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ABSTRACT 

In the study, we develop a fast forward-backward estimation 
(FFBE) method for multiple input multiple output (MIMO) 
space time block code (STBC) orthogonal frequency division 
multiplexing (OFDM) systems.  We examined the matrix struc- 
ture of the forward-backward (FB) correlation matrix and ob- 
served this matrix possessing permutation invariant (PI) property.  
We also investigated the eigen-property of a matrix with PI pro- 
perty and proved its eigenvectors possessing symmetric property, 
which can be calculated from two half dimensionality submatrices.  
Based on these analyses, we propose a fast eigen-decomposition 
algorithm to reduce the computations required in the eigen- 
decomposition of FB correlation matrix.  Then, the symmetric 
property of eigenvectors of the forward-backward correlation 
matrix is applied to develop the FFBE method to reduce the 
computation complexity in channel estimation.  FFBE achieves 
the same performance as the existing forward-backward averag- 
ing (FBA) estimation method (Yu and Lin, 2009) and requires 
one-fourth computation complexity of FBA.  Computer simula- 
tions demonstrate the effectiveness and accuracy of the proposed 
FFBE in channel estimation. 

I. INTRODUCTION 

Recently, wireless communication techniques have been ra- 
pidly developed.  For example, Wi-Fi has become an everyday 
tool for internet access since its reliability and cost effectiveness.  
As the demand of mobile, broadband and multimedia services 
increases, it is essential to provide a communication system 
with higher capacity and faster transmission data rate to satisfy 
the user’s requirements. 

Multiple input multiple output (MIMO) wireless systems 
have been deployed to increase the capacity and reliability of 
wireless communication systems throughout the world over two 
decades (Paulraj et al., 2004; Lu et al., 2014; Swindlehurst et al., 
2014).  Moreover, space-time coding (STC) (Alamouti,1998) 
techniques and orthogonal frequency division multiplexing 
(OFDM) (Nee and Prasad, 2000) are considered as the major 
techniques in wireless communications.  STC techniques, such 
as space-time block coding (STBC) (Tarokh et al., 1999; Wang 
et al., 2009) as well as space-time trellis coding (STTC) (Tarokh 
et al., 1998; Hong et al., 2007) exploit the spatial transmitting 
diversity and improve the reliability of data transmission in wire- 
less communications.  The combination of MIMO system with 
STC creates the space-time signal processing which provides 
the benefits of diversity and coding gains over single-antenna sys- 
tems (Naguib et al., 2000; Gesbert et al., 2003).  OFDM are 
considered to be a reliable choice for high rate transmissions 
and are extensively adopted in various communication standards 
such as digital video broadcasting (DVB) (Dash et al., 2013), 
Wi-Fi technologies (IEEE802.11a/g/n/ac) (Doufexi et al., 2002; 
IEEE Std 802.11, 2016).  To avoid inter block interference (IBI) 
due to the multipath fading channel, the cyclic prefix OFDM 
(CP-OFDM) (Akansu et al., 1998; Ali et al., 2004) inserts a CP 
guard interval at the beginning of each OFDM symbol at the 
transmitter.  The available data rate for CP-OFDM would be re- 
duced by the presence of transmission nulls.  Then, zero-padding 
OFDM (ZP-OFDM), a solution to overcome the degradation 
of CP-OFDM, has been proposed by appending zeros to each 
OFDM symbol (Muquet et al., 2001).  The ZP-OFDM includes 
the advantages of the CP-OFDM but also guarantees symbol 
recovery regardless of the channel zero locations.  STC-OFDM 
systems (Lu et al., 2000; Agrawal et al., 1998) combine both 
coding and modulation techniques to improve the performance 
of high data-rate wireless communication over wideband chan- 
nels.  STC-OFDM systems efficiently exploiting both the spatial 
diversity and the frequency-selective-fading diversity acquire 
lots of attentions.  An expectation-maximization (EM) based 
maximum-likelihood (ML) receiver (Lu et al., 2002) has been 
designed for STBC-OFDM systems in unknown wireless dis- 
persive fading channels.  Some studies (Zhou et al., 2002; Gong 
et al., 2003) provide channel estimation of STC-OFDM systems.  
A low-rank Wiener filter-based channel estimator with a signi- 
ficant complexity reduction is proposed in (Gong et al., 2003) 
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by using the space-time block code (STBC) training pattern.  A 
subspace-based semi-blind channel estimator is developed for 
the single-user STC-OFDM system (Zhou et al., 2002), which 
guarantees the multichannel identification ability subject to one 
or two scalar ambiguities resolved by known pilots.  To provide 
more reliable communications at high speeds, MIMO in com- 
bination with OFDM (Sklavos et al., 2002; Zeng et al., 2004; 
Bolcskei, 2006; Ming and Hanzo, 2007) become the dominant 
technique for 4G and 5G broadband wireless communications.  
Combining with the STC, a MIMO STC ZP-OFDM system 
(Zeng et al., 2006) was developed to improve the system per- 
formance in the multiuser environment.  A subspace-based blind 
method has been proposed for estimating the channel impulse 
responses of an MIMO STC-OFDM system.  The subspace-based 
method utilizing orthogonal property between the noise subspace 
and channel impulse response, possesses high efficiency in chan- 
nel estimation by utilizing only a small number of pilots.  Then, 
a semi-blind subspace channel estimation for complex MIMO 
STC ZP-OFDM system was developed in (Yu and Lin, 2009) 
to relieve the restriction in (Zeng et al., 2006), which requires the 
input symbols to be real or complex with symmetry.  A forward- 
backward averaging (FBA) technique was also proposed in (Yu 
and Lin, 2009) to improve the channel estimation accuracy by 
using both the forward and backward received data.  However, 
the subspace-based estimation methods (Zeng et al., 2006; Yu and 
Lin, 2009) suffer the computation burden required in subspace 
estimation. 

