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ABSTRACT 

The low frequency oscillation (LFO) in power systems often 
consists of composite responses of various oscillation modes.  
Thus a direct analysis of LFO for revealing system dynamic cha- 
racteristics is not straightforward.  The primary objective of this 
study is to utilize the method of empirical mode decomposition 
(EMD) to expand the LFO response under study into multiple 
intrinsic mode functions (IMFs) for detailed investigation of 
power system dynamics.  Then time-frequency power information 
is explored using wavelet transform to obtain time-frequency 
power graph which is further resolved into a time-frequency- 
power diagram.  Finally, information from the time-frequency- 
power diagram is further examined to determine those generators 
that demonstrate higher degree of participation in the LFO of 
power system.  The comparative analysis in frequency domain 
shows that, at specific frequencies in LFO modes, higher oscil- 
lation participation power also shows a larger participation factor 
in its frequency domain analysis. 

I. INTRODUCTION 

A practical response is something that can be described and 
analyzed in the time and frequency domains.  Analysis of the 
time domain enables one to understand the intuitive changes of 
a response (amplitude) over time, whereas the analysis of the 
frequency domain provides understanding of how response am- 
plitude varies with frequency.  Compared to time domain re- 
sponse analysis, frequency domain analysis is more intuitive and 
convenient. 

An objective of response analysis is to describe basic response 
characteristics and expressions.  The most crucial and fundamental 
variables used in response analysis are time and frequency.  In 

the field of conventional response processing, a Fourier transform- 
based response domain expressions and its domain distribution 
of power show the response characteristics in that frequency 
domain.  These characteristics have been used extensively through- 
out the development of conventional response analysis and pro- 
cessing.  However, Fourier transform is an overall transform; 
its representation of a response is entirely in the time domain 
or entirely in the frequency domain.  Subsequently, power spec- 
trums for frequency domain expressions are unable to show the 
occurrences or transform conditions of certain frequency quan- 
tities.  In actuality, the majority of response frequencies change 
over time; consequently, to determine the global response cha- 
racteristics in just a time domain or a frequency domain is in- 
sufficient.  Thus, the goal of this research is to obtain information 
about changes of response’s frequencies in a spectrum over time.  
Time-frequency analysis (Cohen, 1995; Qian, 1996; Qian and 
Chen, 1999; Grochenig, 2001) has been used to simultaneously 
show the change process of frequency and amplitude over time.  
We would thus be able to comprehensively identify the charac- 
teristics and structure of the response. 

For the analysis of low frequency oscillation (LFO) in power 
system, the systemic response obtained using time domain me- 
thods is the integrated responses from various oscillation modes; 
thus, it is difficult to determine the characteristics of each mode.  
Previous studies have complemented this analysis with frequency 
domain analytical methods.  The LFO issues have been examined 
from the perspective of small signal stability through linear pro- 
cessing of system state equations.  System linearization is ty- 
pically conducted at the point of operation to obtain a linear 
model of the system.  The stability problem is analyzed in the 
frequency domain and its attributes become a problem that re- 
quires solving eigenvalues and eigenvectors; the oscillation 
frequency and damping size of each oscillation mode could be 
determined using the eigenvalue, whereas the range and degree 
of effect on the system caused by oscillation modes (i.e., mode 
shape) is identified using the eigenvector.  However, power sys- 
tems are non-linear.  The degree of complexity of power system 
progressively increases in conjunction with system scale.  Thus, 
the linearization method frequently becomes limited by system 
scale and/or equation order (Chang, 1993b; Anderson and Fouad, 
1994; Kundur, 1994; Pardiyar, 1995; Pai, 2000; Rogers, 2000; 
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Pai et al., 2004; Messina, 2009). 
Short-time Fourier transform and wavelet transform are fre- 

quently employed for time-frequency analysis (Cohen, 1995; 
Rao, 1998; Tapan, 2002).  These methods have specific advan- 
tages and disadvantages.  Short-time Fourier transform of a re- 
sponse is influenced significantly by window functions while 
different window functions produce different analysis results.  
For wavelet transform, the basic wavelet function cannot be 
changed after it has been determined.  This potentially causes mu- 
tual overlap of adjacent frequencies in local responses, thereby 
obstructing the identification of frequency. 

