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ABSTRACT 

This investigation verifies the chaos motion of a magnetic 
levitation system with a ferromagnetic ball suspended in a 
voltage-controlled magnetic field, and explains a system for chaotic 
control.  Then, the detailed dynamic behaviors are numerically 
investigated by means of Poincaré maps, phase portraits, time 
responses, and frequency spectra.  The results reveal that due 
to the realistic nonlinear characteristics of magnetic forces, period- 
doubling bifurcation has been observed to lead to chaos.  Chaotic 
behavior is verified using Lyapunov exponents and Lyapunov 
dimensions.  Finally, we propose a state feedback control technique 
for the effective control of a chaotic magnetic levitation system.  
Some simulation results are presented to demonstrate the fea- 
sibility of the proposed approach. 

I. INTRODUCTION 

Magnetic levitation (maglev) systems are particularly well 
suited to engineering applications because of their numerous 
interesting characteristics.  They have been widely used in various 
applications such as high-speed magnetically levitated vehicles, 
frictionless bearings, vibration isolation of sensitive machinery, 
and so on.  They allow the mechanical components of a system 
to operate without making contact, hence reducing wear or lu- 
brication.  Recently, many studies have addressed the feasibility 
of electromagnetic levitation in various applications such as 
magnetic bearings (Samanta and Hirani, 2008; Budig, 2010; 
Ritonja et al., 2010; Zang et al., 2011; Bachovchin et al., 2012), 
magnetic levitation suspension (Siyambalapitiya et al., 2012), 
and high-speed ground transportation (Kong et al., 2011; Yu and 
Chen, 2011; Min et al., 2012; Yau, 2012).  Magnetic levitation 
systems can also be applied to vibration isolation problems, and 

several studies (Nagaya and Ishikawa, 1995; Chang, 2001; 
Tsuda et al., 2009; Sasaki et al., 2010) have been devoted to 
controlling the vibrations of magnetic levitation tables. 

In practice, machines and devices utilizing such a system 
exhibit complicated phenomena even though they include con- 
trol systems.  The characteristics of magnetic systems are in- 
herently nonlinear due to the nonlinearities of the electromagnetic 
fields.  Moreover, magnets act as negative springs and cause the 
system to be unstable, because when the magnetic material is 
moved closer to the magnet, the magnetic force is increased.  To 
stabilize the system and to eliminate vibrations due to disturbed 
forces, the negative spring effect must be overcome by control- 
ling the electromagnetic coil current with proper feedback signals 
such as those from displacement and velocity sensors.  However, 
the highly nonlinear behavior and the inherent instability of such 
a system complicate the controller design.  When this system 
is subjected to an external disturbance, contact by the levitated 
object with electromagnets of the system due to large vibration 
should be avoided. 

Therefore, at the design stage, it is necessary to accurately 
predict the dynamic behaviors of this system over a range of 
operating conditions.  Here, the disturbance may be a shock load 
of very short duration.  In this case, a considerable deviation of 
the levitated object from the equilibrium state which occurs du- 
ring machinery start-up or shut-down may cause the system to 
exhibit very complicated behaviors.  In most applications, this 
situation is not acceptable, so it is important that it be controlled 
and eliminated.  Modern nonlinear theory, which involves bi- 
furcation and chaos, has been widely utilized to study the sta- 
bility of nonlinear systems (Ghayesh and Amabili, 2013; Jiang 
and Tao, 2014).  Several studies have been carried out to inves- 
tigate the nonlinear dynamics in a magnetically levitated system 
(Wang et al., 2007; Zhang et al., 2010). 

While studies have focused on the dynamic characteristics 
of magnetically levitated systems, they do not use the Lyapunov 
exponent to demonstrate chaos motion.  In this work, various 
numerical analyses, involving a bifurcation diagram, phase por- 
traits, a Poincaré map, frequency spectra, and Lyapunov ex-
ponents, are adopted to explicate periodic and chaotic motions 
of a magnetic ball levitation system with a ferromagnetic ball 
suspended in a voltage-controlled magnetic field.  The algorithms 
for computing Lyapunov exponents of smooth dynamical systems 
are well developed (Shimada and Nagashima, 1979; Benettin 
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et al., 1980a, b; Wolf et al., 1985) and will be employed in this 
study to determine whether or not the system exhibits chaotic 
motion.  The method of Lyapunov exponents is applied to verify 
the occurrence of chaotic motion for the magnetic ball levitation 
system. 

