )i iY x , with i = 1, given by Eq. 

(18a) into Eq. (47b) and considering the expression 1(0) 0V   

given by Eq. (47a), one obtains 

 ,1
1 0 1 1 12

1

[  (0) 4 (0)]  (0) 0rK
E I V V V


      (47b)’ 

Substituting Eq. (14) into Eqs. (47a) and (47b)’ produces 

 11 1 12 1 13 1 14 1 0S A S B S C S D     (48a) 

 21 1 22 1 23 1 24 1 0S A S B S C S D     (48b) 

where 

 11 2S  , 12 13 14 0S S S    (49a-d) 
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Similarly, the BCs at right end of the entire P-P beam are 
given by 

 ( ) 0nV L   (51a) 
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It is evident that Eq. (51b) is the same as Eq. (39a) with bend- 
ing moment to be equal to zero at the right free end. 

Introducing the function ( )i iY x , with i = n, given by Eq. 

(18a) into Eq. (51b) and considering the expression ( ) 0nV L   

given by Eq. (51a), one obtains 
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Substituting Eq. (14) into Eqs. (51a) and (51b)’ produces 

 11 12 13 14 0n n n nU A U B U C U D     (52a) 

 21 22 23 24 0n n n nU A U B U C U D     (52b) 

where 
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    

  

   
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2
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2
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( cos cosh )
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  

    
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   
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n n n n
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  

    
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  
 (54d) 

3. The BCs for a C-C Beam 

Because the displacements and slopes at the both ends of a 
C-C beam are equal to zero and so are the elastic (or inertial) 
forces and bending moments induced by the CEs, the associ-
ated equations regarding the non-classical BCs of a C-C beam 
are the same as those regarding the classical BCs of a C-C beam 
given by Eqs. (A.26)-(A.33) in the Appendix B, and are not 
repeated here. 

It is noted that, for a beam with the BCs of left end to be dif- 
ferent from the BCs of right end (such as the C-F or C-P beam), 
the equations regarding to its BCs can be obtained from the 
corresponding ones for the same BCs derived previously (or  
in the Appendix B).  For convenience, the CTMM based on the 
non-classical BCs presented in this section is denoted by CTMMn, 
while that based on the classical BCs shown in Appendix B is 
denoted by CTMMc.  It is evident that all classical BCs shown 
in Appendix B can be obtained from the non-classical BCs 
given in previous Subsection 4.1 by setting: (i) mi = ei = Ji = 
kt,i = kr,i = 0 (with i = 1 or n  1) for a classical free end, (ii)  
kt,i /kt,ref  1015 along with mi = ei = Ji = kr,i = 0 for a classical 
pinned end, and (iii) kt,i /kt,ref = kr,i /kr,ref  1015 along with mi = 
ei = Ji = 0 for a classical clamped end, where kr,ref = E1I0/L

3 and 
kr,ref = E1I0/L are the reference translational and rotational 
stiffness, respectively.  Since all classical BCs are equal to zero as 
one may see from Eqs. (A.8a, b), (A.13a, b), (A.18a, b), (A.22a, b), 
(A.26a, b) and (A.30a, b), in Appendix B, they are also called 
the zero BCs.  On the contrary, all non-classical BCs shown in 
Section 4 are not equal to zero due to the effects of inertial (or 
restoring) forces or moments of the CEs located at the two ends, 
they are also called the non-zero BCs. 

V. DETERMINATION OF NATURAL 
FREQUENCIES AND MODE SHAPES  

OF THE ENTIRE BEAM 

The natural frequencies and mode shapes of a beam are de- 
pendent on its BCs.  For convenience, the formulation of this 
subsection is based on the F-F beam.  Writing the two equations 
for the right-end BCs of a F-F beam given by Eqs. (42a, b) in 
matrix form, one obtains 

 [ ]{ } 0nU    (55) 

where 

 
11 12 13 14

21 22 23 24

[ ]
U U U U

U
U U U U

 
 
  

 (56) 

Introducing Eq. (32) into Eq. (55), one has 

 1[ ][ ]{ } 0U T    (57) 

or 
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 1[ ]{ } 0Z    (58) 

where 

 2 4 2 4 4 4[ ] [ ] [ ]Z U T    (59) 

with 

 
11 11 11 12 21 13 31 14 41

12 11 12 12 22 13 32 14 42

,Z U T U T U T U T

Z U T U T U T U T

   

   
 (60a, b) 
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14 11 14 12 24 13 34 14 44

,Z U T U T U T U T

Z U T U T U T U T

   

   
 (60c, d) 
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   

   
 (61a, b) 

 
23 21 13 22 23 23 33 24 43
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,Z U T U T U T U T

Z U T U T U T U T

   

   
 (61c, d) 

Combining the other two equations for the left-end BCs of 
the F-F beam given by Eqs. (36a, b) with Eq. (58), one obtains 

 1[ ]{ } 0W    (62) 

where 

 

11 12 13 14

21 22 23 24

11 12 13 14

21 22 23 24

[ ]

S S S S

S S S S
W

Z Z Z Z

Z Z Z Z

 
 
 

  
 
 
 

 (63) 

Eq. (62) is the characteristic equation for the nonlinearly ta- 
pered loaded beam (cf. Fig. 2).  Where the order of the coeffi-
cient matrix [W] keeps constant (4  4) and independent on the 
total number of beam segments or attached CEs, this is different 
from the conventional FEM or the other classical analytical me- 
thods.  Eq. (62) represents a set of simultaneous equations, non- 
trivial solution for 1{ }  requires that 

 

11 12 13 14

21 22 23 24

11 12 13 14

21 22 23 24

0

S S S S

S S S S
W

Z Z Z Z

Z Z Z Z

   (64a) 

or 

 

11 12 13 14

11 12 13 14

21 22 23 24

21 22 23 24

0

S S S S

Z Z Z Z

S S S S

Z Z Z Z

  (64b) 

Eq. (64) is the frequency equation, from which one may de- 
termine the natural frequencies r (r = 1, 2, 3 ) by using the 

conventional half-interval method (Carnahan et al., 1969) or 
the modified half-interval method (Wu and Chen, 2011), and 
corresponding to each natural frequency one may obtain the 

associated constants 1 1 1 1 1{ } [ ]TA B C D   from Eq. (62).  

