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ABSTRACT 

Numerical simulations of the vortex-induced vibration (VIV) 
on a circular cylinder in an oscillatory flow were conducted using 
the direct-forcing immersed boundary (DFIB) method.  VIV of 
structures is a practical engineering problem.  Many engineers 
have devoted themselves to research on the prevention of VIV, 
which can cause severe damage to offshore construction equip- 
ment and structures.  Fluctuating hydrodynamic force induces 
vibration of structures because of the vortex around the struc- 
ture.  This vibration causes structural failure due to the lock-in 
phenomenon.  A phenomenon termed “springing” (a second- 
order wave effect caused by superposition of the incident waves 
and the reflected waves or other wave systems) was also observed 
in this study.  This phenomenon is more hazardous than the 
lock-in phenomenon because it causes a very high transverse 
frequency response that can result in serious structural damage.  
In springing, a vortex that is bounded near the cylinder appears; 
this vortex is termed a “bound vortex.”  A stationary cylinder in 
oscillatory flow was used to so that the experimental and nume- 
rical results of the dynamic and velocity components at three 
cross-sectional areas could be verified and validated with pub-
lished results.  The DFIB method was then applied to simulate 
a moving circular cylinder in the transverse direction in an os- 
cillatory flow with varying mass loading.  The results of the vary- 
ing mass ratio were discussed as well as the effects of the reduced 
velocity, and the corresponding lock-in region was determined.  
This proposed model can be used for predicting VIV of structures. 

 

I. INTRODUCTION 

Vortex-induced vibration (VIV) is a great concern in many 
engineering fields, such as marine, civil, wind, and aerospace 

engineering, and it is of particular relevance to renewable en- 
ergy projects, which have become increasingly common.  Engi- 
neers have been trying to prevent the VIV phenomenon in offshore 
equipment, which causes structural resonance and serious da- 
mage to equipment.  When fluid flows through a structure, the 
surrounding vortex shedding causes the original hydrodynamics 
to change over time, because the vortex is alternatively shed up 
and down.  This movement causes self-excited vibration of the 
structure.  When the hydrodynamic frequency and natural fre- 
quency of objects are similar, high amplitude is produced, re- 
sulting in the lock-in phenomenon. 

Recently, interest has grown in identifying nonlinear me- 
chanisms that induce springing or ringing in complex offshore 
structural systems.  The springing and ringing phenomena have 
been reported by Gurley and Kareem (1998).  Vibration caused 
by springing and ringing is more servere than the lock-in phe- 
nomena and can cause structural damage.  Springing is a high- 
frequency response in the vertical and bending modes of tension 
leg platforms (TLPs) and gravity-based structures that occurs 
because of the second-order wave effects at the sum frequencies.  
However, ringing is a rare event and was unaccounted for in 
standard response analysis codes until recent experimental and 
full-scale observations uncovered it.  Higher-order loading me- 
chanisms lead to the onset of ringing.  In recent years, consider- 
able interest has grown in determining nonlinear mechanisms 
that cause ringing in complex maritime structural systems.  The 
peak of transient frequency response has been observed in off- 
shore systems, specifically in TLPs.  The effect of ringing on the 
fatigue life of TLP tendons should be considered in the overall 
response assessment.  Because lock-in, springing, and ringing 
may occur due to the interaction of waves with structures, in- 
vestigating vibration in a structure in oscillatory flow, which is 
the primary motion in waves or tidal currents, is worthwhile.  
However, predicting structural vibration in oscillatory flow is 
challenging.  One of the difficulties is identifying the condition 
that induced the phenomena.  Numerous parameters must be ex- 
amined to identify thee condition.  Moreover, if a numerical ap- 
proach is used, then a scheme to estimate the vibration caused 
by those phenomena is required. 

Interaction between a cylinder and oscillatory flow has attracted 
considerable research interest.  Sumer and Fredsøe (1988) pre- 
sented the transverse vibrations on an elastically mounted rigid 
cylinder exposed to an oscillatory flow with the Keulegan-Carpenter 
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(KC) number varying from 5 to 100.  The reduced velocity *
RU  

varied in the range of 0-16 in most cases.  They considered 
different combinations of spring stiffness and cylinder mass 
before finally obtaining the responses of the cylinder based on 

the KC number and *
RU .  Kozakiewicz et al. (1992) studied the 

transverse vibration of a cylinder near the wall in an oscillatory 
flow at three different KC numbers (KC = 6, 20, and 65).  More- 
over, Kozakiewicz et al. (1996) studied the vortex flow around 
a freely vibrating circular cylinder in an oscillatory flow, speci- 
fically in the lock-in regions.  In their experiments, vortices in 
the flow were visualized using aluminum-powder technology.  
Variations in the vortex motion were discussed with respect to 
the vortex influence on the lift force. 

