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ABSTRACT 

The issue of data completion is important for the elliptic type 
partial differential equation.  In the inverse Cauchy problem, 
we need to complete the boundary data by over-specifying Di- 
richlet and Neumann data on a portion of the boundary.  In this 
paper, we numerically solve the generalized inverse boundary 
value problems of Laplace equation in a rectangle with one boun- 
dary function and two boundary functions missing, which are 
more difficult than the inverse Cauchy problem.  By using the 
technique of a boundary integral equation method together with 
a specially designed Trefftz test function, we can complete the 
boundary data by requiring minimal extra data.  Then solving the 
Laplace equation with the given data and recovered data by the 
multiple-scale Trefftz method, we can find the numerical solu- 
tion in the interior nodal points. 

I. INTRODUCTION 

In the past decades there are many numerical methods pro- 
posed for solving the inverse Cauchy problems (Yeih et al., 1993; 
Knowles, 1998; Brühl and Hanke, 2000; Cimetière et al., 2001; 
Fang and Lu, 2004).  Among the many numerical methods, the 
schemes based on iteration have been developed by Jourhmane 
and Nachaoui (1999, 2002), Essaouini et al. (2004), Nachaoui 
(2004), and Jourhmane et al. (2004).  Liu (2008a) has applied a 
modified collocation Trefftz method for the inverse Cauchy prob- 

lem in a circular domain.  In Fu et al. (2007, 2008), a similar 
method has been named the Fourier regularization method.  Liu 
(2008b) has developed a modified Trefftz method by a simple 
collocation technique to treat the inverse Cauchy problem of La- 
place equation in an arbitrary plane domain.  Liu and Kuo (2011), 
Liu et al. (2011) and Liu and Chang (2012) have proposed the 
spring-damping regularization techniques to treat the inverse 
Cauchy problems.  Then Liu and Atluri (2013) and Liu (2014) 
used a better post-conditioning collocation Trefftz method to 
solve the inverse Cauchy problems. 

Previously, the boundary integral equations have been used 
in Liu and Chang (2016) to recover the space-time dependent 
heat source, and in Liu (2017) for solving the inverse wave 
source and backward wave problems.  Here we will extend these 
methods together with the special Trefftz test functions to solve 
some more difficult generalized inverse boundary value prob- 
lems.  Consider an elliptic type equation, and the bounded domain 
is denoted by , whose boundary is .  For a mixed boundary 
value problem we specify the Dirichlet boundary data on 1 
while the Neumann boundary data on 2, where 1 2     

and 1 2    .  Otherwise, we encounter the generalized in- 

verse boundary value problems (Liu, 2016; Liu, 2017).  Among 
them, the inverse Cauchy problem is specified as 1 2     

and 1 2    , of which the latter one means that the Cauchy 

data are over-specified on 1 2  .  In the generalized inverse 

boundary value problem we permit 1 2    , therefore the 

concept of ‟over-specified data” is abandoned, which is named 
the underspecified inverse Cauchy problem in Liu (2017). 

The remaining portion of this paper is arranged as follows.  
In Section 2 for the Laplace equation in a rectangle, we intro- 
duce a boundary integral equation method based on the Greenʼs 
theorem, which results in a reciprocity gap functional to extract 
the unknown boundary data from other boundary data.  In Sec- 
tion 3, we choose a suitable set of the Trefftz test functions to 
derive a linear system for the generalized inverse boundary value 
problem, whose numerical examples are given in Section 4.  In 
Section 5, we derive a boundary integral equation method for 
the generalized inverse boundary value problem with two boun- 
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dary functions being completed, whose numerical examples are 
given in Section 6.  Finally, the conclusions are drawn in Section 7. 