Once the constants for the first beam segment, {}1, are deter- 
mined, those for the other beam segments, {}i (i = 2, 3 , n), 
can be obtained from Eq. (30), and substituting the obtained con- 
stants for all beam segments, {}i  (i = 1, 2, 3 , n), into Eqs. 
(14) and (12), one determines the associated mode shape of the 

entire nonlinearly tapered beam, ,1
( ) ( ) ( )

n

r r i ii
Y x V x x


  . 

It is noted that the above formulation is for the F-F beam.  
For a beam with the other BCs, it is only required to replace 
the values of Up,q and Sp,q (p = 1, 2; q = 1  4) appearing in Eqs. 
(56), (60), (61), (63) and (64) by the corresponding ones asso- 
ciated the specified BCs, such as those given by Eqs. (49), (50), 
(53) and (54) for the P-P beam. 

VI. NUMERICAL RESULTS AND DISCUSSIONS 

In this section, the reliability of the presented formulations 
and the developed computer program is confirmed first, then, the 
influence of various CEs on the free vibration characteristics 
of the nonlinearly tapered beam in different BCs is studied.  For 
comparisons, the dimensions and physical constants of the beams 
studied are taken to be the same as those of Abrate (1995a) and 
Wu and Hsieh (2000): Total beam length L = 30.0 in, minimum 
height h0 = 1.5 in, minimum width b0 = 1 in, minimum cross- 
sectional area A0 = b0 h0 = 1.5 in2, minimum moment of inertia 

3 4
0 0 0 12 0.28125 inI b h  , mass density  = i = 0.73386  10-3 

lbm/in3, Young’s modulus E = Ei = 30  106 psi, for i = 1~n.  
Furthermore, five reference parameters are introduced: refer-
ence lumped mass mref = A0L = 0.0330237 lbm, reference ec- 
centricity eref = 0.01L = 0.3 in, reference rotary inertia Jref = 
A0L

3/1000 = 0.02972133 lbm-in2, reference translational spring 
constant kt,ref = E1I0/L

3 = 3.125  102 lbf /in, and reference ro- 
tational spring constant kr,ref = E1I0/L = 2.8125  105 lbf -in/rad.  
In the foregoing expressions, the subscript 1 refers to the 1st beam 
segment. 

1. Reliability of Presented Formulations and Developed 
Computer Program 

In this subsection, the lowest five frequency coefficients 
(rL)2 (r = 1~5) of the nonlinearly tapered clamped-pinned 
(C-P) beam without carrying any CEs are determined and shown  
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Table 1. The lowest five non-dimensional frequency coefficients (rL) (r = 1~5) for a nonlinearly tapered C-P beam with- 
out carrying any CEs (cf. Fig. 3) obtained from the presented CTMMc (with total number of beam segments n = 2) 
and FEM (with total number of beam elements ne = 300), and the existing literature, with taper constants: (a)  = 
0.0, (b)  = 1.0, (c)  = 2.0. 

(a)  = 0.0 

Frequency coefficients, (rL)2 
Methods  

(1L)2 (2L)2 (3L)2 (4L)2 (5L)2 

aCPU 
time (sec) 

Exact (Abrate, 1995a) 15.4182 49.9649 104.248 178.270 272.032  
ANCM (Wu et al., 2000) 15.4186 49.9654 104.247 178.269 272.031  

FEM 15.4182 49.9649 104.248 178.270 272.031 140.9 
CTMMc 

0.0 

15.4182 49.9649 104.248 178.270 272.031 0.03 
a On an ASUS MD750 PC with Intel Core i7-3770CPU 

(b)  = 1.0 

Frequency coefficients, (r L)2 
Methods  

(1L)2 (2L)2 (3L)2 (4L)2 (5L)2 

aCPU 
time (sec) 

Exact  (Abrate, 1995a) 1.0 12.3635 47.6265 102.025 176.105 269.904  
1.0 12.3633 47.6259 102.025 176.105 269.901  

ANCM (Wu et al., 2000) 
-1.0b 12.3633 47.6259 102.025 176.105 269.901  

FEM  1.0 12.3636 47.6267 102.025 176.106 269.901 153.9 
1.0 12.3635 47.6265 102.025 176.105 269.900 0.03 

CTMMc 

-1.0b 12.3635 47.6265 102.025 176.105 269.900 0.03 
a On an ASUS MD750 PC with Intel Core i7-3770CPU 
b For the beam with P-C BCs 

(c)  = 2.0 

Frequency coefficients, (r L)2 
Methods  

(1L)2 (2L)2 (3L)2 (4L)2 (5L)2 

aCPU 
time (sec) 

Exact  (Abrate, 1995a) 2.0 10.5984 46.6678 101.174 175.304 269.136  
2.0 10.5986 46.6673 101.174 175.304 269.129  

ANCM (Wu et al., 2000) 
-2.0b 10.5986 46.6673 101.174 175.304 269.129  

FEM 2.0 10.5985 46.6681 101.174 175.305 269.130 154.3 
2.0 10.5984 46.6678 101.174 175.304 269.128 0.03 

CTMMc 

-2.0 b 10.5984 46.6678 101.174 175.304 269.128 0.03 
a On an ASUS MD750 PC with Intel Core i7-3770CPU 
b For the beam with P-C BCs 
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Fig. 3.  The finite element model for the nonlinearly tapered clamped-pinned (C-P) beam with positive taper constant and without carrying any CEs. 

 
 

in Table 1(a) for the case of taper constant  = 0; Table 1(b) for 
 = 1.0; and Table 1(c) for  = 2.0.  In addition to the results 
of the presented CTMMc (with total number of beam segments 
n = 2), those of Abrate (1995a), Wu and Hsieh (2000), and the 

conventional FEM (with total number of beam elements ne = 
300) are also listed in Table 1. 