Dütsch et al. (1998) conducted experiments to study variation 
in the velocity of a moving cylinder in an oscillatory flow at low 
Reynolds numbers Re and low KC numbers.  They considered 
three cases with different combinations of Re and KC numbers 
Re = 100 and KC = 5, Re = 200 and KC = 10, and Re = 210 and 
KC = 6.  They found good agreement between the experimental 
results and corresponding numerical flow predictions.  Zhao et al. 
(2012) studied the movement of a cylinder in the cross-flow di- 
rection of an oscillatory flow.  The simulations were conducted 

at KC = 10 and 20.  The reduced velocity *
RU  varied from 1 to 

36, and the frequency response was found to contain only one 

harmonic when *
RU  was less than eight for both KC numbers.  

When *
RU  was greater than eight, the frequency response con- 

tained multiple harmonics.  Moreover, for different values of 
*
RU , the vibration frequency mode changed from one regular 

harmonic to another. 
Chern et al. (2013) proposed the direct-forcing immersed 

boundary (DFIB) method to study the interaction between an 
oscillatory flow and a single cylinder at KC = 2-10, and they 
used an established numerical model for further simulation of 
oscillatory flows around four cylinders set in a square arrange- 
ment at different parameter values.  The results revealed that a 
higher number of vortices occur at high KC numbers.  However, 
when the oscillatory flow direction was changed to a 45 angle 
of attack, the flow pattern was symmetric at KC = 5.  This re- 
sult is different from the result of the case in which the cylinders 
were in a uniform flow.  A comparison of Cf and Cl for the ho- 
rizontal and oblique oscillatory flows revealed that Cf was not 
affected by the flow direction, whereas Cl reduced at KC = 5.  
Moreover, in the oblique oscillatory flow, Cl on the second and the 
third cylinder was larger than that on the first and fourth cylinder. 

Zhao et al. (2013) numerically studied the two-degrees-of- 
freedom vortex-induced vibration of a circular cylinder in an 
oscillatory flow.  Simulations were conducted at KC = 10, 20, and 

40, and *
RU  varied from 1 to 30.  The focus of their study was 

to investigate the relationship between the vibration frequency, 
vortex shedding mode, hydrodynamic force, and response of 
the circular cylinder.  They found that the frequency mode of 
the vibration was not only based on the KC number but also on 

*
RU .  By analyzing the vortex shedding, they concluded that 

the vibration frequency normalized by the frequency of the 
oscillatory flow equaled the number of the vortex pairs that 
were shed from the cylinder. 

Fu et al. (2014) researched the characteristics of vortex vibra- 
tions in an oscillatory flow.  The results revealed that the VIV 
in the oscillatory flow was markedly different from that in the 
uniform flow.  Features such as intermittent VIV, hysteresis, 
amplitude modulation, and mode conversion were observed.  VIV 
development processes caused by various phenomena in the os- 
cillatory flow, including build-up, lock-in, and dying-out phe- 
nomena, were proposed and analyzed. 

Chern et al. (2016) simulated the hydroelastic behavior of a 
rigid horizontal circular cylinder in regular progressive waves, 
and the parameters were fixed at the following values: Re = 
110, KC = 10, and reduced velocity varied in the range of 4.5 < 

*
RU  < 5.3.  They successfully explored three transverse vibration 

regimes: lower beating (4 < *
RU  < 4.5); lock-in (4.7 < *

RU  < 4.8); 

and upper beating (5 < *
RU  < 10) modes.  Recent years have seen 

growth in the use of the immersed boundary method for simu- 
lating the complex fluid–structure interaction (FSI) problem.  
To overcome this FSI problem, the DFIB method that mainly 
involves the interaction between the virtual forces of a fluid 
and solud in the Navier-Stokes equations to express fluid-solid 
coupling was used.  The major advantage of the DFIB method is 
that it has less computational cost than the conventional body- 
fitted method when simulating moving boundaries.  Sotiropoulos 
and Yang (2014) noted that the immersed boundary method is 
difficult to apply to rigid body problems because of the numerical 
instabilities associated with stiff systems that are inherent to rigid 
bodies.  To help resolve problems in complex flow simulations, 
the hybrid Cartesian-immersed boundary method was proposed 
by Mohd-Yusof (1996), who noted that the immersed boundary 
method is based on curvilinear background grids.  This method 
has achieved considerable academic attention, for example in 
the studies by Chern et al. (2013) and Shen et al. (2009). 

