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ABSTRACT 

Frequency domain analysis has been widely adopted for the 
study of the small signal stability of the power system.  The fre- 
quency domain approach includes the linearization of the system 
to obtain a linear model as well as the system matrix of which 
the eigenvalues can be calculated to determine the system sta- 
bility.  However, we often have high order of system matrix and 
thus it will be undesirable to calculate and analyze all the sys- 
tem eigenvalues. 

This paper is to explore the problem of small signal stability 
for the shipboard electric power system and the main purpose 
is to find out the worst-damped mode of system eigenvalues 
and thus to alleviate the effort for computing and analyzing all 
the system eigenvalues.  A sample shipboard power system is 
taken as the study system.  The worst-damped mode of system 
eigenvalues under different operating conditions are calculated 
for fast analysis and comparative investigations of the system 
small signal stability. 

I. INTRODUCTION 

The primary function of an electric power system is to pro- 
vide users with economic and reliable electric power with high 
quality.  In accordance with the different purposes of utilization, 
electric power systems can be divided into several categories in- 
cluding residential, commercial, and industrial power systems, 
as well as those systems for transportation vehicles such as rail- 
ways, ships, and aircrafts. 

The most important task for electric power system operation 
is to maintain system stability under various possible operating 
points, including continuous variations of the load.  The stability 

of electric power system is usually divided into three types, namely: 
steady-state stability, transient stability, and small signal sta-
bility.  The steady-state stability generally refers to the maximum 
electric power transmission capacity of the electric power trans- 
mission line.  The transient stability is based on the considera- 
tion of whether or not the system can be kept at a stable operation 
under major disturbances.  The small signal stability concerns 
the dynamic responses when the system is subjected to small dis- 
turbances.  It is noted that the stability margin of the small signal 
stability tends to be more stringent than that of the transient sta- 
bility (Anderson and Fouad, 1994; Kundur, 1994; Rogers, 2000). 

The shipboard electric power system is the kind of electric 
power system with independent operating characteristics of which 
the various loads on board are in constant and continuous changes 
and the operating circumstances are far severer when the ship is 
navigating on the sea.  Regarding both personnel safety and power 
supply reliability, the requirements for design and maintenance 
of the shipboard electric power system are much more stringent 
than those for the ordinary on-shore electric power systems. 

In general the analysis of the small signal stability of the po- 
wer system is based on frequency domain analysis method by 
which system state equations will be derived and the eigen-
values of system state matrix will be calculated with respect to 
the operating point in order to determine whether this system 
is stable or not.  Ordinary on-shore power systems usually con- 
sist of a large number of generators, and the major dynamic be- 
haviors of this system are mainly from the generators.  With the 
capacity of each customer being far less than the capacity of 
the generator, the dynamic effect of single load can be neglected 
in the mathematical model of the overall system.  On the other 
hand, the shipboard electric power system is a kind of small- 
scale independent system.  Although the number of generators 
in a shipboard electric power system is rather small, the system 
dynamic behaviors, such as voltage and frequency, are vulner-
able to load variations.  There are a large number of working 
loads installed on the ship and they are mostly electric motors 
of different capacities.  Each motor load consumes a certain 
percentage of the system total load and thus the dynamic effect 
of the load shall not be neglected in the mathematical model of 
the overall system.  Therefore, the stability study of the on-shore 
as well as the shipboard electric power system will have to face 
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the system state matrix with rather high orders.  It will take a 
very long time to calculate all eigenvalues with respect to every 
operating point, and there will be too many eigenvalues which 
may be quite difficult to analyze. 