The corresponding FEM model is shown in Fig. 3, where the 
entire tapered beam is replaced by a stepped beam composed of  
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Table 2. Influence of various BCs on the lowest five natural frequencies r(r = 1~5) of the nonlinearly tapered beam with 
taper constant  = 0.5 and without carrying any CEs (cf. Fig. 3), obtained from presented CTMMc and 
CTMMn (with total number of beam segments n = 2) and FEM (with total number of beam elements ne = 300), 
and the existing literature. 

Natural frequencies, r (rad/sec) 
BCs Methods 

1 2 3 4 5 

CPU 
Time (sec) 

FEM 2248.5407 6095.1132 11866.0825 19552.0555 29156.3853 149.6 
F-F aCTMMc 2248.5461 6095.1280 11866.1115 19552.1034 29156.4566 0.03 

FEM 2176.4161 5999.3746 11761.1729 19441.8162 29042.7193 146.3 

CTMMc 2176.4160 5999.3745 11761.1727 19441.8160 29042.7195 0.03 C-C 
bCTMMn 2176.4160 5999.3745 11761.1727 19441.8160 29042.7189 0.34 
cANCM 935.8919 3862.9643 8676.9179 15404.4470 24049.5986  

FEM 935.8803 3862.9589 8676.8623 15404.4807 24049.5401 151.7 

CTMMc 935.8814 3862.9637 8676.8730 15404.4996 24049.5696 0.03 
P-P 

CTMMn 935.8814 3862.9637 8676.8730 15404.4996 24049.5696 0.28 

ANCM 1657.7654 5028.6545 10317.0580 17522.0588 26645.3397  

FEM 1657.7492 5028.6023 10317.0444 17521.8663 26645.3351 150.6 

CTMMc 1657.7552 5028.6207 10317.0824 17521.9308 26645.4333 0.03 
P-C 

CTMMn 1657.7552 5028.6207 10317.0823 17521.9308 26645.4332 0.31 

ANCM 1327.5922 4716.8123 10001.9291 17204.9487 26327.1998  

FEM 1327.5957 4716.8673 10001.8762 17204.9748 26327.2683 147.7 

CTMMc 1327.5920 4716.8553 10001.8512 17204.9319 26327.2029 0.03 
C-P 

CTMMn 1327.5920 4716.8553 10001.8511 17204.9319 26327.2028 0.31 

ANCM 203.8352 1835.6157 5727.5757 11491.7806 19175.0754  

FEM 203.8463 1835.5870 5727.5866 11491.7411 19175.1913 148.4 

CTMMc 203.8456 1835.5770 5727.5576 11491.6836 19175.0958 0.03 
C-F 

CTMMn 203.8456 1835.5770 5727.5576 11491.6836 19175.0958 0.23 

ANCM 547.6202 2496.3165 6363.3976 12131.2240 19816.2456  

FEM 547.6192 2496.3006 6363.4199 12131.0661 19816.1595 147.9 

CTMMc 547.6225 2496.3178 6363.4656 12131.1545 19816.3047 0.03 
F-C 

CTMMn 547.6225 2496.3178 6363.4655 12131.1544 19816.3046 0.25 
a From the presented CTMM based on classical BCs. 
b From the presented CTMM based on non-classical BCs. 
c From Wu and Hsieh (2000). 

 
 

300 uniform beam elements.  The cross-sectional area Ai and 
the moment of inertia Ii for the ith uniform beam element are 
equal to the average values of the corresponding ones for the 
ith tapered beam element, respectively, i.e. 

 4
0 (  )i iA A x    , 4

0 (  )i iI I x     (65a, b) 

with 

 1( ) 2i i ix x x    (66) 

The mass per unit length of the ith uniform beam element is 
evaluated by Ai, and the length of each uniform beam element 
is given by li = L/n = 30/300 = 0.1 in.  From Tables 1(a)-(c) one 
finds that: (i) The results of CTMMc and FEM are all very close 

to the solutions given by Abrate (1995a) and Wu and Hsieh 
(2000), but the accuracy of CTMMc is better than that of FEM, 
particularly for the beam with higher taper constant .  (ii) The 
values of (rL)2 obtained from the C-P beam with positive taper 
constant  = 1.0, 2.0 are exactly equal to those obtained from 
the P-C beam with negative taper constant  = 1.0, 2.0.  (iii) 
In each case, the CPU time (on an ASUS MD750 PC with Intel 
Core i7-3770CPU) required by the presented CTMMc is less 
than 0.01% of that required by the conventional FEM. 

The influence of various BCs on the lowest five natural fre- 
quencies r (r = 1~5) of the nonlinearly tapered beam with ta- 
per constant  = 0.5 and without carrying any CEs obtained from 
ANCM (Wu and Hsieh, 2000), FEM, CTMMc and CTMMn are 
shown in Table 2, and the corresponding five unit-amplitude mode 
shapes for the beam with P-P, F-C and P-C BCs are shown in 
Fig. 4. 
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Fig. 4. The lowest five unit-amplitude mode shapes of the nonlinearly tapered beam with taper constant α = 0.5 and without carrying any CEs (Fig. 3), 

and with corresponding natural frequencies showing in Table 2 in the (a) P-P, (b) F-C and (c) P-C BCs, respectively. 
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Fig. 5. A nonlinearly tapered clamped-free (C-F) beam with taper constant α = 0.5 and carrying five identical sets of CEs, with each set of CEs con-

sisting of a lumped mass mi (with eccentricity ei and rotary inertia Ji), a translational spring with stiffness kt,i and a rotational spring with 
stiffness kr,i (i = 2  6). 