In the study, we develop a fast forward-backward estimation 
(FFBE) method for MIMO STBC ZP-OFDM systems.  We ex- 
amined the structure of correlation matrix formed by the forward 
and backward received data, and found the symmetric property 
of the associated eigenvectors.  FFBE calculates the noise sub- 
space corresponding to the forward-backward correlation matrix 
by performing eigen-decomposition of two half-dimensionality 
matrices which obtained from the combination of received data.  
In addition, we analyze the computation complexity of the FFBE 
method in order to understand its speedup performance as com- 
pared with FBA and forward-only estimation methods.  Simula- 
tions show consistent results with the computational analysis. 

This paper is organized as follows.  The signal model and the 
subspace-based channel estimation method for MIMO STBC 
ZP-OFDM systems are illustrated in Section II.  In Section III, 
the eigen-properties of the forward-backward correlation are ana- 
lyzed.  The FFBE method is presented In Section IV.  Section V 
displays the simulation results under various conditions.  Finally, 
the conclusions are given in Section VI. 

II. NFIGURATION OF SUBSPACE-BASED 
CHANNEL ESTIMATIONS 

Consider the K-user MIMO OFDM system shown in Fig. 1, 
which is equipped with two transmitting antennas using Alamouti’s 
STBC scheme at the transmitter and J receiving antennas at the 
receiver.  Assume that all the users are perfectly synchronized in 

the uplink transmissions.  Let ( ) ( ) ( )(0) ( 1)
Tk k k
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Fig. 1.  Multiuser MIMO STBC-based ZP-OFDM system. 

 
 

be the block symbol of user k transmitted at time i, where N 

denotes the discrete Fourier transform (DFT) size.  ( )k
i u  

( ) ( )(0) ( 1)
Tk k

i iu u N    denotes the inverse discrete Fourier 

transform (IDFT) of ( )k
is .  For each user, two consecutive 

block symbols ( )
2
k
is  and ( )

2 1
k
is  are transmitted across the trans- 

mitting antennas according to the following coding scheme: 
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where ( )k
is  and ( )k

is  denote the transmitted blocks through  

the (2k  1)th and (2k)th transmitting antennas, respectively.  
Let ( , ) ( ),j kh l  l = 0, , Lj,k, be the channel impulse response 
(CIR) between the kth transmitting antenna and the jth receiving 
antenna, where Lj,k is the channel order and Lj,k  L, k = 1, , 
2K, j = 1, , J.  Before transmitting, the STBC blocks are 
modulated by the ZP-OFDM to avoid inter block interference 
(IBI).  In ZP-OFDM systems, the ith block symbol is trans-
formed by the IDFT, and then L ( N) zeros are padded at the 

tail of the transformed block ( )k
iu  and ( )k

iu .  Let ( )i n x  

(1) ( )( ), , ( )
TJ

i ix n x n   , n = 0, 1, , M  1, be the nth sample 

vector of the ith OFDM block symbol for all receiving an-

tennas, where NLM  .  When the input symbols ( )k
is  are 

real, the combined receiving signals of MIMO STBC-OFDM 
systems corresponding to 2ith and (2i+1)th transmitted OFDM 
blocks are given by  
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In (2), 1[ (0), (1), , ( 1)]
i i i

T T T T JM
i M C   x x x x  is the re- 

ceiving vector at time i ; [ (0), (1), , ( 1)]T T T T
i i i i N  u u u u  

1KNC   denotes the ith transformed IDFT block symbol, where 
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(1) (2) ( ) 1( ) [ ( ), ( ), , ( )]K T K
i i i in u n u n u n C  u  .  i is the addi-

tive white Gaussian noise (AWGN), [ (0), (1) ,T T
i i iη η η   

1( 1)]T T JM
i M C  η , where 1( ) J

i n C η .  JM KN
j C H , j = 

1, 2, is a CIR block Toeplitz matrix and given by 
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where hj(l), j = 1, 2, is a J  K matrix composed of the CIR, 
given by 
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In the paper, the noise and transmitted symbols are assumed 
to satisfy the following statistical properties: 

 
(A1) Noise is white and uncorrelated with zero mean and vari- 

ance 2
 . 