II. BOUNDARY INTEGRAL  
EQUATION METHOD 

1. A Generalized Inverse Boundary Value Problem in a 
Rectangle  

We consider a generalized inverse boundary value problem 
of the Laplace equation in a rectangle given as follows: 

 
2 2

2 2
0

u u

x y

 
 

 
 (1) 

 ( , 0) ( )u x f x , 0 x a  , (2) 

 ( , ) ( )u x b h x , 0 x a  , (3) 

 (0, ) ( )u y y  , 0 y b  , (4) 

where f(x), h(x) and (y) are given functions.  The problem 
(1)-(4) is an under-specified boundary value problem of the 
Laplace equation, which has infinite solutions.  Our first genera- 
lized inverse boundary value problem is how many extra con- 
ditions are needed to recover r(y) = u(a, y).  If r(y) can be 
recovered, then the boundary data are completed, and the La- 
placian problem is solvable.  In Section 5, we will discuss a more 
difficult problem with only two boundary functions being spe- 
cified. 

2. Greenʼs Second Identity 

Before embarking the derivation of Greenʼs second identity 
for Laplace equation, we introduce the Laplacian operator: 

 ( , ) xx yyu x y u u   . (5) 

Lemma 1 (Greenʼs Theorem in the plane): Let  be a bounded 
region in the plane (x, y) with a counter-clockwise contour  
which consists of finitely many smooth curves.  Let F1(x, y) and 
F2(x, y) be functions that are differentiable in  and continuous 
on  .  Then 

  2 1
1 2

F F
dxdy F dx F dy

x y 

  
     

  . (6) 

Letting and inserting 

 1 y yF vu uv  , 2 x xF uv vu   (7) 

into Lemma 1, we can prove Greenʼs second identity for the La- 
placian operator. 

Theorem 1 (Greenʼs second identity): Let  be a bounded 
region in the plane (x, y) with a counter-clockwise contour  
which consists of finitely many smooth curves.  Let u(x, y) and 
v(x, y) be functions that are twice differentiable in  and con-
tinuous on  .  Then 

    n nu v v u d uv vu ds
 

      , (8) 

where d = dxdy is an area element in the plane and the subscript 
n denotes the normal derivative with respect to n = (dy/ds, -dx/ds). 

 
Theorem 2 (Global relation for the first problem): For the 
first generalized inverse boundary value problem in Eqs. (1)-(4), 
the unknown functions r(y): = u(a, y) and g(x): = uy(x, b) satisfy 
the following global relation: 

 
0 0

0

0

( ,0) ( ,0) ( ) ( , )

( , ) ( , ) ( , ) ( )

(0, ) (0, ) 0

a b

n n y x

a

y

a

x

uv vu ds u x v x dx r y v a y dy

u x b v x b v x b g x dx

u y v y dy


   

   

 

  






 (9) 

for any function v with v = 0 and v(0, y) = v(a, y) = v(x, 0) = 0.  
Here the data of u(x, 0) = f(x), u(x, b) = h(x) and u(0, y) = (y) 
are prescribed. 

 
Proof: 

Inserting u = 0 and v = 0 into Eq. (8), integrating along  
the contour 1 2 3 4       =  0 , 0x a y     

 ,x a a y b     0 ,x a y b     0, 0x y b   , 

and inserting the corresponding conditions in Eqs. (2)-(4), we 
can prove this theorem. 

III. THE NUMERICAL ALGORITHM OF 
BOUNDARY INTEGRAL EQUATION METHOD 

In Theorem 2, we can choose a simple function v(x, y) such 
that Eq. (9) can be easily used to solve r(y) and g(x).  For this 
purpose, we can take 

( ) ( )
( , ) sin exp expk

k x k y b k y b
v x y

a a a

             
    

, (10) 

which is a stable solution of the Laplace equation with k  N 
being a positive integer.  We may call vk(x, y) the Trefftz test 
functions, because they satisfy the Laplace equation automati- 
cally.  Due to this reason, we may call the present technique a 
Trefftz test function method.  vk(x, y) is the most simple and use- 
ful Trefftz test function for the first problem, which renders three 
functions ux(0, y), ux(a, y) and uy(x, 0) disappearing from Eq. 
(9), due to vk(0, y) = vk(a, y) = vk(x, 0) = 0.  Otherwise, Eq. (9) 
will be too complicated to use in the solution of the first prob- 



640 Journal of Marine Science and Technology, Vol. 26, No. 5 (2018 ) 

 

 

lem.  There exists no Trefftz test function, which is zero on four 
boundaries; otherwise vk(x, y) = 0 according to the maximum 
principle of Laplace equation. 