40 Journal of Marine Science and Technology, Vol. 26, No. 1 (2018 ) 

 

 

Table 3. Influence of loading conditions on the lowest four natural frequencies r (r = 1~4) of the nonlinearly tapered 
clamped-free (C-F) beam with taper constant  = 0.5 and carrying five identical sets of CEs as shown in Fig. 5, 
obtained from the presented CTMMc (with total number of beam segments n = 6) and FEM (with total number 
of beam elements ne = 300). 

aConcentrated elements 

Lumped masses Elastic springs
Natural frequencies, r (rad/sec) 

Cases Positions 
xi /L *

im  *
ie  *

iJ  *
,t ik  *

,r ik
Methods

1 2 3 4 

CTMMc 203.8456 1835.5770 5727.5576 11491.6836
0 

0 
(No CEs) 

0 0 0 0 0 
FEM 203.8463 1835.5870 5727.5866 11491.7411

CTMMc 191.1861 1383.1090 5706.7066 9585.9075 
1 1 0 0 0 0 

FEM 191.1880 1383.1160 5706.7350 9585.9546 

CTMMc 207.2377 1837.7833 5727.9811 11492.0218
2 0 0 0 1 0.01

FEM 207.2587 1837.8074 5728.0102 11492.0815

CTMMc 194.4202 1384.4377 5707.1179 9585.9851 
3 

1/2 
(i = 4) 

1 0 0 1 0.01
FEM 194.4398 1384.4530 5707.1463 9586.0327 

CTMMc 166.5364 1180.2887 3611.6301 8028.8332 
4 1 0 0 0 0 

FEM 166.5375 1180.2952 3611.6441 8028.8509 

CTMMc 164.9117 1180.0765 3605.4710 7784.3177 
5 1 1 1 0 0 

FEM 164.8947 1179.8750 3604.7695 7783.0255 

CTMMc 174.8437 1186.8424 3642.0091 8041.9951 
6 

1

3
, 

1

2
, 

2

3
 

(i = 3, 4, 5) 
1 1 0.1 1 0.01

FEM 174.8941 1186.8235 3641.8954 8041.7455 

CTMMc 140.7797 1103.8019 3257.5695 6296.8523 
7 1 0 0 0 0 

FEM 140.7801 1103.8078 3257.5875 6296.8802 

CTMMc 139.0921 1086.0881 3171.0649 6068.9015 
8 1 1 1 0 0 

FEM 139.0714 1085.8593 3170.3331 6067.4498 

CTMMc 156.3829 1098.1784 3232.4158 6246.4783 
9 

1

6
, 

2

6
, 

3

6
, 

4

6
, 

5

6
 

(i = 2, 3, 4, 5, 6) 
1 1 0.1 1 0.01

FEM 156.4632 1098.1575 3232.2974 6245.9454 
a *

refi im m m , *
refi ie e e , *

refi iJ J J , *
, , ,reft i t i tk k k  and *

, , ,refr i r i rk k k . 

 
 
From Table 2 one finds that the results of CTMMc, CTMMn 

and FEM are very close to ANCM, and in each case, the CPU 
time required by the presented CTMMc (or CTMMn) is less 
than 0.2% of that required by the conventional FEM.  In Fig. 4, 
the mode shapes obtained from CTMMc (or CTMMn) and 
FEM are denoted by the solid lines () and the dashed lines  
(- - -), respectively.  In which, Figs. 4(a)-(c) are for the P-P, F-C 
and P-C beams, respectively.  It is sees that the lowest five mode 
shapes obtained from the presented CTMMc (or CTMMn) are 
in good agreement with those obtained from FEM.  Furthermore, 
for the rth mode shape (with r  2), the mode displacement am- 
plitude near the smallest (left) end of the beam is greater than 
that near the largest (right) end.  This is a reasonable result, be- 
cause the stiffness of the left end is much smaller than that of 
the right end for the nonlinearly tapered beam with  = 0.5 
(cf. Fig. 2 or 3).  It is noted that, in Figs. 4(a)-(c), the 1st, 2nd, 3rd, 
4th and 5th mode shapes are denoted by the symbols,  (or ), 
 (or ),  (or ),  (or ) and ★ (or ☆), respectively. 

2. Influence of Loading Conditions on Free Vibrations of a 
Nonlinearly Tapered C-F Beam Carrying Various CEs 

The reliability of the presented formulations and the developed 
computer program has been confirmed in the last Subsection 
6.1, and the objective of this subsection is to study the influence 
of various CEs on the free vibration characteristics of a non- 
linearly tapered C-F beam with taper constant  = 0.5 as shown 
in Fig. 5.  The tapered beam carries five identical sets of CEs 
with each set of CEs consisting of a lumped mass mi (with ec- 
centricity ei and rotary inertia Ji), a translational spring with stiff- 
ness kt,i and a rotational spring with stiffness kr,i, for i = 2, 3, 4, 
5 and 6.  The lowest four natural frequencies of the beam for 
ten cases are shown in Table 3 and the associated lowest three 
mode shapes for three cases are plotted in Fig. 6. 

The loading conditions for the ten cases are (cf. Table 3): 

 
(a) In Case 0, the beam does not carry any CEs and it is the 

same as the C-F beam studied in Table 2.  It is obvious that 
this case is only for comparisons. 

(b) In Cases 1-3, the beam carries “one set” of CEs (located at 
node 4 with 4 1 2ix L x L  ) consisting of a lumped 

mass with *
4 4 ref 1m m m   for Case 1; a translational 
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spring with *
,4 ,4 ,ref 1t t tk k k   and a rotational spring 

with *
,4 ,4 ,refr r rk k k   0.01 for Case 2; and a lumped 

mass with *
4 4 ref 1m m m  , a translational spring with 

*
,4 ,4 ,ref 1t t tk k k   as well as a rotational spring with 

*
,4 ,4 ,refr r rk k k  0.01 for Case 3.  Note that, in the present 

three cases (Cases 1-3), the lumped mass m4 does not 
possess eccentricity and rotary inertia, i.e., ei = Ji = 0 (for  
i = 4). 