(A2) Noise and transmitted symbols are uncorrelated. 
(A3) Transmitted symbols are independent and identically dis- 

tributed (i.i.d.) real random variables, with zero-mean and 

variance 2
s . 

 
According to the above assumptions, we have the correlation 

matrix of ri, 
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From the subspace decomposition method, it has been shown 
that 

 0, 0, , 1H
k k q  e H   (6) 

where q = 2JM  2KN, if H is full column rank.  In (6) ek is the 

eigenvector of Rr corresponding to the smallest eigenvalue 2
  

and ek, k = 0, , q  1, span the left null space of H.  As shown 
in (Zeng et al., 2006), (6) can be rewritten as 
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In (8), Gk is composed of transformed eigenvector k   
2 1JM

k C Pe , and kα  is partitioned into 
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Combining all equations in (7), we have 

 GF 0  (12) 

where 2 ( 1)
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qG G G C     G  .  Based on

 
the ortho- 

gonal property in (12), Zeng (2006) proposed a semi-blind es- 
timation of channel impulse response (CIR) matrix H.  Yu and 
Lin (2009) proposed a forward-backward averaging (FBA) 
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technique to enhance the performances of blind channel esti- 
mation.  FBA technique combines the forward and backward 
signals to calculate the sample correlation matrix, which reduces 
the random error of the sample correlation matrix and enhances 
the channel estimation performance.  The backward received signal 
rb,i is obtained by transforming the received signal ri as 
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From (13), we observe that backward received signal rb,i has 
the same CIR matrix as the forward received signal ri.  More- 
over, the correlation matrix of backward received signal rb,i can 
be expressed as 

 2
, , 2

H H
b b i b i v JM rE      R r r HR H I R  (14) 

(14) indicates that the backward correlation matrix Rb is same 
as Rr.  The results in (13) and (14) imply that the channel es- 
timation could be performed by employing both forward signal 

ir  and backward signal rb,i.  The FBA technique combines the 
forward and backward received signals to get a better estimation 
of correlation matrix, which is given by 
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where Ns is the number of block signals.  It can be shown that 
ˆ

fbR  is a better estimation of correlation matrix Rr than ˆ
fR  in 

the sense of Euclidean distance, i.e., 
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fore, the eigenvectors corresponding to the forward-backward 

correlation matrix ˆ
fbR  could achieve better channel estimation 

than those corresponding to forward only estimation (FOE) (Zeng 
et al., 2006). 

III. EIGEN-STRUCTURE ANALYSIS OF A 
PERMUTATION INVARIANCE MATRIX 

In this section, we examine the structure of the forward- 
backward sample correlation matrix in (15) and find the sym- 
metric property of the associated eigenvectors.  We first observe 
that the CIR matrix H shown in (5) has a symmetric structure 
and satisfies the following permutation invariance (pi) property, 
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diagonal matrix composed of the signal power.  Utilizing the 
diagonal property of Rv and (16), we have 
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(18) indicates that the correlation matrix Rr satisfies the the PI 

property, 22 JM
T

JM r rM R M R .  In reality, the ensemble corre- 

lation matrix obtained from the infinite number of received 
signals is unavailable.  Therefore, we apply the sample corre- 
lation matrix computed from finite number of signals 
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to channel estimation, where Ns is number of block samples.  
In addition, we can easily find that the PI property is invalid 
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We observe that ˆ
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Before analyzing the property of eigenvector of the forward- 
backward averaging correlation matrix, we first examine the 
eigen-property of a matrix with PI property.  Assume a matrix 

2 2t t
T C S  with the following symmetric structure 

 T

 
  

  

A B
S

B A
 (22) 

where , t tC A B .  ST satisfies the PI property 

 2 2
T

T t T tS M S M  (23) 

The eigenvectors of ST have the following property. 
 