The present study sought to use the DFIB method to simulate 
the vibration on a cylinder in an oscillatory flow generated by 

a vortex motion.  To observe the effect of different *
RU  values in 

the vortex motion for different values of mass ratio m*, the flow 
variations were examined in this study.  This paper is arranged 
as follows.  In section II, the governing equations and numerical 
procedures are explained, and the proposed numerical model 
is validated.  In section III, the influence of reduced velocity and 
mass ratio on the cylinder, the vortex patterns, and transverse dis- 
placement are discussed.  Moreover, the corresponding frequencies 
at which the springing and lock-in phenomena occur are iden- 
tified.  Finally, the conclusions are presented in section IV. 

II. MATHEMATICAL FORMULAS  
AND NUMERICAL MODEL 

The DFIB method and the finite volume method were utilized  
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Fig. 1.  Schematic of a moving circular cylinder in an oscillatory flow. 

 

 
to establish the proposed numerical model for simulating the 
interaction between a circular cylinder and an oscillatory flow.  
The basic principle of the DFIB method is to add a virtual force 
in the incompressible Navier-Stokes equation, and then, the ef- 
fect of solid is considered in the fluid domain.  This method re- 
duces the computational time for mesh generation for a complex 
solid geometry.  The governing equations for the interaction of 
fluids and solids and the details of the proposed numerical me- 
thod are explained as follows. 

1. Governing Equations 

Fig. 1 displays a schematic of a vibrating circular cylinder 
in an oscillatory flow.  A virtual spring is considered to restrict 
the movement of the cylinder in the transverse direction.  An in- 
compressible viscous fluid is considered in this problem.  The 
dimensionless governing equations for mass and momentum con- 
servation are described as follows: 

 0, in ,  u  (1) 

and 

 21
( ) *, in ,

*
p

t Re


       


u

uu u f  (2) 

where u is the dimensionless velocity that is nondimensionalized 
by the inlet free stream velocity U; p is the dimensionless 
pressure; t* is the dimensionless time defined by tU/D, where 
D represents the diameter of the cylinder; Re is the Reynolds 
number defined by DU/v; v is the kinematic viscosity of the 
fluid; and f* is the dimensionless virtual force defined as fD/ 

2U .  Eqs. (1) and (2) are discretized using the finite volume 

technique.  The third-order Adam-Bashforth method is used to 
discretize the temporal derivative in Eq. (2).  The diffusion and 
convection terms in Eq. (2) are discretized using the second- 
order central difference method and the QUICK scheme proposed 
by Leonard (1979), respectively.  The projection method pro- 
posed by Chorin (1967) is adopted for solving the pressure field.  
The proposed method has been used for a number of benchmark 

tests, such as those published in the studies by Chern et al. (2014) 
and Chern et al. (2015). 

2. Equation of the Cylinder Motion 

The cylinder moves because the hydrodynamic force caused 
by vortex shedding is exerted on the cylinder.  Conversely, the 
movement of the cylinder is restricted by the virtual spring.  This 
vibration can be considered a type of forced vibration, which 
can be described using Newton’s second law of motion.  Given 
that the cylinder is rigid, the dimensionless governing equation 
of the cylinder movement is described as follows: 

 

2

* *

2 ( *)4 2
,

*
L

R R

C t
Y Y Y

mU U

 


 
   

 
   (3) 

where Y , Y , and Y represent the normalized transverse acce- 
leration, velocity, and displacement of the center of the rigid cir- 
cular cylinder, respectively.  The dimensionless displacement 

Y is defined as yd

D
, where dy is the displacement of the cylinder 

center in the y direction; *
RU  is the reduced velocity of the system 

defined as 
n

U

f D
 , where fn is the natural frequency of the solid 

body; and  is the structural damping ratio defined as 
2 s

c

m k
, 

where c is the structural damping, ms is the solid mass per unit 
length, and k is the structural stiffness.  The term m* is the 

mass ratio of the solid to liquid mass and is defined as 
2

4 s

f

m

D
, 

whereas CL(t*) is the instantaneous lift coefficient.  The instant 
CL is calculated by the DFIB method at each time step and is 
considered as the external force in Eq. (3).  The fourth order Runge- 
Kutta algorithm is then used to solve Eq. (3).  Consequently, the 
displacement of the cylinder center is predicted. 