Some literatures have proposed rapid calculation method 
with respect to small signal stability analysis on electric power 
system state matrix with high orders.  In 1995 Campagnolo et al. 
proposed various methods such as Parallel LSSI Algorithm, 
Parallel BI Algorithm and Hybrid Parallel Algorithm (Campagnolo 
et al., 1995) for calculating several critical eigenvalues near 
the specific shift point.  In 1995 Lima et al. proposed a new me- 
thod for small signal stability analysis (Lima et al., 1995).  This 
method is a new matrix transformation suitable for small sig- 
nal stability analysis of a large power system, and it is based on 
a calculation of several critical eigenvalues near the specific 
shift point by using Power Method, inverse iteration method, 
and S-matrix method.  In all aforementioned methods, only the 
critical eigenvalues near the shift point have been taken into con- 
sideration such that it cannot immediately determine whether 
the system is stable.  If the most unstable (or with the lowest 
damping) eigenvalue is nowhere near the shift point, it will 
lead to misjudgment of system stability.  Until now, the litera- 
ture related to the calculation of partial eigenvalues is the cal- 
culation of critical eigenvalues by Jacobi-Davidson QR proposed 
by Tsai et al. in 2010 (Tsai et al., 2010).  In this paper, the real 
number type of Jacobi-Davidson numerical algorithm in conjunc- 
tion with a strategy of the flexible selection of critical eigenvalue 
has been utilized to solve the critical eigenvalues of large power 
system state matrix. 

In this paper a method for rapid determination of system sta- 
bility is proposed to solve the most unstable (or with the lowest 
damping) and all unstable eigenvalues, and to further solve the 
corresponding eigenvectors with high accuracy in order to avoid 
time consumption for calculating all eigenvalues.  A sample ship- 
board electric power system is used to test and verify the pro- 
posed algorithm in order to ascertain that it can indeed achieve 
the rapid analysis of the small signal stability of the power system. 

II. SHIPBOARD ELECTRIC POWER SYSTEM 

The applications of electric power systems can be rather di- 
versified.  An electric power system can be as large as an ordi- 
nary ground electric power system, or as small as the electric 
power systems for ships, railroads, and factories, or even the 
circuits that supply electric power to batteries.  The electric 
power systems can be divided into two major categories: inter- 
connected electric power system and independent electric po- 
wer system.  The shipboard electric power system itself is an 
independent power supply system.  The operational environment 
of the shipboard electric power system is very different from 
that of the ground electric power system so that it is equipped 
with various unique operation features which can be quite dif- 
ferent from those of a ground electric power system. 

The shipboard electric power system itself is a system with 
independent operation features and various kinds of equipment 

and different operation requirements such that it has more fre- 
quent variations of operating states.  With the more severe working 
environment and requirements of higher electric power quality 
for precision equipment on the ship, the design and maintenance 
of the shipboard electric power system should follow a more 
stringent standard than the ground electric power system based 
on the premises of assuring personnel safety and the electric 
power quality.  With more stringent operating conditions of the 
shipboard electric power system, the stability analysis of the sys- 
tem at each operation condition has become even more important. 

The composition of the shipboard electric power system is 
identical to the ground electric power system which includes 
power generating units, power delivery network, and electricity 
load on the ship. 

The major characteristics of the shipboard electric power 
system are as follows: (1) the electric power is completely sup- 
plied by the self-equipped power generation system, (2) as a 
small electric power system, the total power generation capacity 
of this system is smaller than the general electric power system 
on the ground, (3) with a single load accounting for larger ratio 
of total capacity, the variation of the operation condition of this 
kind of load (such as activation or shut-down) will have greater 
impact of the system, (4) the operation condition of the load 
changes more frequently, (5) the work environment of electric 
equipment is worse leading to higher likelihood of accidents, 
and (6) requiring a wider variety of equipment with more spe- 
cial equipment control functionalities (Smith, 1983; Lee, 1990; 
Watson, 1990; McGeorge, 1993; IEEE Standard 45-1998, 1998).  
From these characteristics we can realize that the operation con- 
ditions of the shipboard electric power system is a series of con- 
tinuous dynamic processes.  Therefore, applying the small signal 
stability analysis to such systems with less reoccuring operating 
points is rather important. 

