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ABSTRACT 

De-scattering and edge enhancing are critical procedures for 
underwater images which suffer from serious contrast attenu- 
ation, color deviation, and edge blurring.  In this paper, a novel 
method is proposed to enhance underwater images.  Firstly, a 
Convolutional Neural Network (CNN) is trained end-to-end to 
estimate the transmission map.  Simultaneously, the adaptive 
bilateral filter is used to refine the transmission map.  Secondly, 
a strategy based on the white balance is proposed to remove the 
color deviation.  Laplace pyramid fusion is utilized to obtain the 
fusion result of the haze-free and color-corrected image.  Finally, 
the output image is transformed into the Hybrid Wavelets and 
Directional Filter Banks (HWD) domain for de-noising and 
edge enhancing.  The experimental results show that the proposed 
method can remove color distortion and improve the clarity of 
the underwater images.  Objective and subjective results demon- 
strate that the proposed method outperforms several state-of- 
the-art methods in different circumstances. 

I. INTRODUCTION 

Underwater imaging has played a crucial role in marine re- 
source exploration, environmental protection, maritime defense 
and military affairs, etc.  However, underwater images suffer from 
the poor visibility resulting from back-scattering and light at- 
tenuation.  Random attenuation of light causes the foggy appear- 
ance.  A part of light scattering back from the medium along 
the sight degrades the contrast of captured images.  In different 
underwater environments, the main reason for image degra-
dation is different. 

Recently, researchers have proposed several methods to im- 
prove the quality of underwater images.  Polarization and range- 
gated imaging methods (Schechner and Karpel, 2005; Tan et al., 

2007) addressed this issue by specialized hardware directly.  
Another method studied in (Voss et al., 1990) measured the 
optical transfer function of seawater.  The Modulation Transfer 
Function (MTF) of seawater was formulated in (Liu et al., 
2001), and blurred images can be restored by the Wiener filter.  
However, above mentioned experimental methods were inap-
plicable to most of ocean engineering applications and scientific 
researches due to expensive cost and complicated configuration 
of the equipment.  De-convolution methods based on under-
water degeneration models are flawed in practical applications 
due to complex and changeable underwater environments. 

In addition, image enhancement methods do not rely on any 
specific degeneration model, and they deal with images accord- 
ing to the human visual perception.  Common enhancement me- 
thods consist of traditional histogram correction (Thakur et al., 
2010), gradient transformation (Lei et al., 2011) and some other 
adaptive smoothing methods, such as traditional low-pass filter, 
morphological filter, homomorphic filter (Padmavathi et al., 
2011), wavelet transform, etc.  Iqbal et al. (2010) proposed an 
unsupervised color correction method to improve the visual 
quality of underwater images.  Ancuti et al. (2012) proposed a 
fusion-based method to enhance underwater videos and images.  
However, image enhancement methods might cause color de- 
viation and show their limitations when dealing with underwater 
images. 

The haze removal algorithm is used for underwater image 
restoration method.  He et al. (2009) estimated the transmission 
map of degraded images by Dark Channel Prior (DCP) and ob- 
tained clear images by atmospheric imaging model.  Furthermore, 
the guided filter (He et al., 2010) was developed to refine the 
raw transmission map.  Drews-Jr. et al. (2013) formulated an 
underwater imaging model that calculates the dark channel by 
blue and green channels.  To avoid extracting features artificially, 
Cai et al. (2016) estimated the transmission map via a deep learn- 
ing architecture. 

In this paper, we propose an approach which is able to in-
crease the visibility of underwater images.  It improves the con- 
trast of scattered images by DehazeNet and white balance and 
then enhances edges in image.  Fig. 1 depicts the schematic dia- 
gram of our algorithm.  Firstly, we apply a type of CNN named 
DehazeNet to estimate the underwater transmission map which 
is refined by an adaptive bilateral filter.  Secondly, we develop 
a framework to blend the de-hazed and color-corrected image.   

Paper submitted 09/15/17; revised 01/24/18; accepted 03/15/18.  Author for 
correspondence: Fei Yuan (e-mail: yuanfei@xmu.edu.cn). 
1 Key Laboratory of Underwater Acoustic Communication and Marine Infor-
mation Technology Ministry of Education, Xiamen University, Xiamen, Fujian, 
China. 
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Fig. 1.  The schematic diagram of our approach. 