3. DFIB Method 

To calculate the interaction between a fluid and the vibrating 
cylinder, the DFIB method proposed by Mohd-Yusof (1996) was 
adopted in the present study.  Due to the movement of the cylin- 
der and its geometry, the mesh used was a nonuniform Cartesian 
grid.  As more grids cluster near the cylinder, the calculation ac- 
curacy of the cylinder movement increases.  This mesh does not 
have to be generated at each time step; thus, it is more efficient 
than the body-fitted mesh.  Details of the proposed DFIB me- 
thod are described as follows. 

1) Calculation of the Virtual Force 

The dimensionless force term f* in Eq. (2) is defined by the 
difference between the intermediated velocity uf and the solid 
velocity us at each cell, that is, 
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st




 


fu u
f  (4) 

where us is the velocity of the solid cylinder center and  is de- 
fined as the volume fraction of the solid in a computational cell.  
The function  is defined to be 1 and 0 for the solid and fluid cells, 
respectively.  For a circular cylinder, the indicator function  is 
determined using the following: 

 
2 2 2

2 2 2

1, ( ( )) ( ( ))
( , , ) ,

0, ( ( )) ( ( ))

c c

c c

x x t y y t R
x y t

x x t y y t R


     
   

 (5) 

where R is the radius of the cylinder; (x, y) are the coordinates 
of the center of the computational cell; and (xc, yc) are the co- 
ordinates of the center of the cylinder.  For a cell with a solid- 
fluid interface,  varies between 0 and 1 because it is not a fully 
solid cell.  The so-called subgrid method that allocates more cells 
in the boundary cell is used.  Once a cell identified as a boundary 
cell, more cells are used to refine the boundary cell.  Another 
volume value of the solid function  is determined using Eq. (5) 
for each cell.  Subsequently,  at this boundary cell is determined 
using Eq. (6), 

 ,
, ,k l

i j N N


 


  (6) 

where N  N cells are used to fulfill the boundary cell.  If N is 

sufficiently large, the solid-fluid interface can be represented by 
a smooth curve, and  will be more accurate.  Fig. 2(a) shows 
that  is 0 and 1 in the fluid and solid cells, respectively.  If the 
distance between the center of the cylinder and the center of the 
subgrid is less than the radius of the cylinder, will be 1.  Con- 
versely,  is 0 when the distance is greater than the radius.  Fig. 
2(c) presents the distribution of  by using the subgrid technique.  
The distribution of  with the improvement of the subgrid ap- 
proach is smoother compared with the distribution without the 
improvement, as shown in Fig. 2(b). 

2) Numerical Methods for Solving the Navier-Stokes Equations 

The momentum equation, Eq. (2), uses a three-step time-split 
scheme to advance the flow field (Chorin, 1967).  First, the in- 
termediate velocity u′ is calculated by solving the convection- 
diffusion equation without a pressure gradient and virtual force 
term at the beginning of each time step. 

 ,
*

n
nS

t

 



u u

 (7) 

where Sn includes the convective and diffusive terms in Eq. (2). 
In the second step, u  is marched to the second intermediate 

velocity u  by incorporating the pressure gradient term 

 1.
*

np
t

 
 


u u

 (8) 

By taking divergence for both sides of Eq. (8), we obtain the 
following: 

 2 1.
*

np
t

    
 


u u

 (9) 

However, the second intermediate velocity u  should satisfy 
the mass conservation presented in Eq. (1).  Then, Eq. (9) pro- 
vides Poisson’s equation of pressure. 

 2 1 1
.

*
np

t
    


u  (10) 

After solving Eq. (10), the second intermediate velocity u  
can be determined using Eq. (8). 

Finally, the virtual force term that represents the effect of a 
solid body on fluid should be included in the third step so that 
the final velocity un1 can be obtained by adding the virtual 
force term as follows: 

 
1

1* .
*

n
n

t







u u
f  (11) 

Here, f*n1 refers to a force to hold or drive a solid body when 
it is at rest or moves, and it is calculated by the rate of momen- 
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Fig. 3.  Flowchart of the numerical procedures. 