Property 1: If ei is the eigenvector of ST with corresponding 
eigenvalue i, then Mei is also the eigenvector of ST with eigen- 
value i.  For a double repeated eigenvalue i, the two correspond- 
ing eigenvectors are ei and Mei.  If eigenvalue i is not repeated, 
then the associated eigenvector satisfies the relations 

 2i t ije M e  or 2i t ij e M e . (24) 

Proof: 
Since ei is the eigenvector of ST, we have 

 T i i iS e e  (25) 

Pre-multiplying (25) by the permutation matrix M2t and uti- 
lizing the PI property in (23), we get 

 2 2 2 2 2( ) ( )T
t T t t i T t i i t i M S M M e S M e M e  (26) 

(26) shows that 2t iM e  is also the eigenvector of ST with eigen- 

value i.  We assume that the eigenvector can be represented as 

2i t ike M e  if eigenvalue i is not repeated, where k is a scalar.  

For convenience, we rewrite ei as 

 
1 1 2

2 2 1

0

0

i i it
i

ti i i

k k
      

        
           

e e eI
e

Ie e e
 (27) 

where 1ie  and 1
2

t
i C e .  From (27), we may derive 2

1 1i ik e e , 

and get k j  , 1j   .  The result indicates that if the eigen- 

value i is not repeated, the associated eigenvector satisfies 

the relation in (24). 
Then we derive the eigenvectors of the matrix ST with PI 

property by utilizing the following lemma which is proved in 
Appendix A. 

 

Lemma 1: A matrix 2 2t t
T C S  has the symmetric structure as 

(22) and satisfies the PI property in (23).  The eigenvalues  
i and the corresponding eigenvector ei of ST can be obtained 
from the eigencomponents of two submatrices  jA B  and 

 jA B .  The eigenvalues are given as follows.
 

    ,, 1, , 2 , , , 1, ,i ii t a b i t        

The associated eigenvectors are obtained by 

 
ai

i

aij

 
  
  

e
e

e
 for eigenvalue ,i a i   (28a) 

or 

 
bi

i

bij

 
  

  

e
e

e
 for eigenvalue ,i b i   (28b) 

where ,a i  and aie  are the eigenvalue and associated eigen-

vector of matrix  jA B ; ,b i  and bie  are the eigenvalue 

and associated eigenvector of matrix  jA B  respectively. 

Lemma 1 shows the eigen-components of matrix 2 2t t
T C S  

can be calculated from two submatrices (A  jB) and (A  jB)  
Ctt.  By the way, we may reduce the computations required in 
performing the eigen-decomposition of forward-backward cor- 

relation matrix ˆ
fbR . 

IV. FAST FORWARD-BACKWARD 
ESTIMATION METHOD 

In the section, the eigen-properties derived in Section III are 
applied to develop a fast forward-backward estimation (FFBE) 
method for the channel estimation of MIMO STBC-OFDM 
systems. 

We first explore the symmetric structure of forward-backward 
correlation matrix with PI property as shown in the Lemma 1 
and develop a fast eigen-decomposition for the associated eigen- 

vector calculation of ˆ
fbR . 

ˆ
fbR  in (14) can be rewritten as 

1
2 2 1

2 2 1 2 1 2
0 2 1 2

1ˆ  
2

sN
i iH H H H

fb i i i i
i i isN




 
 

                      


x x
R x x x x

x x
 (29) 

ˆ
fbR  possesses the symmetric structure as ST in (22).  The cor- 

responding sub-matrices A and B of ˆ
fbR  are given by 

 
1

2 2 2 1 2 1
0

1

2

sN
H H

i i i i
isN



 


 A x x x x  (30) 
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1

2 2 1 2 1 2
0

1

2

sN
H H

i i i i
isN



 


 B x x x x  (31) 

According to Lemma 1, we can compute the eigecomponents 

of ˆ
fbR  from those of  jA B  and  jA B , which are given 

by 

 
1

2 2 2 1 2 1 2 2 1 2 1 2
0

1

0

1

2

1
           

2

s

s

N
H H H H

i i i i i i i i
is

N
H

ai ai
is

j j j
N

N



   






    







A B x x x x x x x x

y y

 (32) 

 
1

2 2 2 1 2 1 2 2 1 2 1 2
0

1

0

1

2

1
           

2

s

s

N
H H H H

i i i i i i i i
is

N
H

bi bi
is

j j j
N

N



   






    







A B x x x x x x x x

y y

 (33) 

where 

 2 2 1ai i ij  y x x  and 2 2 1bi i ij  y x x  (34) 

By performing eigen-decomposition of correlation matrices 

 jA B  and  -jA B  defined in (32) and (33), respectively, 

we can get the eigenvectors of ˆ
fbR  according to Lemma 1. 

We then employ the symmetric property of eigenvectors of 
forward-backward correlation matrix and propose the FFBE 
method to reduce the computation complexity of channel es- 
timation.  The proposed FFBE is developed by considering the 
eigenvectors of two submatrices  jA B  and  jA B , re- 

spectively. 
For eigenvectors ek calculated from the eigenvector ake  of 

submatrices  jA B , we have ak
k

akj

 
  
 

e
e

e
, k = 1, , q/2.  