Although chaotic behavior may in some cases be acceptable, 
it is normally undesirable because it degrades performance and 
restricts the operating range of numerous electrical and mecha- 
nical devices.  In many engineering problems involving chaos 
control, it is important to develop control techniques to drive a 
chaotic attractor to a periodic orbit.  Since the pioneering work 
of Ott et al. (1990) in controlling chaos, many modified me- 
thods and other approaches have subsequently been proposed 
(Ditto et al., 1990; Hunt, 1991; Cai et al., 2002a; Kecik, 2014).  
Recently, work regarding the control of a magnetic levitation 
system has undergone great progress, and several techniques 
have been proposed (Al-muthairi and Zribi, 2004; Lee et al., 
2006; Ahmad and Javaid, 2010; Suster and Jadlovska, 2012).  
Accordingly, a simple control method based on state feedback 
properties proposed by Cai et al. (2002b) is used in this paper.  
This scheme converts chaos into stable motion using feedback 
combined with the linear state feedback of an available system 
variable.  Chang (2007) also successfully quenched chaotic mo- 
tion in a steer-by-wire vehicle dynamic system using the state 
feedback.  Chang and Lin (2012) successfully quenched chaotic 
motion in a permanent magnet synchronous motor for electric 
vehicles using the linear state feedback property.  Finally, nu- 
merical simulations have demonstrated the efficiency and fea- 
sibility of the proposed approach. 

In this study, we investigate the complex dynamic behaviors 
of a maglev system with suspended ball.  In this work, various 
numerical analyses methods, including a bifurcation diagram, 
phase portraits, Poincaré maps and frequency spectra, are pre- 
sented to reveal the complex dynamic behaviors in this system.  
The Lyapunov exponents and Lyapunov dimensions are used 
to identify the chaotic motion of the system.  The results indicate 
that the chaotic vibration may be created in the maglev system.  
Finally, a state feedback control is used to convert chaotic be- 
haviors into periodic motion.  In addition, these results will be 
helpful in stability control for the maglev trains in the future. 

II. DYNAMIC MODEL OF THE MAGNETIC 
BALL LEVITATION SYSTEM 

The magnetic ball levitation system considered in this paper 
consists of a ferromagnetic ball suspended in a voltage-controlled 
magnetic field.  Fig. 1 shows the schematic diagram of the mag- 
netic ball levitation system.  The coil acts as an electromagnetic 
actuator, while an optoelectronic sensor determines the position 
of the ferromagnetic ball.  By regulating the electric current in 
the circuit through a controller, the electromagnetic force can 
be adjusted to be equal to the weight of the steel ball, enabling 
the ball to levitate in an equilibrium state.  Only the vertical 
motion is considered, and the objective is to keep the ball at a 
prescribed reference level.  The dynamic model of the system  
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Fig. 1.  Schematic diagram of the magnetic ball levitation system. 

 
 

can be written as (Barie and Chiasson, 1996) 

 
dx

v
dt

 , (1a) 

 
( )dL x i

Ri u
dt

  , (1b) 

 
2

i
mx mg C

x
    
 

 , (1c) 

where x is the ball position; v is the ball’s velocity; i is the 
current in the coil of the electromagnet; u is the applied voltage 
(u = A0sint); R is the coil resistance; L is the coil inductance; 
g is the gravitational acceleration; C is the magnetic force con- 
stant, and m is the mass of the levitated ball. 

The inductance L is a nonlinear function of the ball’s position x.  
A typical approximation is to assume that this inductance va- 
ries inversely with respect to the ball’s position x (Barie and 
Chiasson, 1996), which is given by 

 0 0( )
L x

L x L
x

  , (2) 

where L is the constant inductance of the coil in the absence of 
ball, L0 is the additional inductance contributed by the presence 
of the ball, x0 is the equilibrium position.  Assuming the suspended 
ball remains close to its equilibrium position, x = x0, and there- 
fore 

 0( )L x L L  . (3) 

Also assuming that L  L0, Eq. (3) can be simplified as 

 ( )L x L . (4) 

At equilibrium, the weight of the ball is suspended by the  
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Table 1.  Physical parameters of a magnetically levitated system. 