 
 

tum change of a solid body and is proportional to the difference 
between the solid velocity at the n  1th time step and the local 
fluid velocity at the second step.  To satisfy the no-slip boun- 
dary conditions at the fluid-solid interface, it is crucial to en- 
sure that the fluid velocity un1 equals the solid speed us

n1.  Thus, 
we obtain the following equation: 

 
11

1* .
* *

nn
n s

t t
 


  
 

 
u uu u

f  (12) 

As a vibrating circular cylinder is the object considered in 
this study, the solid velocity us in the transverse direction can 
be determined using Eq. (3).  The external hydrodynamic force 
F is determined by the integral of the virtual force over the solid 
body (Chern et al., 2015).  That is, 

 *d ,V


 F f  (13) 

where F is the resultant total hydrodynamic force.  In the pro- 
posed model, Simpson’s 1/3 rule is used to calculate the integral 
of the virtual force over the cylinder.  The transverse force co- 
efficient CL can be calculated using the following equation 

 2 .L yC F   (14) 

CL is then employed in Eq. (3) to determine us in the next time 
step.  Details of the algorithm of the fluid-structure interaction 
at each time step are displayed in Fig. 3. 

4. Oscillatory Flow Boundary Condition 

As an oscillatory flow is considered in this study, the instan- 
taneous velocity boundary conditions are applied to the four boun- 

20
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5

0 5 10 15 20 25 30 35 40  
Fig. 4. Grid configuration of a freely vibrating circular cylinder for trans- 

verse vibrations. 

 
 

daries of the computational domain.  The dimensionless velocity 
components of the oscillatory flow vary based on the following 
equation: 

 
2 *

cos 0,
*

t
u and v

T

    
 

 (15) 

where T is expressed as the period of the oscillatory flow. 

5. Verification of the DFIB Model 

1) Computational Domain and Computation Time 

The grid generation and computational mesh around the trans- 
verse vibrating cylinder are presented in Fig. 4.  The compu-
tational domain of 40D  22D is discretized into 239  169 
nonuniform Cartesian grids.  The purpose of using a nonuniform 
grid configuration is to increase the accuracy of the present me- 
thod and to accurately capture the VIV phenomenon.  The time 
increment t*is set at 10-3 to satisfy the Courant-Friedrichs- 
Lewy (CFL) number of 0.04.  Here, the CFL number defined as 

u t v t

x y

  
   

 is always less than 0.1.  Moreover, the convergence 

criterion D is 10-2 for the maximum mass residual considered in this 
study.  The longest simulation requires approximately 25 days, 
which corresponds to the dimensionless time t* of 1200.  A PC 
cluster consisting of an Intel Xeon CPU E31275 at 3.40 GHz 
was used to conduct the numerical simulations. 

2) Grid Independence and Validation of In-House Numerical Code 

Several grid configurations were utilized to simulate the trans- 
verse oscillations of a circular cylinder to ensure that the nume- 
rical results were grid independent.  In the grid independent 
study, the flow and structural parameters were selected based 
on a study by Leontini et al. (2006) with the following para- 

meters: Re = 200, m* = 10,  = 0.01, and * 3.5RU  .  Four grids) 

151  131, 185  165, 239  169, and 249  185 were considered  
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Fig. 6.  Time histories of CL with a stationary circular cylinder. 

 
 

in this study.  The corresponding smallest grid spacing of these 
meshes were 0.03125D, 0.03D, 0.026D, and 0.025D, respectively, 
for the grids clustered in the vicinity of the cylinder.  Therefore, 
to increase the accuracy of the numerical results and reduce the 
computation time, x and y value of 0.026 were chosen to ob- 
tain more accurate and consistent results, as presented in Fig. 5.  
We also selected this grid for the other cases subsequently dis- 
cussed.  The cylinder was located in the middle of the calcula-
tion domain.  To verify the proposed numerical model, for the flow 
condition, KC and Re were set to 5 and 100, respectively, to 
simulate the oscillatory flow through a single fixed cylinder.  
Numerical predictions of the hydrodynamic coefficients and 
horizontal velocity components were plotted in three different  
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Fig. 7. Comparison of the velocity components at three different cross- 

sections at time t equal to n  T  T/2. 