Since vk(x, b)  0, in Eq. (9) there still has one term vk(x, b)g(x) 
in the integral.  If g(x) is prescribed as an extra condition, we 
have over-specified data on y = b.  Hence, we encounter an in- 
verse Cauchy problem to recover r(y) on x = a by using the 
over-specified data on y = b.  However, we are interested to solve 
a more difficult problem for the generalized inverse boundary 
value problem with g(x) being an unknown function.  Therefore, 
we have two unknown boundary functions r(y) and g(x) to be 
recovered, which are supposed to be 

 
1

1 1

1

( )
m

j
j j

j

r y a s y 



  , (11) 

 
2

2 1

1

( )
m

k
k k

k

g x b s x 



  . (12) 

Inserting them and Eq. (10) into Eq. (9) and letting k = 1, , 
m0 we can derive a linear system: 

 Ac e , (13) 

to determine the expansion coefficients aj, bk whose number is 

n = m1  m2.  The multiple-scales 1 2( , )j ks s  are determined by 

the equilibrated method (Liu, 2012, 2013). 
Also we have some compatibility conditions and impose some 

discrete measured data to help the identification of the unknown 
functions r(y) and g(x): 

 (0) ( , 0)r u a , ( ) ( , )r b u a b , (14) 

Case (a) ( )i ig x g , 3( 1) /( 1)ix i a m   , 31, ,i m  , 

Case (b) ( )j jr y r , 3/( 1)jy jb m  , 31, ,j m  , (15) 

where m3 is a small number.  For the case (a), because some 
Neumann data are over-specified on the top side y = b of the re- 
ctangle where the Dirichlet data are already specified in Eq. (3), 
it is one of the Cauchy problem but with fewer over-specified 
data. 

The compatibility conditions in Eq. (14) provide two linear 
algebraic equations as follows: 

 1
1 1 ( ,0)a s u a , 

1
1 1

1

( , )
m

i
i i

i

a s b u a b



 . 

The dimension of A is qn n  where 0 32qn m m    is 

usually greater than n, such that Eq. (13) is an over-determined 
system.  Let ia  denote the ith column of the coefficient matrix 

A.  Then 1
js  and 2

js  are determined as follow: 

 11
i

i

s 
a

a
, 11,i m  , (16) 

 
1

12
j

m j

s



a

a
, 21,j m  . (17) 

Therefore, 1
1 1s   and the norms of all columns of the coef- 

ficient matrix A are equal to 1a , where 1a  is the Euclidean 

norm of the vector a1. 
Instead of Eq. (13), we can solve a normal linear system: 

 1Dc b , (18) 

where 

 1 : Tb A e , : TD A A 0 . (19) 

The algorithm of conjugate gradient method (CGM) for 
solving Eq. (18) is summarized as follows. 

 
(1) Give an initial c0 and then compute r0 = Dc0  b1 and set 

p0 = r0. 
(2) For k = 0, 1, 2, , we repeat the following iterations: 

 

2

T

1

1 1 1

2

1
1 2

1 1 1

,

,

,

,

.

k
k

k k

k k k k

k k

k
k

k

k k k k











 




  



 

 



 

r

p Dp

c c p

r Dc b

r

r

p p r

 (20) 

If 1kc  converges according to a given stopping criterion 

1k  r , then stop; otherwise, go to step (2). 