Substitute this eigenvectors ek into (9), we have 

      ( ) ( ) (0)

H H H H
k ak ak

H H H
k k k

j

M -1 M - 2

   

   

e e P





  
 (35)

 

where 1
, ,( ) ( ) ( )H H H J

k a k a km m j m C         and matrix Gk 

in (7) becomes 

, , , , , ,

, , , , , ,

, , , , , ,

( ) ( ) ( 1) ( 1) (0) (0)

( 1) ( 1) ( ) ( ) (1) (1)

( 1) ( 1) ( 2) ( 2) ( 1) ( 1)

H H H H H H
a k a k a k a k a k a k

H H H H H H
a k a k a k a k a k a k

k

H H H H H H
a k a k a k a k a k a k

L j L L j L j

L j L L j L j

M j M M j M N j N

     


    
 



        

G





   



     

     

     

0, , q/2 1.k









 

 

  (36) 

Substituting (35) into (6), we observe that the left half and 
right half part of ith row of kG F  become 

 
, 1 , 2

0

, 2 , 1
0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

L
H H
a k a k

l

L
H H
a k a k

l

m l l j m l l

m l l j m l l





   

   





h h 0

h h 0

 

 

 (37) 

 , , 1m L M   (38) 

It is obvious that the solutions of (38) are equivalent to those 
of (37).  Therefore, we solve the CIR by using left half columns 
of kG F , which are rearranged as 

 
1

2

 ak akj
 

     
  

F
E E 0

F
 (39) 

where 

, , ,

, , , ( 1)

, , ,

( ) ( 1) (0)

( 1) ( ) (1)

( 1) ( 2) ( 1)

H H H
a k a k a k

H H H
a k a k a k N J L

ak

H H H
a k a k a k

L L

L L
C

M M N

 

 
 

 
  
 
    

E




  


  

  

  

, 

and 

 ( 1)

( )

(1)
, 1, 2

( )

i

i J L K
i

i

o

C i

L

 

 
 
    
 
  

h

h
F

h


. 

Eq. (39) could be reduced to 

 
1 2( )

0, , /2 1.

ak j

k q

 

 

E F F 0


 (40) 

Combining all equations in (40), we have 

 a a E F 0  (41) 

where 

 

0

( 1)1 2

( / 2 1) _

a

q
N J La

a

a q

C
 



 
 
   
 
  

E

E
E

E


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and 

 1 2a j F F F . 

For eigenvectors ek calculated from the eigenvector of sub- 

matrix  jA B , ebk, we have
bk

k

bkj

 
  

  

e
e

e
, k = 0, , q/2  1.  

Similarily as Eq. (35) to (41), k G F 0  can be reduced to 

 

1

1 2

2

 ( )

1, , q/2.

bk bk bkj j

k

 
       

  



F
E E E F F 0

F



 (42) 

where 

, , ,

, , , ( 1)

, , ,

( ) ( 1) (0)

( 1) ( ) (1)

( 1) ( 2) ( 1)

H H H
b k b k b k

H H H
b k b k b k N J L

bk

H H H
b k b k b k

L L

L L
C

M M N

 

 
 

 
  
 
 

    

E





  



  

  

  

, 

 
bk

k

bkj

 
  

  

e
P

e
  and , ,( ) ( ) ( )H H H

k b k b km m j m      . 

Combine the equations in (42) for k = 1, , q/2 and get 

 b b E F 0  (43) 

where 

 

0

( 1)1
2

( / 2 1) _

b

q
N J Lb

b

b q

C
 



 
 
 

  
 
 
  

E

E
E

E


 

and 

 1 2b j F F F . 

The least square solutions of Fa and Fb in (41) and (43) can 
be estimated by the right null subspace of Ea and Eb, respec-
tively.  According to the identification analysis shown in (Zeng 
et al., 2006), the estimated Fa and Fb are expressed as 

 ˆ
a a aF V C  and ˆ

b b bF V C  (44) 

where ( 1) , , ,J L K
i C i a b  V  is formed by K right singular vec- 

tors corresponding to the K smallest singular values of Ei, i = a, b.  

In (44), iC  , , ,K KC i a b  is an ambiguity matrix which can 

be resolved by using a few pilot symbols (Zeng et al., 2006).  