III. SMALL SIGNAL STABILITY ANALYSIS 

Power system small signal stability is often referred to as power 
system dynamic stability and it focuses on the ability of the sys- 
tem to maintain stable subject to small disturbances (Anderson 
and Fouad, 1994; Kundur, 1994; Rogers, 2000).  Instead of em- 
ploying the time domain approach of applying various small dis- 
turbances on the system to observe the dynamic behaviors of 
the system, the frequency domain approach, i.e., performing eigen- 
analysis by calculating the eigenvalue/eigenvector of the system 
matrix of the linearized system under study, has been widely 
adopted in the industry for power system small signal stability ana- 
lysis.  Eigen-analysis is primarily based on modal expansion theory 
(modal analysis). 

Consider the linear unforced system described in (1): 

 0( ) ( ), (0)x t x t x x A  (1) 

where x(t), x0, and A denote the n  1 state vector, the n  1 
initial states, and the n  n system matrix, respectively.  The so- 
lution of (1) is 
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 0( ) tx t e x A  (2) 

The state vector x(t) is obtained as 

 
1

( ) i

n
t

i i
i

x t e




  v  (3) 

Eq. (3) is referred to as the Modal Expansion Theory (Kailath, 
1980; Ogata, 2003).  From (3), the unforced system response 
x(t) depends upon i (the ith eigenvalue), vi (the corresponding 
ith eigenvector) and i (a constant associated with initial con- 
ditions).  Each term of exp(it)vi is referred to as a mode and 
x(t) is a composite response formed from the linear combination 
of every mode exp(it)vi with the initial state related scalar term 
i as the coefficients.  A real eigenvalue corresponds to a non- 
oscillatory mode.  A positive real eigenvalue represents an ape- 
riodic unstable mode, and a negative real eigenvalue represents 
a decaying mode.  On the other hand, complex eigenvalues occur 
in conjugate pairs and each pair corresponds to an oscillatory 
mode.  A pair of complex eigenvalues  =   j includes a real 
part  and an imaginary part .  The imaginary part  = 2f 
gives the frequency f of the corresponding oscillatory mode.  
The real part  reveals the damping of the associated oscilla-
tory mode: a positive value means a negative damping while a 
negative value represents a positive damping.  A real part with 
zero value implies there is no damping with the mode.  A linear 
system is stable if every eigenvalue of its system matrix has a 
negative real part. 

IV. THE CALCULATION METHOD FOR  
SMALL SIGNAL STABILITY ANALYSIS 

In order to calculate the small signal stability of the power 
system, we select a shift value based on the combination of S- 
matrix method, shift method, order reduction method and power 
method in order to solve the most critical eigenvalue of the sys- 
tem state matrix of the large power system, and various methods 
are described below (Campagnolo et al., 1995; Lima et al., 1995; 
Makarov et al, 1998; Uchida and Nagao, 1988). 

1. Power Method 

The basic idea that underlies almost every partial eigenvalue 

computation method is that the sequence , , ,
k

x Ax A x  converges 

to the eigenvector v1 associated with the eigenvalue of largest 
modulus (1) of matrix A, provided that 1 2 n     .  

The convergence of this method is linear and depends on the 
ratio 1 2  . 

This method is not suitable for a direct application to the 
small signal stability analysis, since the modes of interest in this 
problem are not those with largest moduli in the state matrix A.  
The inverse iteration method has been successfully applied to 
the small-signal stability analysis.  This method uses the matrix 
transform. 

     1

1 1f q


  M A A I   (4) 

where q is a complex shift, in place of the matrix A, in the po- 
wer sequence.  The eigenvalues of A closest to q will be mapped 
to the eigenvalues of largest moduli in M1 and thus the conver- 
gence will be driven to these eigenvalues and respective eigen- 
vectors. 