(c) In Cases 4-6, the beam carries “three sets” of CEs (located 
at nodes i with xi /L = 1/3, 1/2 and 2/3, for i = 3, 4, 5, re-
spectively) with each set of CEs consisting of a lumped 

mass with *
ref 1i im m m   (and ei = Ji = 0) for Case 4; a 

lumped mass with *
ref 1i im m m   (possessing * /i ie e  

ref 1e   and *
ref 1i iJ J J  ) for Case 5; and a lumped 

mass with *
ref 1i im m m   (possessing *

ref 1i ie e e   

and *
ref 0.1i iJ J J  ), a translational spring with *

,t ik   

, ,ref/ 1t i tk k   as well as a rotational spring with *
,r ik   

, ,ref 0.01r i rk k   for Case 6. 

(d) In Cases 7-9, the beam carries “five sets” of CEs (located 
at nodes i with xi /L = 1/6, 2/6, 3/6, 4/6 and 5/6, for i = 2, 3, 
4, 5, 6, respectively) with each set of CEs consisting of a 

lumped mass with *
ref 1i im m m   (and 0i ie J  ) for 

Case 7; a lumped mass with *
ref 1i im m m   (possessing 

*
ref 1i ie e e   and *

ref 1i iJ J J  ) for Case 8; and a 

lumped mass with *
ref 1i im m m   (possessing * /i ie e  

ref 1e   and *
ref 0.1i iJ J J  ), a translational spring with  

*
, , ,ref 1t i t i tk k k   as well as a rotational spring with *

,r ik   

, ,ref/ 0.01r i rk k   for Case 9. 

 It is noted that the values of the five reference parameters 
have been shown at the beginning of this section, i.e.,  
mref = A0L = 0.0330237 lbm, Jref = A0L

3/1000 = 
0.02972133 lbm-in2, eref = 0.01L = 0.3 in, kt,ref = E1I0 /L3 = 
3.125  102 lbf /in and kr,ref = E1I0 /L = 2.8125  105 
lbf -in/rad.  Furthermore, Fig. 5 reveals that the entire tapered 
beam is subdivided into 6 beam segments with equal lengths 
li = L/n = 30/6 = 5 in (i = 1~6) and the locations for the five 
CEs are: x2 = 5 in, x3 = 10 in, x4 = 15 in, x5 = 20 in and x6 = 
25 in.  Form Table 3 one sees that: 

 
(i) All natural frequencies obtained from CTMMc (with 

n = 6) are very close to the corresponding ones ob-
tained from FEM (with ne = 300). 

(ii) Among Cases 1-3, the lowest four natural frequen-
cies (1 to 4) of Case 1 for the beam carrying a 
“lumped mass” only are lower than those of the other 
cases; the values of “1 to 4” of Case 2 for the beam 
carrying “elastic elements” (a translational spring as 

well as a rotational spring) only are higher than those 
of the other cases; and the values of “1 to 4” of 
Case 3 for the beam carrying a “lumped mass” and 
two “elastic elements” are middle.  The last pheno- 
menon is reasonable, because the “lumped mass” can 
raise the inertia effect (and reduce the natural frequen-
cies of the beam), but the “elastic elements” can raise 
the stiffness (and raise the natural frequencies). 

(iii) Among Cases 4-6, the lowest four natural frequen-
cies (1 to 4) of Case 6 for the beam carrying three 
lumped masses (possessing eccentricities and rotary 
inertias), three translational springs and three rotational 
springs are higher than those of the other cases; the 
values of “1 to 4” of Case 5 for the beam carrying 
three lumped masses (possessing eccentricities and ro- 
tary inertias) are lower than those of the other cases; 
and the values of “1 to 4” of Case 4 for the beam 
carrying three lumped masses (no eccentricities and 
rotary inertias) only are middle.  The last results are also 
reasonable, because the “eccentricities and rotary in- 
ertias“ in Case 5 have the effect of increasing inertia 
and, in turn, reducing the natural frequencies. 

(iv) Similarly to (iii), among Cases 7-9 for the beam carry- 
ing “five sets” of CEs, the lowest four natural frequen-
cies of Case 9 for the beam carrying five lumped masses 
(possessing eccentricities and rotary inertias), five trans- 
lational springs and five rotational springs are higher 
than those of Case 7 or 8 for the beam carrying five 
“lumped masses” and no “elastic CEs”. 

 
In addition to the lowest four natural frequencies listed in 

Table 3, the lowest three unit-amplitude mode shapes are shown 
in Fig. 6(a) for the beam carrying “no” CEs (Case 0), in Fig. 
6(b) for the beam carrying “three sets” of CEs (Case 6) and in 
Fig. 6(c) for the beam carrying “five sets” of CEs (Case 9).  It 
is seen that: (i) The mode shapes obtained from the presented 
CTMMc (denoted by solid curves, ) are very close to the cor- 
responding ones obtained from FEM (denoted by dashed curves, 
- - -).  (ii) The mode displacements of 1st mode shape for Case 0 
are very close to the corresponding ones for Case 6 or Case 9.  
(iii) The mode displacement amplitudes of the 2nd and 3rd mode 
shapes for Case 0 are greater than the corresponding ones for 
Case 6 or Case 9.  The reason for the last result is: Among the 
various CEs, the lumped masses can raise the inertia effect and 
the elastic springs can raise the stiffness of the beam segments 
attached by the CEs, so that the mode displacement amplitudes 
of the 2nd and 3rd mode shapes for the beam carrying three sets 
of CEs (Case 6) or five sets of CEs (Case 9) near its middle 
are smaller than the corresponding ones for the beam carrying 
no CEs (Case 0). 