 
 

cross-sections.  Fig. 6 presents the time history of the force co- 
efficient at KC = 5 As shown, the numerical results obtained 
using a body-fitted coordinate system by Shen et al. (2009) agree 
with the results of the present study.  The oscillatory flow was 
also verified using a single vibrating cylinder at the following 
parameter values: KC = 10 and Re = 110.  Fig. 7 illustrates the 
predicted horizontal velocity profiles at three sections with x = 
-0.6, 0, and 0.6 at the phase time t of n  T  T/2.  The expe- 
rimental measurements and numerical results reported by Shen 
et al. (2009) agree with the present numerical predictions.  This 
reveals the capability of the used DFIB scheme. 

The DFIB model was also compared with the work of Sumer 
and Fredsøe (1988) for oscillatory flow at KC = 10 and Re = 

110.  The variation in the dimensionless natural frequency 
n

f

f
 

with respect to the reduced velocity *
RU  is presented in Fig. 8.  

The results of the present study are in good agreement with  
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those of Sumer and Fredsøe.  Fig. 9(b) presents the variations in 

the response amplitude and frequency with *
RU  for mass ratio 

m* = 2.  The experimental and numerical results of the present 
study agree with those of the study by Zhao et al. (2017).  How- 
ever, a discrepancy is found in Fig. 9(a).  The discrepancy is be- 
cause Sumer and Fredsøe (1988) considered a stationary cylinder 
in turbulent flow (Re = 20,000), whereas the present study is based 
on the transverse motion of a cylinder in laminar flow at Re = 
500.  From the aforementioned results, the proposed model can 
simulate the interaction between an oscillatory flow and a single 
cylinder. 

III. RESULTS AND DISCUSSIONS 

It is known that VIV on an elastically mounted circular cy- 
linder is effected by a group of parameters, including mass ratio 

(m*), reduced velocity ( *
RU ), structural damping ratio (), and 

Reynolds number (Re).  The effect of varying the reduced ve- 

locity *
RU  was investigated in this study.  Cylinder vibration is 

a direct consequence of exerting hydrodynamic force on a solid 
body in a fluid flow.  Therefore, an accurate prediction of the flow 
field and hydrodynamic forces applied to solids is the most crucial 
factor in VIV simulation.  To predict the response of a vibrating 
cylinder, a circular cylinder that vibrates only in the transverse 
direction of oscillatory flow was used as an example.  The results 
and various effects of the parameters on the interaction between 
the oscillatory flow and the circular cylinder in the transverse di- 
rection are discussed in the following text. 

1. Vibration and Vortex Pattern 

Figs. 10 and 11 present the time histories and the vortex pat- 
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terns for a mass ratio m* of 1 and 1.5, respectively, in the lower 
(Figs. 10(a) and 11(a)) and higher (Figs. 10(c) and 11(c)) beat- 
ing and lock-in regions (Figs. 10(b) and 11(b)).  When the reduced 
velocity *

RU  was located near the lock-in region, the cylinder 
response contained small amplitudes of vibration frequency, and 
beating patterns (high/low) can be found in this region.  Although 
the vibration of frequency harmonics was regular and repeating 
for * 2.9RU  , a clear view of the high beating phenomenon 
was observed for * 3.4RU  .  The same scenario can be seen in 
Fig. 11(c) for the following parameter values: * 2.5RU   and 
m* = 1.5.  However, in Fig. 11(a) for * 1.5RU   and m* = 1.5, a 
low beating phenomenon was observed with a vibration ampli-
tude of 0.1.  Therefore, it is clear from the Figs. 10 and 11 that 
the high beating phenomenon only occurred after the lock-in 
region.  Moreover, when the reduced velocity was within the 
lock-in region, the cylinder experienced a large amplitude of vi- 
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bration.  Thus, the lock-in region was based on the reduced ve- 
locity *

RU .  From the vortex flow pattern presented in Fig. 10(a), 
the cycle had a clockwise motion of P vortices that shed down- 
ward in a weak and diagonal manner from the left side of the 
cylinder, thus forcing the cylinder slightly upward (details of 
vortices patterns mentioned in Williamson and Roshko, 1988).  
Fig. 10(c) presents an elongated anticlockwise vortex shedding 
downward in a weak and diagonal manner from the right side of 
the cylinder with the P vortex mode, thus forcing the cylinder 
slightly upward.  A single (S) vertex mode was found to shed 
from the left side of the cylinder and moved to the top of the 
cylinder.  From Fig. 11(a), an anticlockwise vortex motion that 
sheds downward in a weak and diagonal manner from the right 
side of the cylinder with the 2P vortex mode was observed, thus 
forcing the cylinder slightly downward.  Fig. 11(c) displays an 
anticlockwise vortex motion.  Here, the P mode vortices shed  
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downward in a weak and diagonal manner from the right side 
of the cylinder, thus forcing the cylinder slightly upward. 