2. S-Matrix Method 

The S-matrix method (Uchida and Nagao, 1988) may be gen- 
eralized into the matrix transform 

      1

2 2f h h
   M A A I A I  (5) 

where h is a complex number and h  is its complex conjugate. 
Despite its initial application with the Lanczos method, this 

matrix transform could also be used with the power method to con- 
verge to the eigenvalue of largest modulus in M2.  The maximum 
eigenvalue (maximum absolute value) of M2 and the correspond- 
ing eigenvector can be solved by using the power method.  The 
relationship between the eigenvalue after S-matrix transforma- 
tion (') and the eigenvalue of the original matrix () is 

 
h

h



 


 (6) 

3. The Calculation of the Most Critical Eigenvalue of the 
Small Signal Stability 

The aforementioned method is not capable of directly solv- 
ing the most critical eigenvalue of system matrix A.  Therefore, 
in this paper we introduce a method for swift determination of 
system stability which can solve the most critical eigenvalue 
(or with the lowest damping) of the system and the correspond- 
ing eigenvector.  This method can also swiftly solve all unstable 
eigenvalues and corresponding eigenvectors without consum- 
ing too much time. 

With the unstable eigenvalues of the system only accounting 
for a small portion of all eigenvalues, in this paper we have 
adopted a new calculation method for critical eigenvalue and 
eigenvector in order to determine and analyze the small signal sta- 
bility of the electric power system.  This calculation method is 
based on the “Power Method”, “S-matrix method” and “Shifting” 
method for solving the eigenvalues with the lowest damping and 
all unstable eigenvalues of the matrix of electric power system 
(Lima et al., 1995; Makarov et al., 1998; Gomes et al., 2003).  
When the eigenvalue of the electric power system is less than 
the threshold value, the output will be the eigenvalue with the 
lowest damping.  When the eigenvalue of the electric power 
system is more than the threshold value, the outputs will be all 
unstable eigenvalues, alleviating the inconvenience for calcu- 
lating all eigenvalues.  In this paper we will also verify the fea- 
sibility of this algorithm by empirical analysis. 

In an actual electric power system, the system matrix can be 



614 Journal of Marine Science and Technology, Vol. 26, No. 4 (2018 ) 

 

 

so enormous that the matrix processing is quite time consum- 
ing.  Therefore, there have been literatures discussing all pos-
sible methods for solving the partial critical eigenvalues near 
certain shifting points (Lima et al., 1995; Makarov et al., 1998; 
Gomes et al., 2003), while there have also been continuous im- 
provement on these methods.  In this paper we have greatly im- 
proved the method for solving unstable eigenvalues.  We have 
successfully solved the most unstable (or with the lowest damp- 
ing) eigenvalue and the corresponding eigenvector based on an 
actual feasible method, which in turn can help us understand the 
behavior of system oscillation. 

4. Shift Transform Method 

The shift transform method is a combination of the shift me- 
thod and the S-matrix method while the relationship is shown 
as follows: 

 1
3 3 ( ) [ ( ) ][ ( ) ]f f h f h       M A A I I A I I  (7) 

Matrix A will become M3 after the transformation, and the 
critical eigenvalue (with the maximum absolute value) and the 
corresponding eigenvector of M3 can be solved by the power 
method.  The relationship between the eigenvalue after matrix 
transformation (') and the eigenvalue of the original matrix is 
show below (): 

 
( )

( )

h

h

 
 
  
 

 (8) 

5. The Calculation of the Most Critical Eigenvalue 

The calculation method for the most critical eigenvalue in this 
paper is described below: 

 
Step 1. Apply shift transformation to the dynamic matrix A  

of the electric power system, such as 

 1 ( )f  A A I  (9) 

Step 2. Apply S-matrix transformation to the shifted matrix fi(A), 
such as 

 1
2 1 1( ) [ ( ) ][ ( ) ]f f h f h   A A I A I  (10) 

Step 3. Solve the critical eigenvalue by using the power method. 
Step 4. Zeroing of the critical eigenvalue. 
Step 5. The matrix is shifted again to the location of that critical 

eigenvalue. 
Step 6. Solve the current critical eigenvalue. 
Step 7. Compare the real part of the current critical eigenvalue 

with the real part of previous critical eigenvalue.  If the 
real part of current critical eigenvalue is greater than 
the real part of previous critical eigenvalue, step 6 will 
be repeated to solve the critical eigenvalue again. 