3. Free Vibration Analysis for a Nonlinearly Tapered 
Beam Carrying Arbitrarily Distributed CEs with 
“Non-Classical” BCs 

The objective of this subsection is to show the availability  
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Fig. 6. The lowest three unit-amplitude mode shapes of the nonlinearly tapered C-F beam with taper constant α = 0.5 and carrying (cf. Fig. 5): (a) no 

CEs (Case 0), (b) three sets of CEs (Case 6), and (c) five sets of CEs (Case 9), with corresponding natural frequencies shown in Table 3. 
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Fig. 7. A nonlinearly tapered free-free (F-F) beam with taper constantα = 0.5 and carrying five identical sets of CEs with each set CEs consisting of a 

lumped mass mi (possessing eccentricity ei and rotary inertia Ji), a translational spring with stiffness kt,i and a rotational spring with stiffness kr,i. 

 
 

of CTMM for a nonlinearly tapered beam carrying arbitrarily 
distributed CEs in various “non-classical” BCs.  Fig. 7 shows 
the beam with taper constant  = 0.5 studied.  It carries five 

identical sets of CEs located at nodes i = 1, 2, 3, 4, and 7, with 
xi /L = 0, 1/6, 2/6, 3/6 and 1 (or x1 = 0, x2 = 5 in, x3 = 10 in, x4 = 
15 in and x7 = 30 in), respectively.  In which, each set of CEs  
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Table 4. Influence of BCs on the lowest five natural frequencies r (r = 1~5) of the nonlinearly tapered beam with taper 
constant  = 0.5 and carrying five identical sets of CEs located at xi /L = 0, 1/6, 2/6, 3/6 and 1.0 as shown in Fig. 7, 
obtained from presented CTMMn (with n = 6 6n ) and FEM (with ne = 300). 

Natural frequencies, r  (rad/sec) 
BCs Methods 

1 2 3 4 5 

CPU 

Time (sec) 

CTMMn 1230.6690 3718.0547 7330.8713 10736.7315 22908.2466 0.11 aC-C 
FEM 1230.6320 3717.9062 7330.5805 10736.2428 22903.5206 145.5 

CTMMn 561.5011 2461.5869 5371.4304 8922.5783 18416.5667 0.08 
P-P 

FEM 561.5446 2462.0919 5375.3774 8929.6556 18494.9728 149.2 

CTMMn 849.0018 3061.0385 6001.4714 9448.5072 18507.1143 0.09 
C-P 

FEM 849.0659 3061.9474 6006.2240 9454.6017 18587.1568 146.1 

CTMMn 886.8868 3026.6768 6621.2833 10459.0230 22648.0267 0.11 
P-C 

FEM 886.8663 3026.5363 6621.0069 10458.5722 22659.1879 147.7 

CTMMn 234.3695 1156.1083 3369.6417 6859.8844 10540.0128 0.06 
F-C 

FEM 234.5110 1156.0572 3369.4540 6859.5622 10539.5362 144.9 
a CTMMc is also available for the C-C beam. 
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Fig. 8. The lowest three unit-amplitude mode shapes of the nonlinearly taper beam with taper constant α = 0.5, carrying five identical sets of CEs (cf. 

Fig. 7) and corresponding natural frequencies shown in Table 4 in the (a) C-C, (b) P-P, (c) C-P and (d) F-C BCs, respectively. 
 
 

consists of a lumped mass with *
ref 1i im m m   (possessing ec- 

centricity *
ref 1i ie e e   and rotary inertia *

ref 0.1i iJ J J  ), 

a translational spring with *
, , ,ref 1t i t i tk k k   as well as a ro- 

tational spring with *
, , ,ref 0.01r i r i rk k k  .  Table 4 shows the 
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values of r (r = 1~5) of the nonlinear tapered beam in five 
BCs obtained from the presented CTMMn (with n = 6) and 
FEM (with ne = 300), and Fig. 8 shows the lowest three unit- 
amplitude mode shapes for the beam in four BCs.  Form Table 4 
one sees that: (i) In various BCs, the lowest five natural frequen-
cies obtained from CTMMn are very close to the corresponding 
ones obtained from FEM, particularly for the lowest two fre-
quencies, 1 and 2.  (ii) Among the five BCs, the lowest five 
natural frequencies of the F-C beam are lowest and those of 
C-C beam are highest, this is because the stiffness of the F-C 
beam is lowest and that of the C-C beam is highest.  (iii) The 
lowest five natural frequencies of the P-P beam are greater 
than the corresponding ones of the F-C beam and smaller than 
those of the C-P beam, this is because the stiffness of P-P beam 
is greater than that of F-C beam and smaller than that of C-P beam.  
(iv) In each case, the CPU time required by the CTMMn is less 
0.1% of that required by the conventional FEM. 

The lowest three unit-amplitude mode shapes of the tapered 
beam with C-C, P-P, C-P and F-C BCs are shown in Figs. 
8(a)-(d), respectively.  It is similarly to Fig. 6 that the mode shapes 
obtained from CTMMn are represented by the solid curves () 
and those obtained from FEM are represented by the dashed 
curves (- - -), and the overlap each other between the correspond- 
ing solid and dashed curves confirms the good agreement between 
the results obtained from CTMMn and FEM.  Furthermore, for 
the beam with C-C, P-P or C-P BCs shown in Figs. 8(a)-(c), 
respectively, the mode displacement amplitudes of the 2nd and 
3rd mode shapes near the smallest (left) end of the beam are 
smaller than those near the largest (right) end, and this trend is 
opposite to that for the same tapered P-P or P-C beam carrying 
no CEs shown in Fig. 4(a) or (c).  The last phenomenon is due to 
the fact that, in Fig. 7, the most CEs are near the smallest (left) 
end of the entire beam and they can raise the inertia effect and 
the stiffness of the beam segments near the smallest (left) end, 
so that the mode displacement amplitudes of the 2nd and 3rd 
mode shapes near the smallest (left) end are smaller than those 
near the largest (right) end of the C-C, P-P or C-P beam. 

It is noted that the BCs for the F-F beam shown in Fig. 7 are 
“non-classical”, thus, all results shown in Table 4 and Fig. 8 are 
obtained from CTMMn (based on the non-classical BCs), and 
only the natural frequencies and mode shapes for the beam with 
its two ends clamped can be obtained from CTMMc (based on 
the classical BCs).  It is evident that, in Fig. 7, the effects of all 
CEs located at the two ends are nil, when the beam is in the C-C 
BCs. 