Divide iV  into (L  1) blocks, [ (0), (1), , ( )]T T T T
i i i i LV V V V , 

and (44) becomes 

 
1 2

1 2

ˆ ( ) ( ) ( ) ( ) ,

ˆ ( ) ( ) ( ) ( ) ,

a a a

b b b

l l j l l

l l j l l

  

  

F h h V C

F h h V C
 0, 1, .l L   (45) 

Combining the equations in (45), we have 

 
1 2

1 2

(0) (0) ,

(0) (0) .

a a

b b

j

j

 

 

g g W C

g g W C
 (46) 

where 
0

V ( ), , ,
L

i i
i

l i a b


 W  and 
L

i 0

(0) ( ),i i l


 g h  1, 2,i   

represents the DFT of CIR and can be estimated by pilot sym- 
bols.  From (46), we obtained the ambiguity matrix, 

 

1
1 2

1
1 2

( ) [ (0) (0)]

( ) [ (0) (0) ]  

H H
a a a a

H H
b b b b

j

j  





 

 

C W W W g g

C W W W g g
 (47) 

Substitute (47) into (44), we get the estimated ˆ
aF  and ˆ

bF .  

Then, the CIR are obtained from (45), 

 
1

2

ˆ ˆ( ) [ ( ) ( )] / 2

ˆ ˆ( ) [ ( ) ( )] / 2    

a b

a b

l l l

l l l j

 

 

h F F

h F F
  0, 1, .l L   (48) 

The proposed FFBE method is summarized as follows: 

 
1. Form two signals 

 2 2 1ai i ij  y x x  and 2 2 1bi i ij  y x x  

 from two consecutive received block signals xi. 
2. Compute the correlation matrices of yai and ybi, and get (A  

jB) and (A  jB) according to (32) and (33). 
3. Perform eigen-decomposition of correlation matrices (A  jB) 

and (A  jB), and get the eigencomponents which satisfy 

  ,ak a k akj  A B e e  and   ,bk b k bkj  A B e e . 

4. Utilize the eigenvectors ake  and bke  in Step 3 to form matrix 

Ea and Eb according to (40) and (42).  Perform singular 
value decomposition of Ea and Eb, and choose K right side 
singular vector corresponding to the K smallest singular 
values to form Va and Vb. 

5. Apply Va and Vb obtained in Step 4 to estimate Fa and Fb.  
Then, the CIR hi(l), i = 1, 2, l = 0, , L, could be obtained 
by using (48). 
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From the above derivations, we have proved that the eigen- 

vectors of ˆ
fbR  computed by FFBE are equivalent to those 

obtained by eigen-decomposition of ˆ
fbR .  And the CIR ( )i lh  

estimated by FFBE are the same as those by FBA.  However, 
the dimension of matrices  jA B  and  jA B  applied in 

FFBE is half of that of ˆ
fbR  required in FBA.  In the following, 

we compare the computation complexity of the proposed FFBE 

with FBA.  For FFBE, it requires 22 ( )sN JM  multiplications 

in forming the matrices (A  jB) and (A  jB) according to (32) 

and (33), and 32 (( ) )O JM  multiplications in performing 

eigen-decomposition of (A  jB) and (A  jB).  Whereas, FBA 

needs 2 22 (2 ) 8  ( )s sN JM N JM   and 3((2 ) )O JM  multipli- 

cations in forming the correlation matrix ˆ
fbR  shown in (15) and 

performing eigen-decomposition of ˆ
fbR .  Thus, we know that 

the multiplications required in performing eigen-decomposition 
of FFBE given in step 1-3 are one fourth of that required in 
FBA.  Moreover, since the dimension of Ea and Eb, given by 

)1()2/(  LJNq , is also one half of matrix G, with dimension 

equal to 2 ( 1)qN J L  , the computations required in perform- 

ing SVD of Ea and Eb is almost one fourth of that required in 
doing SVD of G.  As a whole, the computation complexity of 
FFBE is almost one fourth of FBA.  Concerning forward-only 

estimation (FOE), it requires 2 2(2 ) 4  ( )s sN JM N JM    mul- 

tiplications in calculating the correlation matrix ˆ
fR  shown in 

(19) and other computational demand is same as FBA.  Thus 
the computation complexity of FOE is over twice of that of FFBE.  
From the simulation results in the next section, we verify these 
analyses. 