Parameter Unit Value 

m kg 0.05 

g m/s2 9.8 

R  1.0 

L H 0.01 

C  0.0001 

 
 

electromagnet force that generated by a bias current. 
As indicated in Eq. (2), the inductance L(x) is a nonlinear 

function of the ball’s position.  It is well known that the char-
acteristics of magnetic systems are essentially nonlinear due to 
the nonlinearities of the electromagnetic fields.  Hence, to ac- 
curately control or predict the performance of the system, the 
effects of these nonlinearities should be taken into consideration.  
Substituting Eq. (2) into Eq. (1b) results in 

 0 0
2

( )
L x idi dx

u t Ri L
dt dtx

 
    

 
. (5) 

A conservation of energy argument shows that C = L0x0/2 
(Barie, 1995).  Let the states be chosen such that x1 = x, x2 = v, 
x3 = i.  Thus, the state-space model of the magnetic levitation 
system can be written as 

 1
2

dx
x

dt
 , (6a) 

 

2

32

1

xdx c
g

dt m x

 
   

 
, (6b) 

 3 2 3
3 02

1

2 1
sin

dx x xR C
x A t

dt L L Lx

 
     

 
. (6c) 

The amplitude of the applied voltage is A0 = 5.0 Volts.  The 
other parameter values of the above equations are listed in 
Table 1. 

III. THE OVERALL CHARACTERISTICS  
OF MAGLEV SYSTEM  

AND CHAOS ATTITUDE MOTION 

A series of numerical simulations based on Eq. (6) were per- 
formed to clearly elucidate the characteristics of this system.  
The dynamic behaviors may be observed more completely over 
a range of parameter values in the bifurcation diagram.  Such 
diagrams are widely employed to describe transitions from pe- 
riodic motion to chaotic motion for dynamical systems.  The com- 
mercial package DIVPRK of IMSL in FORTRAN subroutines 
for mathematics applications is used to solve these ordinary dif- 
ferential equations (IMSL, 1989).  The resulting bifurcation dia- 
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Fig. 2.  Bifurcation diagram of the system for A0 = 5.0V. 
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Fig. 3.  Illustration of a Poincaré section. 

 
 

gram is shown in Fig. 2.  This figure clearly shows that chaotic 
motions exit in regions III and VI.  Period-1 motion appears in 
regions I, IV, and VII, while a stable equilibrium point is pre- 
sent in regions I, IV, and VII.  Herein each response is charac- 
terized by a phase portrait, a Poincaré map (velocity vs. phase 
angle), and a frequency spectrum.  To order to detect period or 
chaos, we select a cross section , where the flow “W” must be 
transverse to .  For point (Xi, Yi)  , let t0 be the time of next 
return to .  The map is the Poincaré map, as shown in Fig. 3. 

 0
1 1( , ) ( , )t

i i i iP X Y X Y  , (7) 

Fig. 4 indicates that the equilibrium point of Eq. (6) is stable 
if the parameter  exists in region I.  When the parameter  
exists in regions II and V, period-doubling bifurcations appear 
in these regions.  Fig. 5 reveals that a cascade of period-doubling 
bifurcations causes a series of subharmonic components, which 
show the bifurcations with the new frequency components at 
/2, 3/2, 5/2, .  As the forcing frequency () continues to 
increase into regions III and VI in Fig. 2, a cascade of period- 
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Fig. 4. Period-one orbit for  = 10.0 rad/s: (a)phase portrait; (b) Poincaré 

map; (c)frequency spectrum. 
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Fig. 5. Period-two orbit for  = 13.0 rad/s: (a) phase portrait; (b) Poincaré 

map; (c) frequency spectrum. 
 