VII. CONCLUSIONS 

1. Based on the theory of continuous-mass transfer matrix me- 

thod (CTMM), this paper has presented a formulation for 
determining the lowest several exact natural frequencies and 
associated mode shapes of a nonlinearly tapered beam carry- 
ing various concentrated elements (CEs) in the arbitrary boun- 
dary conditions (BCs).  Numerical examples reveal that the 
results of the presented approach are very close to those of the 
FEM.  Because the solutions of presented method are exact, 
they may be the benchmarks for evaluating the accuracy of 
the other approximate solutions, such as those of FEM or 
DQEM (differential quadrature element method). 

2. In each of the cases studied in this paper, the CPU time re- 
quired by the presented method is less than 0.2% of that re- 
quired by the FEM, this is because the presented method needs 
only a few beam segments for achieving the exact solutions 
and the order of the characteristic-equation matrix keeps con- 
stant (4  4). 

3. For the rth mode shape (with r  2) of a nonlinearly tapered 
beam without carrying any CEs, the mode displacement am- 
plitude near the smallest end is greater than that near the 
largest end, because the flexural rigidity of the tapered beam 
near the smallest end is less than that near the largest end. 

4. For a nonlinearly tapered beam carrying multiple sets of CEs 
in various BCs, since each set of CEs (consisting of one lumped 
mass and two elastic springs) can raise both the inertia effect 
and the stiffness of the beam segments attached by them, the 
mode displacement amplitude of the rth mode shape (with  
r  2) near the beam segment attached by the CEs is smaller 
than that of the beam segment without attaching to the CEs.  
Furthermore, in each set of CEs, the lumped mass has the 
effect of reducing the natural frequencies of the entire tapered 
beam and the elastic springs have reverse effect. 

5. The free vibration problem for a tapered beam with both ends 
carrying various CEs in the arbitrary BCs can be solved with 
the CTMMn (on the basis of non-classical BCs) presented 
in this paper, however, only that in the clamped-clamped BCs 
can be solved with the CTMMc (on the basis of classical 
BCs) presented in the existing literature. 

6. For a nonlinearly tapered beam carrying various CEs, includ- 
ing lumped masses (with eccentricities and rotary inertias), 
translational springs and rotational springs, the influence of 
the CEs on its lowest several natural frequencies and mode 
shapes in the arbitrary BCs is complicated, in such a case, 
the approach presented in this paper is useful for solving the 
last complicated problem. 

7. The presented theories regarding the influence of the CEs 
and the non-classical (or non-zero) BCs on the free vibration 
characteristics of a nonlinearly tapered beam are useful for 
the development of the vortex wind turbine. 

 

APPENDIX A 

Transformation Displacement Functions Associated with Translational and Rotational CEs, ( )Y x  and ( )Y x  

If meq denotes the mass on the equivalent uniform beam associated with the actual mass m, then 
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 ( , ) ( , )eqm v x t my x t   (A.1) 

thus 

 
( , ) ( , )

( , ) ( ) ( , ) ( )eq

my x t my x t m
m

v x t x y x t x 
  

 
 

 (A.2) 

and 

 
2

( , ) ( , )
( , )

( ) ( ) ( )eq

m v x t v x t
m y x t m

x x x  
  

    
   

   (A.3) 

For free vibrations, one has 

 ( , ) ( ) j ty x t Y x e  , ( , ) ( ) j tv x t V x e   (A.4a, b) 

Where ( )Y x  and ( )V x  denote the amplitudes of ( , )y x t  and ( , )v x t , respectively,  is natural frequency of the “loaded” 

beam (carrying any CEs), and 1j   . 

From Eqs. (A.3) and (A.4), one obtains 

 2 2 2( ) [ ( ) ( )]eqm Y x m V x x    (A.5) 

The above equation indicates that if one sets meq = m and 

 2( ) ( ) ( )Y x V x x  (A.6) 

then 2 2 2( ) [ ( ) ]mY x m V x    denotes the inertial force on the (equivalent) uniform beam due to the concentrated mass m.  

Similarly, the elastic (restoring) moment on the (equivalent) uniform beam due to the concentrated rotational spring kr is given by 

 
2

4

( ) ( ) 2 ( ) ( ) ( )

( )r r

V x x x x V x
k Y k

x

  


     
 

 

or 

 
2

4

( ) ( ) 2 ( ) ( ) ( )

( )

V x x x x V x
Y

x

  


    (A.7) 

APPENDIX B 

Classical BCs for Nonlinearly Tapered Beam 

The BCs for a beam without any CEs attached to its ends are called the “classical” BCs and these BCs for three beams are 
derived in this appendix: (i) free-free (F-F), (ii) pinned-pinned (P-P) and (iii) clamped-clamped (C-C) beams. 

(i) BCs for the F-F Beam 

For a F-F beam, the BCs at the left end of the entire beam (i.e., left end of the 1st beam segment) are given by 

 1  (0) 0Y   , 1  (0) 0Y    (A.8a, b) 
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From Eqs. (12), (15), (16) and (A.8a,b), one can obtain the corresponding BCs for the function V1(0) to be 

 2
1 1 1 (0) 6 (0) 4 (0) 0V V V      (A.9a) 

 3 2
1 1 1 (0) 12 (0) 6 (0) 0V V V      (A.9b) 

where 

     (A.9c) 

Substituting the function V(x) given by Eq. (14) into Eqs. (A.9a,b), one obtains 

 11 1 12 1 13 1 14 1 0S A S B S C S D     (A.10a) 

 21 1 22 1 23 1 24 1 0S A S B S C S D     (A.10b) 

where 

 2
11 12S  , 2

12 12S   , 13 18S   , 14 0S   (A.11a-d) 

 3
21 24S  , 22 0S  , 2

23 112S    , 3
24 12S    (A.12a-d) 