V. SIMULATIONS AND DISCUSSIONS 

In this section, simulations are presented to show the perfor- 
mance of the proposed FFBE.  We compare the performance 
of the proposed FFBE with that of FBA and FOE for MIMO 
STBC-OFDM systems.  In FOE and FBA, the correlation ma- 
trices are estimated by (19) and (15), respectively.  While in 
FFBE, two sub-correlation matrices (A  jB) and (A  jB) are 
estimated by (32) and (33).  In simulations, the signal-to- 
noise ratio (SNR) is defined by  

 

1
2

0

1
2

0

( ) ( )

( )

M

i i
n

M

i
n

E n n

SNR

E n









 
 

 
 
 
 





x η

η

 (49) 

The CIR is modeled as a wide-sense stationary uncorrelated 
scattering process composed of discrete paths in which the chan- 
nel coefficients are assumed to be identically independent dis- 

tributed complex Gaussian with zero mean and unit variance.  For 
each Monte Carlo realization, we create random Rayleigh fad- 
ing channels in which the channel coefficients are assumed to be 
statistically independent and have the same complex Gaussian 
distribution.  The normalized mean square error (NMSE) (aver-
aging on all channels) between the estimated and true channel 
responses is defined as 

 

2 2

1 0
2

2

1 0

ˆ( ) ( )

( )

L

i i
i l

L

i
i l

l l

NMSE

l

 

 







h h

h

 (50) 

where ( )i lh  and ˆ ( )i lh  represent the true and estimated CIR, re- 

spectively.  In the following simulations, the performances of 
channel estimation in terms of NMSE and bit error rate (BER) 
are averaged over 100 Monte Carlo realizations.  Moreover, we 
apply two ambiguity matrices for channel estimation, which 
are computed by “pilot SS” and “optimal SS” defined in (Yu  
et al., 2009). 

Example 1 

A two-user STBC-OFDM system composed of four trans- 
mitting antennas and three receiving antennas is considered 
here.  The transmitted baseband signals are BPSK and IDFT block 
size is chosen to be 32.  The number of pilot STBC symbols  
NP = 2 and the maximum delay spread of all channels L = 6. 

We first examine the SNR effect on the performance of FFBE.  
Figs. 2 and 3 show the NMSE and BER versus input SNR, re- 
spectively, for sample blocks Ns = 200.  As we see, the proposed 
FFBE and FBA achieve a lower NMSE and BER than FOE me- 
thod.  This performance improvement of FFBE and FBA is 
consistent for SNR varied from 3 dB to 33 dB. 

Next, we examine the convergence rate of the proposed FFBE.  
Figs. 4 and 5 present the NMSE and BER versus the number of 
block signals Ns, for input SNR = 15 dB.  As we observe, FFBE 
and FBA achieve lower values of NMSE and BER with less 
number of block signals than FOE.  For example, FFBE and FBA 
require 175 block signals to achieve 0.01 NMSE while FOE 
needs 350 block signals approximately, for ambiguity matrices 
in channel estimation calculated by utilizing “pilot SS”.  Simi- 
lar results can be obtained from the plots in Fig. 5.  We can find 
that the BER of FFBE and FBA with pilot SS is 0.0001 when 
number of block signals is equal to 200, while FOE with pilot SS 
requires approximately 400 block signals to achieve the same 
BER.  The results imply the fast convergence rate of FFBE and 
FBA. 

Example 2 

In the experiment, we investigate the effect of DFT block 
size on the performance of FFBE.  Concerning the dimension 
of correlation matrix, two receiving antennas, J = 2, are con-
sidered here and other simulation parameters are the same as 
those in Fig. 4.  Figs. 6-9 display the NMSE versus the number  
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Fig. 2. Channel estimation performance versus SNR.  (J = 3, K = 2, DFT 

size N = 32, and signal blocks Ns = 200). 
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Fig. 3.  BER versus SNR.  (Simulation scenario same as Fig. 2). 
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Fig. 4. Channel estimation performance versus number of block signals.  

(SNR = 15 dB, other simulation parameters same as Fig. 2). 
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Fig. 5. BER versus number of block signals.  (Simulation scenario same 

as Fig. 4.) 
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Fig. 6. Channel estimation performance versus number of block signals.  

(J = 2, K = 2, DFT size N = 16, Ns = 200 and SNR = 15 dB). 
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Fig. 7. Channel estimation performance versus number of block signals.  

(DFT size N = 32 and other simulation scenario same as Fig. 6). 
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Table 1.  Comparison of execution time for the simulation. 

No. of Block Signals DFT Size FFBE FBA FOE Speed-up Sp1 Speed-up Sp2 
16 1.586 6.185 3.646 3.899 2.299 
32 6.008 21.414 15.963 3.564 2.657 
64 23.436 89.323 65.828 3.811 2.809 

Ns = 300 

128 102.517 481.886 314.438 4.701 3.067 
16 2.716 11.454 5.549 4.226 2.047 
32 8.752 33.872 21.267 3.87 2.43 
64 35.576 133.425 86.36 3.75 2.428 

Ns = 600 

128 147.495 727.407 482.609 4.931 3.272 
Averaged Speedup     4.094 2.626 
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Fig. 8. Channel estimation performance versus number of block signals.  

(DFT size N=64 and other simulation scenario same as Fig. 6). 