 

doubling bifurcations are clearly seen, and lead the system to 
chaos.  Therefore, chatter vibration occurs.  Two descriptors, the 
Poincaré map and the frequency spectrum, characterize the es- 
sence of the chaotic behavior.  The Poincaré map shows an in- 
finite set of points that are collectively referred to as a strange 
attractor.  The frequency spectrum of the chaotic motion spans 
a wide range of frequencies.  These two features of the strange 
attractor and the continuous Fourier spectrum are strong indictors 
of chaos.  Fig. 6 clearly shows chaotic behaviors in regions III.  
Figs. 6(a)-6(c) shows the phase portraits, the Poincaré maps, 
and the frequency spectra, respectively. 
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Fig. 6. Chaotic motion for  = 14.1 rad/s: (a) phase portrait; (b) Poincaré 

map; (c) frequency spectrum. 
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Fig. 7.  Evolution of the largest Lyapunov exponent. 

IV. ANALYSIS OF CHAOTIC PHENOMENA  
IN MAGLEV BASED ON LYAPUNOV 

EXPONENT AND LYAPUNOV DIMENSION 

The analyses presented in Section III cannot identify likely 
chaotic motion in the magnetic levitation system, so in this sec- 
tion, the method of Lyapunov exponents is utilized to verify the 
occurrence of chaotic motion.  For every dynamic system, a spec- 
trum of Lyapunov exponents () (Wolf et al., 1985) indicates 
the variation of the length, areas, and volumes in the phase space.  
As a criterion for the existence of chaos, one needs only to calcu- 
late the largest exponent, which tells whether nearby trajectories 
diverge ( > 0) or converge ( < 0) on average.  Any bounded 
motion in a system with at least one positive Lyapunov exponent 
is defined as chaotic, while for periodic motion, the Lyapunov 
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exponents are not positive.  Fig. 7 plots the evolution of the 
largest Lyapunov exponent for the magnetic levitation system, 
and was computed using the algorithm for calculating the Lya- 
punov exponents that was presented by Wolf et al. (1985).  This 
figure reveals that the onset of chaotic motion is at about  = 
14.0 rad/s and 24.0 rad/s, because at these points (P2 and P4) 
the sign of the largest Lyapunov exponent changes from nega- 
tive to positive as the parameter, , is slowly increased.  At points 
P1 and P3, the largest Lyapunov exponent is shown to approach 
zero.  At this point, the system may undergo bifurcation. 

When  is larger than P1, such as at  = 10.0 rad/s, the Lya- 
punov exponents given by Eq. (6) are 1 = 1.2699, 2 = -1.2734 
and 3 = -141.7260.  Their sum is 1  2  3 = -144.2693, which 
is negative, indicating that the motion of the rotor at these va- 
lues eventually converges to a stable limit cycle.  By indicating 
the Lyapunov exponents of a dynamical system with 1    n, 
Kaplan and Yorke (1979) provide an estimation for the Lyapunov 
dimension dL as 

 
1

1

1 j

L ii
j

d j 
 



   , (8) 

where j is the largest integer that satisfies 
1

0
j

ii



 .  This tech- 

nique yields a Lyapunov dimension of Eq. (6) for  = 10.0 rad/s, 
which is dL = 1.  Because the Lyapunov dimension is an integer, 
the system has periodic motion.  When the parameter  in-
creases across the bifurcation point, such as at  = 25.0 rad/s, 
the Lyapunov exponents are 1 = 1.3711, 2 = -5.5069 and 3 = 
-140.1338, and the Lyapunov dimension is dL = 1.25.  Because 
the Lyapunov dimension is not an integer, the system exhibits 
chaotic motion.  Accordingly, for a periodic solution, the Lya- 
punov dimension equals an integer, but it may not be an integer 
for a strange attractor. 

V. CONTROLLING CHAOS 

To improve the performance of a dynamic system, or to avoid 
the chaotic behaviors, we need to control a chaotic system to a 
periodic motion, which is beneficial for working with a particular 
condition.  Therefore, for practicality, it is very important that 
suitable control methods be developed.  Recently, Cai et al. (2002b) 
suggested a simple and effective control method for converting 
chaos into periodic motion using the linear state feedback of an 
available system variable.  This approach for the n-dimensional 
dynamical system, is explained briefly. 