 
 

Finally, we separate the high-frequency and low-frequency com- 
ponents of image by the hybrid wavelets and directional filter 
banks.  In the HWD domain, the noise variance is estimated by 
the high-frequency subbands and the threshold is set to remove 
the noise.  Furthermore, an edge enhancement algorithm is ap- 
plied to the de-noised image. 

The rest of this paper is organized as follows: a de-scattering 
algorithm is formulated in Section 2, and an edge enhancement 
algorithm is provided in Section 3.  A non-reference image quality 
assessment for the analysis of original and enhanced images is 
formulated in Section 4.  Corresponding experiment results are 
presented in Section 5, and conclusions are drawn in Section 6. 

II. DE-SCATTERING ALGORITHM 

1. Underwater Imaging Model 

Inspired by the atmospheric scattering model, the underwater 
imaging model (Chao et al., 2010) can be expressed as 

 ( ) ( ) ( ) ( )(1 ( ))I x J x t x B x t x    (1) 

where I(x) is an observed image, J(x) is a clear image, B(x) is 
the background light, and t(x) is the transmission map. 

In underwater environments, light suffering from absorption 
and scattering will disappear one by one depending on the depth 
of water.  Approximately, red light disappears at a depth of 3 m 
and yellow light disappears at a depth of 10 m.  With the increas- 
ing of depth, only blue and green light will exist due to their shorter 
wavelength.  Therefore, underwater images are dominated by 
blue and green color.  The underwater dark channel of J(x) is 
calculated by blue and green channels according to the Under- 
water Dark Channel Prior (UDCP). 

 
( , ) ( )

( ) min ( min ( ))C
dark

C g b y x
J x J y

 
  (2) 

where (x) is a patch centered at x.  JC(y) is color channel C of J(y). 
We pick top 0.1% brightest pixels in the underwater dark 

channel.  Corresponding pixels in the observed image are se- 
lected as the background light of green and blue channels. 

 0.1%( ) (arg max ( )) , , { , }C C
darkB x I J x x P C g b    (3) 

In the red channel of observed image, pixels of the top 0.1% 
highest intensity are used as the background light of red chan- 
nel and can be expressed as 

 0.1%( ) ( ) , , { }C CB x I x x P C r    (4) 

The final clear image is recovered by 

 
0

( ) ( )
( ) ( ), { , , }

max( , ( ))

C C
CI x B x

J x B x C r g b
t t x


    (5) 

where a typical value of t0 is 0.1. 
If the input image is distorted seriously, the actual transmis- 

sion map can’t be calculated accurately by traditional models.  
So we apply a network architecture to estimate the transmission 
map. 

2. Layer Designs of DehazeNet 

Convolution layers and nonlinear activations of DehazeNet 
are designed to implement four sequential operations.  It consists 
of feature extraction, multi-scale mapping, local extremum, and 
nonlinear regression. 

Feature extraction is different from the traditional convolu- 
tion neural network.  In the first layer, DehazeNet uses convolu- 
tion layer with Maxout activation function (Goodfellow et al., 
2013) instead of the Rectified Linear Unit (ReLU), and the spe- 
cific expression can be generally written as 

 , , , ,
1

[1, ]
( ) max ( ),i i j i j i j i j

j k
F x g x g w I b


     (6) 

where ,i jw  and ,i jb  are the weight and bias of network, respec- 
tively; I is the input of DehazeNet;   denotes the convolution op- 
eration.  The visualization result of convolution kernels shows 
that the trained convolution kernels can extract features of the 
opposite filter, all-pass filter and round filter, as shown in Fig. 2. 

Since the efficiency of haze removal algorithm will be im- 
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Fig. 3.  The schematic diagram of DehazeNet. 

 
 

proved by multi-scale features (Tang et al., 2014), DehazeNet 
extracts features with three convolution kernels of different 
sizes (i.e., 3  3, 5  5, and 7  7).  The local extremum con-
strains the local consistency of the transmittance map and sup- 
presses the noise of the estimated transmittance map.  The range 
of transmission map is from 0 to 1, so this paper makes use of 
Bilateral Rectified Linear Unit (BReLU) to normalize the net- 
work output, as shown in Fig. 3. 