The Empirical Mode Decomposition (EMD) method is suit- 
able for improving situations of mal-adaptation experienced with 
wavelet transform (Huang et al., 1998; Huang et al., 1999; Messina, 
2009).  Wavelet transform analysis uses the same basis functions 
for its calculations, regardless of response changes.  Therefore, 
the physical significance is only obtained for linear physical 
phenomena.  However, EMD uses the internal time scale of the 
data change for a direct analysis of energy.  The response is ex- 
panded into multiple intrinsic mode functions (IMFs).  These 
functions are then used as the basis for response expansion.  This 
process is based entirely on the characteristics of the original 
response, which could display non-linear characteristics. 

The primary purpose of this study is the integration of time 
and frequency domains.  We employ time-frequency analysis to 
analyze the LFO of power system and understand the charac-
teristics displayed by oscillating response frequencies that change 
over time.  Change process in transient information, such as os- 
cillation frequency, time of fault occurrences, and power of oscil- 
lation frequency, are subsequently obtained using time-frequency 
graphs, and are further compared with those of the frequency do- 
main to verify the accuracy of the time-frequency analysis. 

II. FREQUENCY AND  
TIME DOMAIN SIMULATION 

LFO is primarily used to analyze system responses under 
minor disturbances.  The frequency domain analytical method 
(Chang et al., 1993a; Anderson and Fouad, 1994; Kundur, 1994; 
Huang, 2002) can be applied to directly determine various os- 
cillation modes within a system.  Therefore, it is suitable for 
obtaining a linear system model by system linearization at the 
point of operation.  The stability problem is analyzed within the 
frequency domain so that its attributes become problems that 
require the solving of eigenvalues and eigenvectors; the oscil- 
lation frequency and damping size of each oscillation mode can 
be obtained using eigenvalue, whereas the range and degree of 
effect exerted on the system by each oscillation mode are shown 
by eigenvectors.  This is the oscillation mode shape. 

The system eigenvalue and eigenvector have been collectively 
termed as the eigenstructure (Huang, 1989; Huang, 2002).  Once 
the eigenstructure of the system is obtained, the dynamic stability 
of the entire system can be understood.  When LFO involves 
numerous response units, their individual degrees of participa- 
tion and causes of oscillation are obtainable through complete 

system analysis.  Time domain simulations methods are commonly 
employed to verify frequency domain analysis results (Chang 
et al., 1993a).  The system’s dynamic model is initially used in 
collaboration with the initial system conditions and changes or 
disturbances in the system state.  The mathematical model’s dif- 
ferential equations for system dynamics are solved using integrals 
to simulate the system dynamic response following a disturbance.  
This method of analysis requires numerous tests to as-certain 
the system response stability caused by various disturbances.  
In addition, the system response obtained is generally a sum of 
responses from various oscillation modes; thus, it becomes dif- 
ficult to determine the damping effect of each oscillation mode.  
Therefore, time domain simulations are used complementarily 
with frequency domain analysis.  This is the most frequently 
used method in the investigation of topics related to dynamics 
of power system. 

III. TIME-FREQUENCY ANALYSIS 

1. Empirical Mode Decomposition (EMD) 

The process of EMD involves the decomposition of complex 
responses into limited individual Intrinsic Mode Function (IMF), 
thereby bestowing a physical meaning to actual responses (Huang 
et al., 1998; Huang et al., 1999).  IMFs have the following cha- 
racteristics: 

 
(1) In the whole data set, the number of extrema and the num- 

ber of zero-crossings must either be equal or differ at most 
by one. 

(2) At any point, the mean value of the envelope defined by 
the local maxima and the envelope defined by the local 
minima is zero. 

 
The EMD is able to resolve power directly from the internal 

time scales of data changes.  The initial response data is expanded 
into multiple IMFs.  These functions are then used as the basis 
for expansion or for the analysis of non-linear response.  Thus, the 
physical characteristics of the original response can be displayed 
in its entirety. 

Through EMD, the internal time scale of data changes is used 
to directly determine response power.  The response is represented 
as a summation of multiple IMFs.  The IMFs are regarded as the 
basis for response expansion.  In the IMFs, oscillation amplitude 
of the first component is the greatest and at the highest fre-
quency.  The subsequent oscillation amplitude and frequency of 
the IMF components become progressively lower.  The power 
involved in oscillation also becomes reduced. 