 
In view of the numerical algorithm, the key point is the in-

troduction of the Trefftz test functions in Eq. (10), which is 
limited to the rectangular domain.  For the purpose to render 
vk(0, y) = vk(a, y) = vk(x, 0) = 0, Eq. (10) is the unique choice, 
where we place k(y  b) instead of ky for the stability.  Then, 
- k(y  b) must appear for satisfying vk(x, 0) = 0.  In an ir-
regular domain, there exists no such a closed-form Trefftz test 
function.  We also consider the Neumann boundary condition 
with uy(x, b) = g(x) to be recovered.  If other boundary condi-
tions are specified, the problem is more complicated, of which 
we must develop another type Trefftz test function.  One limi-
tation for the use of Eq. (10) is that b cannot be a large number;  
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Fig. 1. For case (a) of the first generalized inverse boundary value problem, (a) convergence rate, and comparing numerical and exact solutions of (b) 

r(y), and (c) g(x) for example 1. 
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Fig. 2. When unknown boundary data are recovered we apply the multiple-scale Trefftz method to recover the data at interior nodes, (a) numerical 

solution, and (b) exact solution of example 1. 

 
 

otherwise, the test functions vk(x, y) are very weak due to both 
exponential functions tending to zero. 

IV. NUMERICAL EXAMPLES  
FOR THE FIRST PROBLEM 

In this section, we first apply the boundary integral equation 
method (BIEM) to solve the first generalized inverse boundary 
value problem for the recovery of r(y) = u(a, y) and g(x) = uy(x, 
b).  When the boundary data r(y) = u(a, y) are recovered, we 
can apply the multiple-scale Trefftz method (Liu and Atluri, 
2013) to recover the data at interior nodes by 

 1 2
0

1

( , ) cos sin
m

j j
j j j j

j

u r a a s r j b s r j  


   , (21) 

where the 2 1n m   coefficients  0 , , ,  1, ,j ja a b j m   

can be solved from a linear system by using the CGM given in 
Section 3, upon imposing the boundary conditions (2)-(4) and 

( , ) ( )u a y r y , where ( )r y  is computed from Eq. (11), at cn  

collocation points on the rectangle.  In general, cn n .  In the 

CGM we solve the normal linear system, where the conver-
gence criterion is given by 1 . 
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1. Example 1 

In order to explore the applicability of the new method, we 
consider 

 ( , ) cosyu x y e x . (22) 

We take a = 3, b = 1, m1 = 6, m2 = 5, m3 = 10 (for case (a)), 
and m0 = 4, where the measured Neumann data at the top side 
are added by a relative noise with an intensity s.  Although 
under a large noise s = 0.1, the BIEM is convergence with 8 
steps as shown in Fig. 1(a), where the convergence criterion is 
given by  = 10-3.  In Fig. 1(b), we compare the numerical re- 
covery of r(y) with the exact one, whose maximum error is 
1.45  10-2.  On the other hand, in Fig. 1(c) we compare the nu- 
merical recovery of g(x) with the exact one, whose maximum 
error is 1.99  10-1. 

In Fig. 2 we compare the numerically recovered solution at 
n1  n2 = 300  100 interior nodes to the exact one, where we 
use m = 10 and 1 = 10-5.  It can be seen that these two solutions 
are very close with the maximum error being 1.45  10-2. 

2. Example 2 

Then we consider case (b) with the same solution as that in 
example 1, where we take a = 3, b = 1, m1 = 6, m2 = 4, m3 = 1 
(for case (b)), and m0 = 7.  Although under a large noise s = 0.1, 
the BIEM is convergence with 11 steps as shown in Fig. 3(a), 
where the convergence criterion is given by  = 10-5.  In Fig. 
3(b), we compare the numerical recovery of r(y) with the exact 
one, whose maximum error is 4.68  10-2, while the numerical 
recovery of g(x) with the exact one is shown in Fig. 3(c), whose 
maximum error is 7.03  10-2.  It is interesting that we can re-

cover both r(y) and g(x) by merely measuring one extra datum 
at the middle point on x = a. 