In practice, there is no simple way to obtain image pairs of cor- 
responding clear and hazed images for training.  So we create a 
synthetic dataset of 5,319 clear/hazed image pairs , as shown in 
Fig. 4.  The hazed images are generated according to underwater 
imaging model described in Eq. (1). 

3. Adaptive Bilateral Filter 

The adaptive bilateral filter is utilized to refine the blocking 
artifacts of the transmission map.  The bilateral filter (Morillas 
et al., 2006) is based on a non-iterative method which has been 
proven to preserve the texture structure of image effectively.  
The expression of bilateral filter can be expressed as 

( )

1
( ) (|| ||) (|| ( ) ( ) ||) ( )BF s rq p

p

I p G p q G I p I q I q
W 

    (7) 

where (p) is an image patch centered at p, Wp is the nor-
malization factor.  It can be formulated as follows 

 
( )

(|| ||) (|| ( ) ( ) ||)p s rq p
W G p q G I p I q


    (8) 

where Gs and Gr are Gaussian function.  Their formulas are shown 
as follows, respectively. 

 
2

2

|| ||
(|| ||) exp( )

2s
s

p q
G p q




    (9) 

 
2

2

|| ( ) ( ) ||
(|| ( ) ( ) ||) exp( )

2r
r

I p I q
G I p I q




    (10) 

where Gs is a smoothing kernel to measure the spatial simila- 
rity of pixels.  It is shown that the weight of the bilateral filter 
is proportional to the spatial similarity.  Pixels in the smooth re- 
gion have a stronger correlation than pixels in the edge region.  
Therefore, pixels in the edge region can be kept well while re- 
moving noise. 

The adaptive bilateral filtering is proposed to choose the r 
automatically.  It selects the r by calculating the variance of 
image patches blk.  Simultaneously, we set the upper and lower 
bounds.  The formula is described as 

 ,min ,maxmax( , min( , ))r r r blkk     (11) 

where r,max and r,min are the upper and lower bound respec-
tively, and K is a positive number.  In this paper, we set s = 6, 
r,min = 1, r,max = 10, k = 6. 

4. White Balance 

White balance is an algorithm for removing unrealistic color  
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(a) (b) (c) (d)  
Fig. 4.  (a) Clear images and (b)-(d) simulated underwater images. 

 

 
deviation and can be roughly classified into two steps: light es- 
timation and color correction. 

In the first step, the Shades-of-Grey (Finlayson et al., 2004) 
method is applied.  This method calculates the illumination of 
the scene for each color channel by the Minkowski p-norm.  When 
p = 1, this expression is a particular case of the Gray-World.  It 
is not suitable for underwater images because the red compo- 
nent of underwater images is missing.  When p = , it has the 
same effect with White-Patch hypothesis.  It does not work in 
underwater environments because it relays on white objects in 
underwater images.  In our experiments, the Shades-of-Grey 
algorithm can estimate the light effectively when p = 6. 

In the step of color correction, we apply Robust-AWB (Huo 
et al., 2006) to correct color deviation of severe underwater im- 
ages after a comprehensive comparison.  This algorithm searches 
for gray pixels in the image and compares the deviation of these 
gray pixels in the YUV color space.  Through the iterative pro- 
cedure, it corrects color deviation gradually. 

2. Laplacian Pyramid Fusion 

We define I(x, y)1 and I(x, y)2 to represent the de-hazed and 
color-corrected result of the original underwater image, respec- 
tively.  Each input is decomposed into different scales by the 
Laplacian pyramid.  Each normalized weight map is formulated 
in (Ancuti et al., 2012).  The enhanced image is obtained by 

 
2

1

( , ) { ( , ) } { ( , ) }l l l
k k

k

R x y G W x y L I x y


   (12) 

where l is the number of the pyramid levels (the typical value 
is 5), L{I} represents the Laplacian version of the input I, and 

G{W} represents the Gaussian version of the normalized weight 
map W.  By inputting images of different resolution, results of 
using Laplacian pyramids will be more robust than results with- 
out Laplacian pyramids. 