2. Wavelet Transform 

Wavelets are defined as wave morphologies that show average 
wave amplitude values of zero at a specific wavelength.  Through 
the extension and compression of wavelet functions, an analyzed 
response can be expanded.  Wavelet transform made use of wave- 
let functions formed by parameters such as scale and shift to 
describe the response; the scale parameter size shows the high 
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and low changes in frequency, and the shift parameter provides 
time-related information.  Therefore, information concerning 
time and frequency domains is obtainable.  Previous studies have 
divided wavelet transform into continuous and discrete wave- 
let transform (Cohen, 1995; Rao, 1998; Tapan, 2002).  Continu-
ous wavelet transform can be expressed as: 

  ,

1
a b

t b
t

aa
   

 

  (1) 

where a is the scale parameter and b is the shift parameter.  Fol- 
lowing conditions of the discretization restrictions, the two pa- 
rameters are solved as 

  (2) 0 0 0, ,j ja a b ka b j Z  

By substituting (2) into (1), the discrete wavelet function can 
be expressed as: 

   2
, 0 0

j
j
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

  0  (3) 

The discrete wavelet transform coefficient for continuous re- 
sponse x(t) can be expressed as: 

   2
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j
j
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If the samples obtained for continuous response x(t) is discrete 
response x[n], then the discrete wavelet transform coefficient 
can be expressed as: 

  2
, 0 0 0 *

j
j

j k
n

C a X n a t kb


     (5) 

The initial response x[n] could also be expressed through 
wavelet transform as: 

   2
0 , 0 

j
j

j k
j k

0x n a C a n kb


     (6) 

From (6), it can be seen that manipulating the size of a0 and 
b0, the wavelet transform is capable of displaying various time 
and frequency resolutions.  The most commonly used para- 
meters for the average wavelet transform is a0 = 2 and b0 = 1. 

III. EMD IN COLLABORATION  
WITH WAVELET TRANSFORM 

Although wavelet transform is able to reflect changes in re- 
sponse characteristics over time by integrating time and frequency  

Import data from time-frequency with power graph

Convert x- and y-axis into axis
with the same ranges as the z-axis

Obtain absolute values for the z-axis energy values

Plot the time-frequency with power graph

From the data, time is the x-axis, frequency is the
y-axis, and energy is the z-axis

 
Fig. 1. Flowchart of the process of transforming the time-frequency with 

power graph into a time-frequency with power graph. 

 
 

domains during the construction of the time-frequency response 
characteristics, its analysis is based on the same wavelet func- 
tion; thus, the separation rate is limited.  This also causes a de- 
crease in the resolution power during the analysis.  The level 
of response complexity from non-linear power system increases 
in conjunction with system scale.  This further reduces the re- 
solution of wavelet analysis. 

EMD represents the response as the summation of multiple 
IMFs.  Each IMF is based on its own internal time scale.  There- 
fore, the problem of choice or appropriateness of base does not 
occur.  This also improves the performance of wavelet trans-
form in the time-frequency method. 

This study opts to use the system power response during a 
power system fault as the starting point for EMD.  The response 
IMF is decomposed.  The first and second IMF components, 
where amplitude is the greatest, are subject to wavelet trans-
form to produce a time-frequency with power graph.  The data 
from the time-frequency with power graph are exported and 
processed to transform the time-frequency with power graph 
into a time-frequency- power graph.  The process is shown in 
Fig. 1.  Finally, data from the time-frequency-power graph are 
analyzed to determine the primary LFO frequency and char-
acteristics of the power system.  Fig. 2 shows the flowchart of 
the system analytical method. 

IV. CASE STUDIES 

1. The Study System 

A four-machine two-area power system is used as the study 
system for this work.  This system comprises two areas (Areas 
A and B), and four Generators (G1 and G2 in Area A; G3 and G4 
in Area B).  The single-line diagram of this system is shown in 
Fig. 3 (Kundur, 1994). 
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Select the system power response signal during malfunction

EMD

Identify the first and second IMF components
where oscillation amplitude is the greatest

Plot time-frequency with power graph
after wavelet transform

Transform the time-frequency with power graph into
a graph showing time-frequency-power values

Determind the primary LF oscillation frequency
and oscillaiton characteristics of the power system

 
Fig. 2.  Flowchart of the system analysis process. 
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Fig. 3.  Single-line diagram of the two-area power system.  (Kundur, 1994). 

 

 
The total installation capacity of the system is 3600 MVA.  