3. Example 3 

We consider 

 3 2 3 2( , ) 3 3u x y x xy y x y    , (23) 

and take a = 1, b = 1, m1 = 4, m2 = 5, m3 = 3 (for case (a)), and 
m0 = 4.  Although under a large noise s = 0.1, the BIEM is con- 
vergence with 9 steps as shown in Fig. 4(a), where the conver- 
gence criterion is given by  = 10-3.  In Fig. 4(b), we compare 
the numerical recovery of r(y) with the exact one, which are 
close with the maximum error being 6.7  10-2.  In Fig. 4(c), we 
compare the numerical recovery of g(x) with the exact one, 
whose maximum error is 2.1  10-2. 

When we take a = 2 and b = 2 for considering a larger do- 
main, and other parameters are unchanged, the BIEM is conver-
gent with 9 steps as shown in Fig. 5(a).  In Fig. 5(b) we compare 
the numerical recovery of r(y) with the exact one, which are 
close with the maximum error being 4.94  10-2.  In Fig. 5(c) 
we compare the numerical recovery of g(x) with the exact one, 
whose maximum error is 8.4  10-1. 

4. Example 4 

Then we consider case (b) for 

 3 2 3 2( , ) cos 3 3yu x y e x x xy y x y     , (24) 

where m1 = 6, m2 = 4, m3 = 1 (for case (b)), and m0 = 7.  Although 
under a large noise s = 0.2, the BIEM is convergence with 7  
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Fig. 4. For case (a) of the first generalized inverse boundary value problem, (a) convergence rate, and comparing numerical and exact solutions of (b) 

r(y), and (c) g(x) for example 3. 
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Fig. 5. For a larger domain with case (a) of the first generalized inverse boundary value problem, (a) convergence rate, and comparing numerical and 

exact solutions of (b) r(y), and (c) g(x) for example 3. 

 
 

steps as shown in Fig. 6(a), where the convergence criterion is 
given by  = 10-3.  In Fig. 6(b), we compare the numerical 
recovery of r(y) with the exact one, whose maximum error is 
3.01  10-2, while the numerical recovery of g(x) with the exact 
one is shown in Fig. 6(c), whose maximum error is 9.05  10-2. 

V. THE RECOVERY OF  
TWO UNKNOWN BOUNDARY DATA 

We further consider a more difficult generalized inverse 
boundary value problem with two boundary data missing: 
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Fig. 6. For case (b) of the first generalized inverse boundary value problem, (a) convergence rate, and comparing numerical and exact solutions of (b) 

r(y), and (c) g(x) for example 4. 
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 
, 0 x a  , 0 y b   (25) 

 ( , 0) ( )u x f x , 0 x a  , (26) 

 (0, ) ( )u y y  , 0 y b  , (27) 

where f(x) and (y) are given functions.  Our second generalized 
inverse boundary value problem is that can we recover r(y) = 
u(a, y) and h(x) = u(x, b), and how many extra conditions are 
needed to recover r(y) = u(a, y) and h(x) = u(x, b).  If r(y) and 
h(x) can be recovered, then the boundary data are complete, and 
the Laplacian problem is solvable.  Replacing u(x, b) by h(x) in 
Theorem 2, it follows that 

 
Theorem 3 (Global relation for the second problem): For 
the second generalized inverse boundary value problem in Eqs. 
(25)-(27), the unknown functions r(y): = u(a, y) and h(x): = u(x, b) 
and g(x): = uy(x, b) satisfy the following global relation: 

0 0 0

0 0

( ) ( , ) ( ) ( , ) ( ) ( , )

( , 0) ( , 0) (0, ) (0, )

b a a

x y

a b

y x

r y v a y dy h x v x b dx g x v x b dx

u x v x dx u y v y dy

 

 

  

 
 (28) 

for any function v with v = 0 and v(0, y) = v(a, y) = v(x, 0) = 0.  
Here the data of u(x, 0) = f(x) and u(0, y) = (y) are prescribed. 