2. Lock-In Phenomenon 

The lock-in phenomenon, or synchronization, means the fre- 
quency of structural vibration is similar to the natural frequency.  
The amplitude of the transverse displacement of the vibrating 

cylinder reaches up to 0.4 for both reduced velocity *
RU  values 

of 3.1 and 2.2 in Figs. 10(b) and 11(b), respectively.  The lock- 
in phenomenon occurs for these values of reduced velocity be- 
cause the vibration profile here is regular and periodic.  The vortex 
pattern visualization displays the occurrence of the 2P vortex 
shedding mode for each cycle in the lock-in region.  The 2P mode 
vortices moved diagonally downwards in the right side of the cy- 

linder for * 3.1RU   and m* = 1 at t*/T = 500, as can be seen in 

Fig. 10(b).  The anticlockwise vortices moved downwards to the 
bottom of the cylinder, thus forcing the cylinder slightly upward.  

The vortex pattern in the lock-in region for * 2.2RU   and m* = 

1.5 at t*/T of 500 in Fig. 11(b) also appears as the 2P vortex 
mode and shed diagonally both upward and downward in the 
cylinder.  The pair of vortices moved upward and downward in 
an anticlockwise direction in the cylinder and shed diagonally 
from the left and right side of the cylinder, respectively, thus 
forcing the cylinder slightly downward.  In this study, this type 
of 45 diagonal motion of the vortex shedding could only be 
seen for the lock-in regions. 

3. Frequency Response 

The mass ratio m* varied from 1 to 5.  The lock-in phenomenon  
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Fig. 13.  Frequency response in the lock-in region with varying mass ratio m*. 

 
 

was successfully captured only for m* = 1, 1.5, 1.8, and 2.0, as 
presented in Fig. 12.  However, the springing phenomenon 
was recorded appropriately for a higher value of reduced ve-
locity for each value m* that varied from 1 to 5.  From Fig. 12, 
it can be seen that the fundamental frequency response was 
maintained at 2 for all m* values, because the reduced velocity 

*
RU  was lower than 5.  However, when the reduced velocity was 

greater than 5, the vibration of the cylinder was not influenced 
by vortex shedding, and the cylindrical vibration was the same 
as the oscillatory flow.  The results of Sumer and Fredsøe (1988) 
and Zhao et al. (2017) concerning the variation in the frequency 
response with a reduced velocity at m* = 1.8 and 2.0 were used 
to validate the results of the present study, demonstrating reason- 
able agreement. 

In addition, as the mass ratio m* increased from 1 to 2, the 
region of the lock-in became wider (Fig. 13). 

4. Springing Phenomenon 

For the VIV on a circular cylinder in a uniform flow, the lock- 
in region always has the maximum amplitude but different os- 

cillatory flows.  From the time history when the *
RU  value was 

8 at an m* = 1, a sudden appearance of a rapid rise-and-fall 
vibration whose maximum amplitude value was double or triple 
the lock-in amplitude can be observed, as displayed in Fig. 14(a).  
This type of occasionally occurring transient vibration is known 

as “springing.” The same phenomenon can be observed for *
RU  = 

7 at m = 1.5, as presented in Fig. 14(b).  Gurley and Kareem 
(1998) reported that springing is due to the second-order wave 
effect at sum frequencies.  When springing occurs, the vortices 
that appear near the cylinder are bounded around the cylinder.  
This type of vortex pattern is termed “bound vortex” motion.  
In the present study, the vortices moved in a clockwise manner 
around the cylinder, and the cylinder moved downwards, as in 
Fig. 14(a).  The vortices bulged around the cylinder and affected 
the structure through destruction.  The bound vortex formation  
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can also be seen for * 7RU   at m* = 1.5, as in Fig. 14(b).  Here, 
the bound vortices moved around the cylinder in an anticlock- 
wise motion as the cylinder moved upward. 