Each Generator is connected to a step-up transformer to increase 
voltage from 20 to 230 kV.  Areas A and B are connected by 
two lines.  Each Generator’s rated capacity is 900 MVA, with a 
rated voltage of 20 kV.  Area A transmits 390 MW to Area B.  
Each step-up transformer resistance 0  j0.15 pu is based on 
900 MVA, 20/230 kV.  The nominal voltage for the system is 
230 kV.  The resistance parameters of the transmission line are 
as follows: r = 0.0001 pu/km, LX = 0.001 pu/km and bc = 0.00175 
pu/km.  The operating conditions for the Generators within the 
system are as follows: 

  

1

2

3

4

700 MW = 185 Mvar 1.03 20.2

700 MW = 235 Mvar 1.01 10.5

719 MW = 176 Mvar 1.03 6.8

700 MW = 202 Mvar 1.01 17

t

t

t

t

G P Q E

G P Q E

G P Q E

G P Q E









Table 1. Information pertaining to power flow in each area. 

Area Generation Load 
Bus 

Shunt 
Charging

Net 

INT
Losses

P (MW) 1400.0 967 0.0 0.0 390.3 42.7Area 

A Q (Mvar) 450.9 100 -182.4 20.2 -47.9 601.3

P (MW) 1420.2 1767.0 0.0 0.0 -390.3 43.5Area 

B Q (Mvar) 412.0 100.0 -325.8 20.4 47.9 610.3

P (MW) 2820.2 2734.0 0.0 0.0 0.0 86.2
Total

Q (Mvar) 862.9 200.0 -508.2 40.6 0.0 1211.6
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Fig. 4.  Power response graph for transmission line between Bus 7 and Bus 8. 
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Fig. 5.  Power response graph for system Generators G1,G2, G3, and G4. 

 
 
Bus 7 of Area A is attached a load of PL = 967 MW, QL = 100 

Mvar, and QC = 200 Mvar, and Bus 10 of Area B is attached a 
load of PL =1767 MW, and QC = 350 Mvar.  The information per- 
taining to power flow in each area is shown in Table 1 (Kundur 
1994). 

  

  

  

  

2. Time-Frequency Analysis 

The system analysis includes an application of a three- 
phase fault on Bus 9 at the time of 0.5 s and cleared after four 
cycles.  System dynamic response is simulated for ten seconds.  
The power responses from each generator and transmission line 
are recorded.  After time-frequency analysis, the oscillation fre- 
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Fig. 6. IMF composition for the power of transmission line between Bus 

7 and Bus 8. 
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Fig. 7.  IMF composition for the power of Generator G1. 
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Fig. 8.  IMF composition for the power of Generator G2. 

 
 

quency and characteristics of each response is determined.  
The accuracy of the results obtained from the time-frequency 
analyses are verified by comparison with the frequency domain 
analysis results. 

3. No Installation of Power System Stabilizer 

Transmission line between Bus 7 and Bus 8 and Generators 
G1, G2, G3, and G4 are observed.  Figs. 4 and 5 show the power 
responses during system fault. 

After EMD, the power response, transmission line between 
Bus 7 and Bus 8, and Generators G1, G2, G3, and G4 are expanded 
into a summation of IMFs, as shown in Figs. 6-10 which are 
based on MW power units.  The graphs in Figs. 6-10 show that 
the power responses from each generator and transmission line 
which are time- varying after system fault is cleared.  The graphs 
for the IMF2s in Figs. 9 and 10 reveal that the IMF responses 
of Generators G3 and G4 are in continuous oscillation. 

The first and second components (IMF1 and IMF2, respec- 
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Fig. 9.  IMF composition for the power of Generator G3. 

 
 

IMF 1

po
w

er
 (M

W
)

po
w

er
 (M

W
) IMF 2

Time

Time

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

1
0

-1

0.5
0

-0.5

 
Fig. 10.  IMF composition for the power of Generator G4. 
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Fig. 11. Time-frequency with power graphs after wavelet transform of 

IMF1 and IMF2 for transmission line between Bus 7 and Bus 8. 

 
 

tively) in Figs. 6-10 show time-frequency with power graphs 
as shown in Figs. 11-15 that are based on MW power units.  
The graphs in Figs. 11-15 show that the frequency with power 
responses from each generator and transmission line are time 
varying.  Through wavelet transform, Figs. 14 and 15 show that 
Generators G3 and G4 produce frequencies between 0.5 and 0.6 
Hz during 8 s to 10 s, indicating the presence of larger power 
responses. 

Frequency composition from time-frequency with power 
graphs cannot be clearly analyzed; therefore, the graphs shown 
in Figs. 11-15 are exported and processed to transform the time- 
frequency with power graphs into time-frequency-power graphs, 
as shown in Figs. 16-20 which are based on MW power units.   
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Fig. 12. Time-frequency with power graphs after wavelet transform of 

IMF1 and IMF2 for Generator G1. 
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Fig. 13. Time-frequency with power graphs after wavelet transform of 

IMF1 and IMF2 for Generator G2. 