VI. THE NUMERICAL ALGORITHM FOR THE 
SECOND PROBLEM AND EXAMPLES 

To solve the second problem we also take vk(x, y) as that in 
Eq. (10).  Let 
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i i

i

r y a s y 
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  , (29) 
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2 1
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j
j j

j

h x b s x 



  , (30) 

 
2

3 1

1

( )
m

k
k k

k

g x c s x 



  . (31) 

Inserting them and Eq. (10) into Eq. (28) and letting k = 1, , 
m0, and also considering some compatibility conditions and some 
discrete measured data: 

 (0) ( , 0)r u a , (0) (0, )h u b , ( ) ( )r b h a , (32) 

 ( )j jr y r , 4/( 1)jy jb m  , 41, ,j m  , 

 ( )i ih x h , 5/( 1)ix ia m  , 51, ,i m  , (33) 

where m4 and m5 are small number, we can derive a linear sys- 
tem (13) to determine the expansion coefficients ai, bj, ck whose 
number is n = m1  m2 m3. 

1. Example 5 

We consider the same solution in Eq. (24), where a =1, b = 1, 
m1 = 6, m2 = 6, m3 = 3, m4 = m5 = 6, and m0 = 5.  Although under  
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Fig. 7. For the second generalized inverse boundary value problem, (a) convergence rate, and comparing numerical and exact solutions of (b) r(y), and 

(c) h(x) for example 5. 
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a large noise s = 0.2, the BIEM is convergence with 22 steps as 
shown in Fig. 7(a), where the convergence criterion is given 
by  = 10-3.  In Fig. 7(b), we compare the numerical recovery 

of r(y) with the exact one, whose maximum error is 3.14  10-1, 
while the numerical recovery of h(x) with the exact one is shown 
in Fig. 7(c), whose maximum error is 3.47  10-1.  The recovered  
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Fig. 9. For the second generalized inverse boundary value problem, (a) convergence rate, and comparing numerical and exact solutions of (b) r(y), and 

(c) h(x) for example 6. 

 
 

results are close to the exact ones even a large noise is added. 

2. Example 6 

We consider a more difficult second problem with 

 ( , ) cosh( )sin( ) cos( )sinh( )u x y x y x y     . (34) 

in a unit square.  We take m1 = m2 = m4 = m5 = 10, m3 = 3 and 
m0 = 3.  The BIEM is convergence with 71 steps as shown in 
Fig. 8(a), where the convergence criterion is given by  = 10-4 
and the noise is s = 0.05.  In Fig. 8(b), we compare the nume- 
rical recovery of r(y) with the exact one, whose maximum error 
is 3.68  10-1, while the numerical recovery of h(x) with the ex- 
act one is shown in Fig. 8(c), whose maximum error is 4.94  
10-1.  The recovered results are close to the exact ones even when 
a large noise is added. 

Finally, We take a larger domain with a = 1, b = 2.  The BIEM 
is convergent with 93 steps as shown in Fig. 9(a), where the con- 
vergence criterion is given by  = 10-3 and the noise is s = 0.01.  
In Fig. 9(b) we compare the numerical recovery of r(y) with the 
exact one, whose maximum error is 4.94  10-1, while the nu- 
merical recovery of h(x) with the exact one is shown in Fig. 9(c), 
whose maximum error is 8.4  10-1.The recovered results are close 
to the exact ones. 

VII. CONCLUSIONS 

For the generalized inverse boundary value problems of La- 
place equation in a rectangle, we proposed two new problems 

with three boundary functions and two boundary functions be- 
ing specified, and we recovered other boundary functions on the 
portions where the data are missing.  By using the technique of 
a boundary integral equation method together with a specially 
designed test function we have completed the boundary data by 
requiring some extra data.  The test function is chosen such that 
it is zero on three boundaries; there exists no Trefftz test func- 
tion which is zero on four boundaries.  This test function rendered 
a simple integral equation to complete the boundary data.  Then 
we can solve the Laplace equation under the given data and re- 
covered data to find the numerical solution in the interior nodal 
points.  Although the generalized inverse boundary value prob- 
lems are more difficult than the Cauchy problem, we can solve 
them quite accurately and highly efficiently under large noise up 
to 10% and 20%. 
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