III. EDGE ENHANCEMENT ALGORITHM 

1. HWD Transform 

The traditional two-dimensional Discrete Wavelet Transform 
(DWT) only captures information in limited directions (i.e., 
horizontal, vertical, and diagonal directions).  Therefore, DWT 
is generally inadequate for representing geometric structures of 
underwater images.  Eslami et al. (2007) proposed a new family 
of no redundant geometrical image transform based on hybrid 
wavelets and directional filter banks.  It applies Directional Filter 
Banks (DFB) to the high-frequency wavelet subbands and main- 
tains the information of image contour and textures.  Therefore, 
HWD transform can provide a richer family of directional basis 
elements than discrete wavelet transform. 

In the HWD transform, underwater images are decomposed 
into L levels by the DWT, and directional filter banks are ap- 
plied to high-frequency subbands.  Since the HH wavelet sub- 
bands maintain major high-frequency information, Full-tree DFB 
(FDFB) is applied to HH wavelet subbands.  The horizontal 
information of high-frequency is mainly distributed in the HL 
wavelet subbands, so the Horizontal half-tree DFB (HDFB) is 
applied to the HL wavelet subbands.  Similarly, the Vertical 
half-tree DFB (VDFB) is applied to the LH wavelet subbands. 

The direction angle of the i-th direction subband is defined 
as the angle between the filtering direction and the horizontal axis.  
Angles of FDFB, HDFB and VDFB are expressed as 

1 1

1 1

(1/ 4 1/ 2 / 2 ) , 1 2
( )

(1/ 4 1/ 2 / 2 ) , 2 1 2

L L L

F L L L L

i i
i

i i






 

 

     
     

 (13) 

 1 1( ) (1/ 4 1/ 2 / 2 ) , 1 2L L L
H i i i         (14) 

 1 1( ) (1/ 4 1/ 2 / 2 ) , 1 2L L L
V i i i        (15) 

where L is the layer number of wavelet transform.  After the 
discrete wavelet transform, the frequency distribution and the 
three direction filter banks are shown in Fig 5. 

We transform underwater images into wavelet domain by the 
Cohen-Daubechies-Feauveau (CDF) 9/7 wavelet transform and 
compare with the coefficients of the HWD transform, as shown 
in Fig. 6.  By observing the coefficients of the CDF 9/7 and HWD 
transform, the coefficients of HWD transform are larger than the 
coefficients of CDF 9/7 transform, especially in high-frequency 
subbands.  Thus, we draw the conclusion that HWD transform cap- 
tures more information of texture and contour details. 

2. Denoise and Edge Enhancement 

The high-frequency coefficients of the first layer are used to  
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Fig. 5.  The schematic diagram of HWD transform. 

 
 

(a) (b) (c)  
Fig. 6.  (a) Underwater image with (b) four-level 9/7 wavelet transform and (c) four-level HWD-F transform. 

 
 

estimate the noise variance of the input image.  And then we ap- 
ply the denoising pretreatment based on the wavelet threshold 
method, and the threshold Tk can be derived as follows 

 2

1 1

1 1
[ ( , ) ]

2

m n

k k
x y

T P x y P
m n  

 
   (16) 

where P  is the mean of the wavelet coefficients in first layer.  
The coefficients smaller than the threshold are regarded as noise.  
While the coefficients larger than the threshold are regarded as 
blurred edges.  Then the coefficients of HWD transform HHi, 
LHi, HLi are multiplied by coefficients Ki (Ki > 1) for en-
hancing blurred edges.  As the number of decomposition layers 
i increases, the corresponding coefficients Ki decrease gradually. 

IV. NON REFERENCE IMAGE  
QUALITY ASSESSMENT 

1. Gray-Level Co-Occurrence Matrix 

In this paper, we use a Non-Reference (NR) quality evalua- 

(a) (b)  
Fig. 7.  (a) Original image. (b) Gradient image. 

 
 

tion algorithm based on gray-level co-occurrence matrix (Sang 
et al., 2013) to evaluate the results of different algorithms.  The 
gradient image of the original image reflects the loss of texture 
and contour details as shown in Fig. 7. 