5. System Characteristic Diagram 

Fig. 15 presents the map of various vortex flow regimes for 
the transverse vibrating cylinder in an oscillatory flow.  These 
flow regimes are visualized for various mass ratios m* and re- 

duced velocities *
RU .  The vortex shedding mode in this figure 

seems to comprise P, S, P  S, and 2P vortex modes.  These 
modes of vortex patterns were clearly defined and presented 
by Williamson and Roshko (1988).  Moreover, the regions marked 
with S, 2S, P, 2P, and P  Sreferred to as the “single vortex,” 
“two single vortices,” “single pair,” “double pair,” and “vortex 
pair and single vortex,” respectivelyare shed in each cycle.  In 
this study, all vortex modes found within the lock-in region for 
different mass ratios were 2P.  The S vortex mode was found 

for a reduced velocity * 5RU  , 6 and 7 at a mass ratio m* = 1.5.  

The different vortex mode regions are separated by the lines 
displayed in Fig. 15 because all the results were successfully 

obtained for each *
RU  value in the range of 1-10.  For a higher 

value of reduced velocity, the vortex modes were found to be 
complex and staggered, known as “bound” vortices that were 
explained and discussed in an earlier section.  A springing phe- 
nomenon was observed in this study.  This phenomenon may 
be one of the reasons for the formation of bound vortices.  The 
occurrence of springing and bound vortices and their effect on 
the structure was previously mentioned. 
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IV. CONCLUSIONS 

DFIB modeling of a vibrating cylinder moving in a transverse 
direction in an oscillatory flow was conducted.  The reduced ve- 

locity *
RU  and mass ratio m* were methodically varied, and their 

influence on the flow characteristics and cylinder response were 
investigated.  The reduced velocity and mass ratio are crucial 
factors in the cylinder response of complex VIV problems.  When 
the reduced velocity was located close to the lock-in region, the 
cylinder response exhibited a small amplitude vibration, and the 
beating pattern could be found in this region.  Moreover, when 
the reduced velocity was within the lock-in region, the cylinder 
exhibited a large amplitude oscillation and high hydrodynamic 
force.  The lock-in range of the 2P vortex shedding mode was 
almost identical.  A crucial phenomenon known as “springing” 
was also noted.  This phenomenon is more severe than the lock- 
in phenomenon because it appears suddenly and leads to struc- 
tural damage.  A vortex pattern of sticking and bounding was 
found around the cylinder and termed the “bound vortex.” The 
general trend of the lock-in, springing, and vortex shedding modes 
and their conditions were predicted appropriately. 

V. NOMENCLATURE 

English Symbols 

A: amplitude of vibration, (m) 

A*: dimensionless amplitude, 
A

D
 

CL: transverse force coefficient, -2Fy 
c: structural damping (N  s  m-1) 
dy: displacement of cylinder center in y-direction 
D: dimensionless diameter of cylinder  
F: total dimensionless virtual force  
f: response frequency of oscillating cylinder 
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fn: solid body natural frequency, 
1

2 s

k

m
 

fw: frequency of oscillatory flow 

f*: dimensionless virtual force per unit mass, 
2

fD

U

 

k: structural stiffness (N  m-1) 

KC: Keulegan-Carpenter number, 
*U T

D
  

m*: dimensionless mass ratio, 
2

4 s

f

m

D
 

ms: structural mass of solid, (kg) 
N: number of sub-grid cells 
p: dimensionless pressure 
R: dimensionless radius of cylinder  

Re: Reynolds number, 
U D

v
  

T: period of oscillatory flow, (s) 

T*: dimensionless period of oscillatory flow, 
TU

D
  

t: time, (s) 

t*: dimensionless time, 
tU

D
  

u(u, v): dimensionless velocity of fluid  
u : dimensionless first intermediate velocity  
u : dimensionless second intermediate velocity 

U: free stream velocity, (m  s-1) 

*
RU : dimensionless reduced velocity, 

n

U

f D
  

x, y: dimensionless Cartesian coordinates 

Y: dimensionless displacement, ya

D
 

Greek Symbols 

: the volume of solid function  
v: kinematic viscosity of fluid, (m2  s-1) 
ξ: refinement of sub-grids 

: dimensionless damping ratio of structure, 
2 s

c

m k
 

: density, (kg  m-3) 
: domain 

Subscripts 

f: fluid 
s: solid 
i, j, k, l: numerical cell indices 

Superscripts 

n: time step level 
*: dimensionless parameter 
′: first intermediate time step level 
′′: second intermediate time step level 
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