 
 

The graphs in Figs. 16-20 show that all the frequencies with 
power oscillation which consist of power responses from each 
generator and transmission line are time-varying.  From these 
graphs, the continuous oscillation response could be determined.  
Its frequency and the amplitude of its power could be determined. 

From the data revealed by Figs. 16-20, the primary LFO fre- 
quency and characteristics of the power system can be inves-
tigated.  Table 2 shows relevant information obtained from the 
above analysis. 

The graphs shown in Figs. 12-15 and the data in Table 2 allow 
the following conclusions to be made: 

 
(1) The first component in the IMF graph obtained from the 

EMD expansion should be the transient response that 
occurs during fault of a power system and not the power 
system LFO. 

10

8

6

4

2

0
0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5

Time (sec)

G3 IMF1

G3 IMF2

Time (sec)
Fr

eq
ue

nc
y 

(H
z)

Fr
eq

ue
nc

y 
(H

z)
6 7 8 9 10

0.06

0.04

0.02

0

1.5

2

1

0.5

0

0.015

0.01

0.005

0

 
Fig. 14. Time-frequency with power graphs after wavelet transform of 

IMF1 and IMF2 for Generator G3. 
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Fig. 15. Time-frequency with power graphs after wavelet transform of 

IMF1 and IMF2 for Generator G4. 

 
 

(2) IMF2 of transmission line between Bus 7 and Bus 8, and 
Generators G1, G3, and G4 show a constant frequency of 
0.5512 Hz over an extended period.  Figs. 14 and 15 show 
that the oscillations at Generators G3, and G4 are most sig- 
nificant, persisting for up to 10 s.  Therefore, it is hypo- 
thesized that this frequency is the oscillation frequency for 
the Inter-Area mode of the system. 

(3) The 0.5512 Hz response persisted for longer at Generators 
G3 and G4 than at G1 and G2.  Thus, the frequency’s power be- 
comes comparatively larger with the slower decaying over 
time.  Under the oscillation mode at this frequency, Genera- 
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Fig. 16. Time-frequency with power graphs of IMF1 and IMF2 for trans- 

mission line between Bus 7 and Bus 8. 
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Fig. 17. Time-frequency with power graphs of IMF1 and IMF2 for Gen- 

erator G1. 
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Fig. 18. Time-frequency with power graphs of IMF1 and IMF2 for Gen- 

erator G2. 
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Fig. 19. Time-frequency with power graphs of IMF1 and IMF2 for Gen- 

erator G3. 
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Table 2. The primary LFO frequency (Hz) of IMF component 
for transmission line and each Generator. 

 IMF1 IMF2 

transmission line between  
Bus7 and Bus8 

0.3937, 1.417 0.5512 

Generator G1 0.3937 0.5512, 1.26 

Generator G2 0.4724 0.4724 

Generator G3 0.315 0.4724, 0.5512 

Generator G4 0.315 0.3937, 0.5512 
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Fig. 20. Time-frequency with power graphs of IMF1 and IMF2 for Gen- 

erator G4. 

 
 

 tors G3 and G4 show a greater involved oscillation power 
than G1 and G2.  Generator G3 is the highest. 

 
The following section discusses the installation of power 

system stabilizer for Generators G1, G2, G3, and G4, as well as the 
consequent system damping response improvements.  This is 
used to determine the installation positions the power system 
stabilizer (PSS). 

4. Installation of Power System Stabilizer 

Power system stabilizer is installed on Generators G1, G2, 
G3, and G4.  The PSS gain is set at 40 to observe the trans-
mission line between Bus 7 and Bus 8 response improvements.  
Figs. 21-24 show the power responses from PSS installed on 
Generators G1, G2, G3, and G4, respectively. 
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Fig. 21. Power response of transmission line for PSS installed on Gen-

erator G1. 
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Fig. 22. Power response of transmission line for PSS installed on Gen-

erator G2. 
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Fig. 23. Power response of transmission line for PSS installed on Gen-
erator G3. 

 
 
The power response graphs show that the installation of power 

system stabilizer significantly improves system damping.  This 
improvement is especially prominent for Generator G3.  The am- 
plitude after 10 s of system fault is more restrained compared 
to those of Generators G1, G2, and G4 with PSSs. 