On the basis of the gradient image, the gray-level co-occurrence 
matrix (GLCM) is introduced, and the texture features of distorted 
and restored images are extracted according to the gray-level 
co-occurrence matrix.  GLCM calculates the contrast, dissimi- 
larity, entropy, homogeneity, and energy to represent the texture 
features of underwater images. 
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The formulas of contrast and dissimilarity are given by 
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j
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d
 

 

 

    
 

  (18) 

Contrast and dissimilarity represent the sharpness of the im- 
age.  Usually, they are proportional to the sharpness of underwater 
images. 

The formula of entropy can be expressed as 

 
1 1

3
0 0

, , , , , log , ,
L L

i j

j j
T f L d p i p i

d d
  

 

 

          
    

  (19) 

The entropy of gradient image reflects how much texture 
components in the image.  Therefore, entropy is proportional to 
the clarity of underwater images. 

The formula of homogeneity is given by 

    
1 1

4
0 0

, ,

, , ,
1

L L

i j

j
p i

d
T f L d

i j




 

 

 
 
  
   (20) 

The homogeneity denotes the distribution of elements in the 
gray level co-occurrence matrix.  Therefore, homogeneity is 
inversely proportional to the clarity of underwater images. 

The formula of energy is given by 

  
1 1

2
5

0 0

, , , , ,
L L

i j

j
T f L d p i

d
 

 

 

   
 

  (21) 

When the value of the GLCM changes greatly, it indicates 
that the image is blurred.  Thus, energy is inversely proportional 
to the image quality. 

2. Random Forests Regression 

We train a random forest by the gray-level co-occurrence ma- 
trix {T1, T2, T3, T4, T5} and predicts the Differential Mean 
Opinion Scores (DMOS) of underwater images by Algorithm 1. 

 
Algorithm 1: The random forests regression algorithm 
Initialization: 
(a) Gradient images of original images in LIVE2 database are ex-

tracted by the gradient transformation. 
(b) The feature vector is constructed by GLCM. 
Iteration: 
(c) We draw n tree bootstrap samples from the original data. 
(d) For each of the bootstrap samples, we grow an unpruned re-

gression tree with the following modification: at each node, we 

choose the best split among all predictors.  Then we sample m of 
the predictors randomly and choose the best split among those 
variables. 

(e) Random forests predict new data by aggregating the predictions 
of the n trees. 

(f) On the basis of the training data, the error rate of n trees can be 
obtained. 

(g) We obtain the image quality assessment model which substi-
tutes optimization parameters and test the model by Pearson 
Correlation Coefficient (PCC) and Spearman Rank-Order 
Correlation Coefficient (SPOCC). 

V. EXPERIMENTS 

To demonstrate the contributions of this work, we present re- 
sults from three types of experiments using a series of under- 
water images.  The simulation tool is MATLAB R2015b on a PC 
with a 3.20GHz Intel Core i5-6500 Processor. 

1. Verification of De-scattering Algorithm 

To evaluate the effectiveness of the de-scattering algorithm, 
we test two up-to-date single image haze removal algorithms 
in scattering images without color distortion, as shown in Fig. 8. 

It is obvious that enhanced results which are shown in Fig. 
8(d) have the highest subjective quality than other haze removal 
algorithms, meanwhile, the global appearance of correspond- 
ing results are preserved better. This is because the proposed ap- 
proach is based on the DehazeNet, fusion technology and edge- 
preserving filter.  It not only enhances the texture and contour 
details, but also can adjust the illumination to make subjective 
visual perception more comfortable.  In addition, traditional haze 
removal algorithms can’t be implemented effectively in some 
extreme conditions because the transmission map of distorted 
images cannot be estimated accurately. 