Yes

Start

Shifting the matrix

Apply S matrix transformation
tc the shifted matrix

Solving the critical eigenvalue
by using the power nethod

Solving the critical eigenvalue

Meeting the preset precision

Zeroing of the critical eigenvalue

The matrix be shifted again to the
location of that critical eigenvalue

Solving the critical
eigenvalue again

Solving the current
critical eigenvalue

Shifting the matrix again
to the location of the

current critical eigenvalue

The real part of current
eigenvalue is greater than the real

part of previous eigenvalue

The previous critical eigenvalue
is the most critical eigenvalue

Stop

No

 
Fig. 1.  The flow chart of solving the most critical eigenvalue. 

 
 

Step 8. The previous critical eigenvalue will be the most 
critical eigenvalue. 

 
Fig. 1 shows the flow chart of the method solving the most 

critical eigenvalue. 

V. STUDY SYSTEM 

In this paper we investigate a shipboard electric power sys- 
tem composed of two diesel power generators (represented by 
G1 and G2), electric power distribution network, and all ship 
electric power loads as the study system (National Taiwan Ocean 
University, 1993; Fang, 1997; Fang et al., 1998; Fang et al., 
1999).  With variety of operation conditions of loads on a ship, 
in this paper we have selected four frequently seen operation 
conditions (such as ship docking and undocking, entering and 
leaving port, normal navigation, and research operation) as ex- 
amples for a quick determination and analysis of small signal 
stability of the shipboard electric power system. 

Operation Condition 1: Docking and Undocking 

During ship undocking, bow thruster must be activated (the  
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Table 1. All oscillatory mode eigenvalues of operation 
condition 1. 

Mode Eigenvalue 

1 -6.1256  j38.970 

2 -5.8617  j39.912 

3 -2.1299  j16.033 

4 -1.5976  j1.4819* 

* most critical eigenvalue 
 
 

Table 2. All oscillatory mode eigenvalues of operation 
condition 2. 

Mode Eigenvalue 

1 -6.4564  j38.971 

2 -2.0629  j16.072* 

* most critical eigenvalue. 
 
 

Table 3. All oscillatory mode eigenvalues of operation 
condition 3. 

Mode Eigenvalue 

1 -6.4656  j38.968 

2 -2.0996  j16.014* 

* most critical eigenvalue. 
 
 
 

motor is represented by M2) with the single one diagram as 
shown in Fig. 2, where G1 and G2 represent the two power gen- 
erators on the ship, M1 represents the motor equivalent to all dy- 
namic loads under such operation condition, TR represents the 
440/220V transformer, and Load represents the static load.  The 
system state matrix A is a 23  23 matrix.  After matrix A is sub- 
stituted into the critical eigenvalue calculation program, the most 
critical eigenvalue can be obtained as (-1.5976  j1.4819), while 
all oscillatory mode eigenvalues of the system are listed in Table 1. 

Operation Condition 2: Entering and Leaving Port 

After undocking, the ship still needs to sail for a while within 
the port so that the two generators must be activated simultane-
ously in order to ensure system safety.  One of the two genera- 
tors can be turned off once the ship has left the port.  The one 
line diagram isshown in Fig. 3.  The system state matrix A is a 
12  12 matrix.  After matrix A is substituted into the critical 
eigenvalue calculation program, the most critical eigenvalue can 
be obtained as (-2.0629  j16.072), while all oscillatory mode 
eigenvalues of the system are listed in Table 2. 

Operation Condition 3: Normal Navigation 

The one line diagram of the shipboard electrical power system 
during normal navigation is shown in Fig. 4.  The state matrix 
after the linearization of the system is a 12  12 matrix.  After 
the system matrix is substituted into the critical eigenvalue cal- 

TR

NLV1

NLV2

Load

NLV3

G1

G2

M1 M2

 
Fig. 2. The equivalent electric single wire diagram of entering and leaving 

port (operation condition 1). 