The LFO eigenvalues of the two-area power system are shown 
in Table 3.  The right eigenvector and participation factor of LFO 
Mode 3 (the inter-area mode) in Table 3 are shown in Table 4. 
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Table 3.  LFO eigenvalues of two-area power system. 

Mode Eigenvalue Damping ratio Frequency (Hz)

1 -0.59943  j6.7829 0.088031 1.0795 

2 -0.58674  j6.5804 0.088813 1.0473 

3 -0.050451  j3.3142 0.015221 0.52747 

4 -0.55086  j0.63185 0.65715 0.10056 

5 -0.87916  j0.51586 0.84619 0.082102 

6 -0.40638  j0.36101 0.74761 0.057456 

7 -0.39057  j0.35934 0.73591 0.057191 

 
 

Table 4.  Right eigenvector and participation factor of Mode 3. 

Right Eigenvector 
Mode variable 

Size  Phase () 
Participation factor

(G3) 1.0000 0.0000 1.00000 

(G4) 0.91134 -0.29350 0.70239 

(G1) 0.25781 173.98 0.25757 

(G2) 0.17870 175.39 0.13546 

 
 
The graphs in Figs. 7-10 and Figs. 21-24 as well as the data 

shown in Tables 2-4 allow the following conclusions to be made: 
 

(1) Figs. 7-10 and Tables 2 to 3 indicate a 0.5512 Hz response 
in IMF2 of Generators G1, G3, and G4 before PSS is in- 
stalled which persisted for an extended amount of time.  
This is especially evident for Generators G3 and G4 where 
the response persisted for longer than 10 s. 

(2) Figs. 7-10 and Table 2 show that a 0.5512 Hz response per- 
sisted for longer at Generators G3 and G4 than those that oc- 
cur at Generators G1 and G2.  The power of this frequency 
is large and its decaying over time is slow.  This shows 
that the power involved with oscillation for Generators G3 
and G4 under the oscillation mode at this frequency are 
greater than those of Generators G1 and G2.  Generator G3 
has the highest energy. 

(3) Figs. 7-10 and Table 4 show that the greater the participa- 
tion factor of Generator G3, the greater its power involved 
with oscillation and the longer the time oscillation continues. 

(4) Figs. 21-24 show that the installation of PSS significantly 
improves system damping.  This improvement is especially 
evident when PSS are installed on Generator G3.  In this 
case, the amplitude is more restrained 10 s after fault than 
for PSS installed on Generator G1, G2, and G4. 

V. CONCLUSION 

Time-frequency analysis is capable of representing time- 
frequency with power responses in the form of 3D time-frequency- 
power graphs.  This shows the abundance of frequency components 
contained within the response and how the power of each fre- 
quency component changes over time.  Compared to frequency 
domain analysis, time domain analysis additionally has the time  
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Fig. 24. Power response of transmission line for PSS installed on Gen-
erator G4. 

 
 

data of the response.  This enables it to realize the duration that 
a frequency occurs and the conditions of its power decaying.  
This makes observation and research of power system responses 
more convenient. 

This study utilizes EMD to decompose power responses into 
IMFs.  The IMFs are subsequently subjected to wavelet transform 
to obtain time-frequency with power graphs.  The time-frequency 
with power graphs are then exported and processed into time- 
frequency-power graphs.  Consequently, a realistic representation 
of the process of response change is obtained.  The following con- 
clusions can be made based on the analysis results: 

 
(1) A multitude of oscillation frequencies are included in the sys- 

tem’s power responses.  EMD is employed to expand the re- 
sponses into multiple IMFs.  Through this process, influences 
on high frequency transient responses are reduced.  Further- 
more, the interference experienced when observing IMF is 
also reduced.  This simplified the observation of each os-
cillation frequency. 

(2) The oscillation of Inter-Area modes has a broad area of in- 
fluence.  It also comprises more components.  At each obser- 
vation point, frequencies could be observed in the majority 
of cases.  The power of the frequency is thus comparatively 
greater and persists longer. 

(3) The frequency of Inter-Area oscillation modes as observed 
using time-frequency graphs of generators, showing that units 
with higher oscillation participation power that decays at a 
slower rate over time has higher participation factor values. 

(4) With specific reference to the Inter-Area oscillation modes, 
units with high participation factor values are equipped with 
PSS.  The analytical results from the time and frequency do- 
main analyses show a significant effect in providing damp- 
ing to the system, and thus the system stability is improved. 
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