Similarly, the BCs at right end of the entire F-F beam (i.e., at right end the nth beam segment) are given by 

  ( ) 0nY L  , ( ) 0nY L   (A.13a, b) 

From Eqs. (12), (15), (16) and (A.13a,b), one obtains 

 2( ) 6 ( ) 4 ( ) 0n n nV L V L V L      (A.14a) 

 3 2( ) 12 ( ) 6 ( ) 0n n nV L V L V L      (A.14b) 

where 

 
( )L


 




 (A.14c) 

The substitution of V(x) given by Eq. (14) into Eq. (A.14a,b) produces 

 11 12 13 14 0n n n nU A U B U C U D     (A.15a) 

 21 22 23 24 0n n n nU A U B U C U D     (A.15b) 

where 

 2 2 2 2
11 [ 6 ]cos [ 6 ]cosh 4 ( sin sinh )n n n n n n nU L L L L                 (A.16a) 

 2 2 2 2
12 [ 6 ]cos [ 6 ]cosh 4 ( sin sinh )n n n n n n nU L L L L                 (A.16b) 
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 2 2 2 2
13 [ 6 ]sin [ 6 ]sinh 4 (cos cosh )n n n n n n nU L L L L                (A.16c) 

 2 2 2 2
14 [ 6 ]sin [ 6 ]sinh 4 (cos cosh )n n n n n n nU L L L L                (A.16d) 

 2 2 2 2 3
21 1[ 6 ]sin [ 6 ]sinh 12 (cos cosh )n n n n n n n nU L L L L                 (A.17a) 

 2 2 2 2 3
22 1 1[ 6 ]sin [ 6 ]sinh 12 (cos cosh )n n n n n n n nU L L L L                  (A.17b) 

 2 2 2 2 3
23 [ 6 ]cos [ 6 ]cosh 12 (sin sinh )n n n n n n n nU L L L L                  (A.17c) 

 2 2 2 2 3
24 1[ 6 ]cos [ 6 ]cosh 12 (sin sinh )n n n n n n n nU L L L L                  (A.17d) 

(ii) BCs for the P-P Beam 

The BCs at left end of the entire P-P beam are given by 

 1(0) 0Y  , 1 (0) 0Y    (A.18a, b) 

From Eqs. (12), (15), (16) and (A.18a, b), one obtains 

 1 1 1(0) (0) (0) 0V Y  , 1 1(0) 4 (0) 0V V    (A.19a, b) 

Substituting Eq. (14) into Eqs. (A.19a, b), one can obtain two equations to take the forms like Eqs. (A.10a, b) with the coef-
ficients of the constants A1, B1, C1 and D1 given by 

 11 2S  , 12 13 14 0S S S    (A.20a-d) 

 21 0S  , 2
22 12S   , 23 18S   , 24 0S   (A.21a-d) 

Similarly, the BCs at right end of the entire P-P beam are given by 

 ( ) 0nY L  , ( ) 0nY L   (A.22a, b) 

From Eqs. (12), (15), (16) and (A.22a, b), can obtains 

 ( ) ( ) ( ) 0n n nV L L Y L  , ( ) 4 ( ) 0n nV L V L    (A.23a, b) 

Substituting Eq. (14) into Eqs. (A.23a, b), one can obtain two equations to take the forms like Eqs. (A.15a, b) with the coefficients 
of the constants An, Bn, Cn and Dn given by 

 11 cos coshn nU L L   , 12 cos coshn nU L L    (A.24a, b) 

 13 sin sinhn nU L L   , 14 sin sinhn nU L L    (A.24c, d) 

 2
21 ( cos cosh ) 4 ( sin sinh )n n n n n nU L L L L            (A.25a) 

 2
22 ( cos cosh ) 4 ( sin sinh )n n n n n nU L L L L            (A.25b) 

 2
23 ( sin sinh ) 4 (cos cosh )n n n n n nU L L L L           (A.25c) 

 2
24 ( sin sinh ) 4 (cos cosh )n n n n n nU L L L L           (A.25d) 
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(iii) BCs for the C-C Beam 

The BCs at left end of the entire C-C beam are given by 

 1(0) 0Y  , 1 (0) 0Y    (A.26a,b) 

From Eqs. (12), (15), (16) and (A.26a, b), one obtains 

 1 1 1(0) (0) (0) 0V Y  , 1 1 1 1 1(0) (0) (0) 0V Y Y       (A.27a,b) 

Substituting Eq. (14) into Eq. (A.27a, b), one can obtain two equations to take the same forms as Eqs. (A.10a, b) with the 
coefficients of the constants A1, B1, C1 and D1 given by 

 11 2S  , 12 13 14 0S S S    (A.28a-d) 

 21 0S  , 22 0S  , 23 12S  , 24 0S   (A.29a-d) 

Similarly, the BCs at right end of the entire C-C beam are given by 

 ( ) 0nY L  , ( ) 0nY L   (A.30a,b) 

From Eqs. (12), (15), (16) and (A.30a, b), one obtains  

 ( ) ( ) ( ) 0n n nV L L Y L  , ( ) ( ) ( ) ( ) ( ) 0n n n n nV L L Y L L Y L       (A.31a,b) 

Substituting Eq. (14) into Eq. (A.31a, b), one can obtain two equations to take the same forms as Eqs. (A.15a, b) with the co- 
efficients of the constants An, Bn, Cn and Dn given by 

 11 cos coshn nU L L   , 12 cos coshn nU L L    (A.32a,b) 

 13 sin sinhn nU L L   , 14 sin sinhn nU L L    (A.32c,d) 

 21 ( sin sinh )n n nU L L     , 22 ( sin sinh )n n nU L L      (A.33a,b) 

 23 (cos cosh )n n nU L L    , 24 (cos cosh )n n nU L L     (A.33c,d) 

It is noted that, for a beam with the BCs of left end to be different from the BCs of right end (such as the C-F or C-P beam), the 
equations regarding its BCs can be obtained from the foregoing equations for the ends with the same BCs. 
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