 
 

TR

NLV1

NLV2

Load

NLV3

G1

G2

M1

 
Fig. 3. The equivalent electric single wire diagram of entering and leaving 

port (operation condition 2). 

 
 

TR

NLV1

NLV2

Load

NLV3

G1

M1

 
Fig. 4. The equivalent electric single wire diagram of normal navigation 

(operation condition 3). 

 
 

culation program, all unstable eigenvalues can be obtained as 
(-2.0996  j16.014), while all oscillatory mode eigenvalues of 
the system are listed in Table 3. 

Operation Condition 4: Research Operation 

When the ship arrives at the local place for research, two ma- 
rine research winches will be activated to conduct the research 
work.  They will be turned off after the task has been completed.  
The one line diagram under such an operation is shown in Fig. 5.  
The state matrix after the linearization of the system is a 25  25 
matrix.  After the obtained matrix is substituted into the critical 
eigenvalue calculation program, all unstable eigenvalues can be 
obtained as (-1.4472  j1.1896), while all oscillatory mode eigen- 
values of the system are listed in Table 4. 

Comparison for All Operation Conditions 

According the calculation results with respect to the four  
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Table 4. All oscillatory mode eigenvalues of operation 
condition 4. 

Mode Eigenvalue 

1 -29.156  j2.1197 

2 -6.4074  j38.921 

3 -5.9762  j39.627 

4 -1.9135  j16.352 

5  -1.4472  j1.1896* 

* most critical eigenvalue. 
 
 

TR

NLV1

NLV2

Load

NLV3

G1

G2

M1 M2 M3

 
Fig. 5. The equivalent electric single wire diagram of research operation 

(operation condition 4). 

 
 

operation conditions, we find that the most critical eigenvalues 
during the normal navigation is closer to the right half-plane of 
the complex plane than all other operation conditions.  This is 
because that one power generator is shut down during normal 
navigation as the backup power source.  The motors on the ship 
have accounted for greater system power supply capacity such 
that the relatively smaller system capacity due to only one power 
generator as the power supply will definitely lead to a reduced 
margin of system stability.  As for the two operation conditions 
of “docking and undocking” and “entering and leaving port”, 
even though the load variation is more drastic and two or one 
propulsion motor must be activated, they can still be more stable 
due to simultaneous activation of two power generators. 

In summary, out of the four operation conditions, we can infer 
that the system is relatively close to the stable limit during nor- 
mal navigation from the perspective of small signal stability.  For 
preventing system instability due to greater load or other factors 
or even the system collapse, special attention must be paid du- 
ring normal navigation to eliminate all possible causes of distur- 
bances and accidents, or relevant equipments are to be installed 
in order to improve system stability. 

VI. CONCLUSION 

The main purpose of this paper is to propose an effective me- 
thod for the calculation of the most critical eigenvalue (or the 
eigenvalue with the lowest damping) of the shipboard electric 
power system.  The proposed algorithm focuses on calculating 

the critical eigenvalue to alleviate the time consumption for find- 
ing all eigenvalues such that the goal of rapid analysis of small 
signal stability of the shipboard electric power system can be 
achieved.  A sample shipboard electric power system has been 
utilized as an example to calculate and investigate the system 
critical eigenvalues under four typical operating conditions. 

By using the method, we don’t have to guess and try the shift 
point to estimate the critical eigenvalue.  We can solve and con- 
firm the eigenvalue (with the lowest damping) of the shipboard 
electric system matrix, and based on this eigenvalue we can de- 
termine whether the system is stable or not.  The method can 
be used to solve the most critical eigenvalue of the system and 
the corresponding eigenvector.  This is an improvement over the 
traditional method which can only be used for solving critical 
eigenvalues rather than solving the most critical eigenvalue. 
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