Since the white balance technology is included in our algo- 
rithm, our approach is capable of working in the scattering images 
with color distortion.  We also compare with the current visibi- 
lity improving methods based on DCP (Chiang et al., 2012), 
multi-scale Retinex with color restore (Zhang et al., 2012) and 
automatic red-channel (Galdran et al., 2015) to further verify 
the performance of the proposed approach.  As the results shown 
in Fig. 9, Chiang’s method begins to lose effectiveness with 
the addition of color distortion.  Zhang’s method can improve 
the contrast to a certain extent, but it brings color deviation.  Be- 
sides, our approach provides better performance than Galdran’s 
approach in term of the quality of distant objects and background 
light.  More importantly, we have noticed that automatic red- 
channel algorithm has poor performance in such cases where the 
appearance is overall blue or green.  Restored images of Galdran’s 
approach will show reddish appearance.  This is mainly due to 
the fact that underwater images have lower contrast and less vi- 
sible edges than natural images.  Through the fusion stage, the 
proposed approach has most stable performance in this case. 

We evaluate original images and enhanced results by the 
above mentioned non-reference quality evaluation model to com- 
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(a) (b) (c) (d)  
Fig. 8.  (a) Original image and Enhanced image by (b) He’s approach, (c) Ancuti’s approach and (d) the proposed approach. 

 
 

(a) (b) (c) (d) (e) (f)  
Fig. 9. (a) Original image (b) Estimated transmission map by proposed approach (c) Enhanced image by Chiang’s approach(d) Enhanced image by 

Zhang’s approach(e) Enhanced image by Galdran’s approach (f) Enhanced image by the proposed approach. 
 
 

pare with different algorithms quantitatively.  The bar charts, 
where the x-axis is the serial number of the test images, y-axis 
is the score of each evaluation index, are shown in Fig. 10. 

Table 1 lists the predicted DMOS of five test images and 
enhanced results by the random forests regression.  The value 
of DMOS is inversely proportional to the image quality. 

We draw the conclusion from Fig. 10 and Table 1 that eva- 
luation results of five evaluation indexes have the same trend and 
show that the proposed approach is more effective than other 

approaches in term of objective quality score. 

2. Verification of Edge Enhancement Algorithm 

The proposed approach can enhance other kinds of degraded 
image, such as optical turbulence blur images.  In this experi- 
ment, a blind de-blurring method (Pan et al., 2016) is referenced 
to make a comparison.  Fig. 11 shows the experimental results 
of three blur underwater images. 

Since suspended particles in the medium cause light absorp- 



538 Journal of Marine Science and Technology, Vol. 26, No. 4 (2018 ) 

 

 

Table 1.  NR image quality assessment results. 
number Original image Chiang’s approach Zhang’s approach Galdran’s approach Proposed approach 

#1 5.5492 5.3606 5.3508 1.7501 1.9214 
#2 4.4169 3.3649 4.2649 2.6840 0.2587 
#3 6.2892 6.0668 4.2143 2.3585 2.2508 
#4 8.4783 8.2958 8.0667 6.9532 4.9532 
#5 10.1150 9.9899 9.8582 8.5451 6.5451 
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Fig. 10.  The (a) contrast, (b) dissimilarity, (c) entropy, (d) homogeneity and (e) energy scores of five test images. 

 
 

tion, we enhance edges in image to improve its visibility.  Fig. 11 
shows that contour details of turbulence blur images are en-

hanced by the proposed method.  And the proposed method ob- 
tains clearer edges than Pan’s method. 
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(a) (b) (c)  
Fig. 11. (a) Observed image. (b) Enhanced image and estimated blur kernel 

by Pan’s approach. (c) Enhanced image by proposed approach. 
 

VI. CONCLUSION 

This paper proposes a framework integrating DehazeNet 
and HWD together to enhance underwater images.  The main 
contribution of this paper is that the proposed method is more 
robust and outperforms several state-of-the-art methods in dif- 
ferent underwater environments.  With the increasing of color 
distortion, DehazeNet has a more stable performance to estimate 
the transmission map than other haze removal algorithms.  On 
the basis of the CDF9/7, DFBs is utilized to the high-frequency 
wavelet subbands.  Compared with the traditional wavelets trans- 
form, HWD can obtain more the texture and contour details.  A 
non-reference image quality assessment model is trained based 
on the GLCM and random forests to evaluate the performance 
of these algorithms comprehensively.  Subjective results indi- 
cate that the algorithm can clarify images best and cause less 
color deviation.  Objective results shows that the proposed me- 
thod significantly enhances some kinds of degraded images and 
has the best performance in term of the GLCM features and DMOS. 
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