 ( , )x f x t , (9) 

where x(t)  Rn is the state vector, and f = (f1, fi, fn), where 
fi is a linear or a nonlinear function and f includes at least one 
nonlinear function.  Suppose fk(x, t) is the nonlinear function 
that yields chaotic motion in Eq. (9); then, only one term of the 
state feedback of the available system variable xm is added to 
the equation that includes fk, as follows. 
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Fig. 8. Bifurcation diagram of system with state feedback control, where 

G denotes the feedback gain. 
 

 

  ( , )  , ,  1,  2, , ,k k mx f x t G x k m n     (10) 

where G is the feedback gain.  Also other functions remain their 
original forms. 

System (6) with state feedback control can be written as follows. 

 1
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dx
x

dt
 , (11a) 
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32
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1

xdx c
g Gx

dt m x

 
   

 
, (11b) 

 3 2 3
3 0 32

1

2 1
sin

dx x xR C
x A t Gx

dt L L Lx

 
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 
. (11c) 

In the absence of state feedback control, G = 0, and system 
(6) describes chaotic motion for  = 14.1 rad/s, as shown in 
region III of Fig. 2.  Consider the effect of adding state feedback 
control to the right-hand side of Eq. (6).  Fig. 8 displays the re- 
sulting bifurcation.  This figure clearly reveals that chaotic mo- 
tion occurs at G > -0.1, and that the chaotic behavior disappears 
at about G  -0.1.  When the feedback gain, G, falls below -0.1, 
the stable period motion of Eq. (6) appears.  By decreasing the 
feedback gain, G, between about -0.65 and -2.8, the period- 
doubling behavior appears.  As the feedback gain, G, continues 
to decrease at about at -2.8, the period-one motions take place.  
The evolution of the largest Lyapunov exponents for the Maglev 
system with state feedback at  = 14.1 rad/s is displayed in Fig. 9.  
From this figure, we find that the chaotic motion disappears at 
G  T1 (about T1 = -0.1), because at this point, T1, the largest 
Lyapunov exponent changes its sign from positive to negative 
when the feedback gain is slowly decreased.  For points, T2-3,  
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Fig. 9. Largest Lyapunov exponents vs. feedback gains. 
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Fig. 10. Transforming chaotic motion to a desired period-one orbit at G = 

-0.5 and  = 14.1 rad/s: (a) phase portrait of the controlled system 
(11); (b)time responses of the displacement.  The state feedback 
control signal is introduced after 6 s. 

 
 

the largest Lyapunov exponents are shown to approach zero.  
At these points, the system may undergo bifurcations.  However, 
the Lyapunov exponent at such a point provides no means to 
determine the type of bifurcation; therefore, the bifurcation dia- 
gram presented in Fig. 8 must be applied.  Therefore, in Fig. 9, 
the period-doubling bifurcation occurs at T2-3.  In this regard, 
the state feedback control technique has been proposed so that 
the Lyapunov exponents of the closed-loop system are negative, 
and consequently, the chaos is eliminated in the related system.  
After 6 s, the control signal is applied to the system, as presented 
in Fig. 10, to show the effectiveness of the designed controller 
in controlling the chaotic oscillation. 

VI. CONCLUSIONS 

This investigation is concerned with the rich dynamic be-
haviors of a magnetic levitation system, which consists of a 
ferromagnetic ball that suspended to find an effective method 
for controlling chaotic vibrations.  Dynamic behaviors may be 
observed over the entire range of parameter values on the bifur- 
cation diagram.  This diagram indicates that the magnetic levi- 
tation system exhibit period-doubling bifurcation and chaotic 
motion.  The most powerful method for determining whether the 
system is in chaotic motion involves the use of the Lyapunov 
exponent.  Finally, the state feedback control approach is employed 
to effectively improve the performance of maglev system or 
suppress the chaotic motions.  Because magnetically levitated 
vehicles belong to the field of high-speed transportation sys-
tems, it is particularly important to investigate their dynamic 
characteristics from the viewpoint of running stability, safety, 
and ride quality at high speed.  We believe that studying the dy- 
namics and controlling chaotic vibrations of the magnetic ball 
levitation system will aid in controlling the magnetic levitation 
trains in the future. 
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