 
 

of block signal for DFT block size 16, 32, 64 and 128, respec- 
tively.  From these figures, we observed that all three methods 
require larger block signals as the DFT block size increases.  
For instance, for FFBE and FBA with pilot SS, they require 90, 
120, 300, and 550 block signals to achieve 0.05 NMSE corre- 
sponding to 16, 32, 64 and 128 DFT block size, respectively.  Si- 
milarly, for FOE with pilot SS, the number of block signals are 
180, 230, 600 and 1000 approximately, to achieve 0.05 NMSE 
for 16, 32, 64 and 128 DFT block size, respectively. 

Next, the efficiency of the proposed FFBE is examined.  We 
compare the execution time required for these three methods.  Ex- 
periments have been conducted on the computer with CPU core 
i5-2450 (2.5G Hz).  In simulations, the estimation methods were 
implemented by using MATLAB and elapsed time was measured 
by using functions “clock” and “etime” in MATLAB.  The si- 
mulation scenarios are the same as those in Figs. 6-9.  Execution 
time for different DFT block size is considered with 300 and 
600 block signals.  In order to evaluate the effectiveness of the pro- 
posed FFBE, we use the speedup index Spi which is the ratio of ex- 
ecution time of FFBE to the other two methods, FBA and FOE, 

 1
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Fig. 9. Channel estimation performance versus number of block signals.  

(DFT size N=128 and other simulation scenario same as Fig. 6). 

 
 

where tffb denotes the averaged execution time of FFBE, tfb and 
tf represent the average execution time of FBA and FOE, re-
spectively.  The averaged execution time and speedup Spi are 
shown in Table 1, in which execution time are averaged form 
300 Monte Carlo realizations and averaged speedup are calcu- 
lated from all simulation cases.  Comparing the results in Table 1, 
we see that the averaged execution time of FFBE is almost one 
fourth and less than one half of that required in FBA and FOE, 
respectively.  On average, FFBE achieves 4.1 and 2.6 times speed- 
up of FBA and FOE, respectively.  These results validate the ef- 
ficiency of the proposed FFBE. 

Example 3 

The performance of FFBE for the multiuser STBC-OFDM 
systems is evaluated.  The number of receiving antennas J is 
chosen as the user number K in following simulations.  The num- 
ber of block signals is 800, number of pilot symbols Np = K and 
other simulation parameters are the same as those in Example 1.  
The NMSE and BER versus the number of users are shown in 
Figs. 10 and 11.  We can observe that the value of NMSE and BER 
increases as the user number grows.  It is necessary to utilize more 
receiving data to estimate the subspace of correlation matrix as 
the user number increases which results in the increase of cor- 
relation matrix dimension.  For a twenty-user system with the  
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Fig. 10. Channel estimation performance versus number of users.  (J = K, 

Ns = 800, Np = K, DFT size N = 32, and SNR = 15 dB). 
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Fig. 11. BER versus number of users.  (Simulation parameters same as 

Fig. 10). 

 
 

associated dimension of correlation matrix equal to 1520, 800 
number of block signals is not enough to get a steady state 
value of estimated CIR. 

In the simulations, we find that it is hard to keep increasing 
the user number because of the limited memory in MATLAB.  
Computing bottleneck occurs in performing singular value 
decomposition (SVD) of matrix G in (11).  For DFT block size 
equal to 32, it is difficult to do CIR estimation by FBA and 
FOE if user number K is more than twenty.  Without utilizing 
matrix G, FFBE performs SVD of Ea and Eb, of which dimen- 
sion is half of matrix G.  Thus, FFBE can estimate CIR of sys- 
tems with more users than FBA and FOE.  We show the NMSE 
and BER versus the number of users for FFBE with user num- 
ber K > 20 in Figs. 12 and 13.  Concerning to achieve steady 
state estimation, the number of block signal is chosen to be Ns = 
J*M in the simulation.  The results in Figs. 12 and 13 validate 
that the proposed FFBE still carries out CIR estimation for a  
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Fig. 12. Channel estimation performance versus number of users for FFBE.  

(J = K, Ns = J*M, Np = K, DFT size N = 32 and SNR = 15 dB). 
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Fig. 13. BER versus number of users for FFBE.  (Simulation scenario same 

as Fig. 12). 

 

 
MIMO system with J and K equal to 41. 

VI. CONCLUSIONS 

In the study, we explore the PI property of forward-backward 
correlation matrix and develop the FFBE technique for MIMO 
STBC-OFDM systems.  We discover that all eigenvalues are 
pairing repeated and the corresponding eigenvectors possess sym- 
metric characteristics of a matrix with PI property.  From this 
observation, we develop a fast eign-decomposition method which 
calculates the associated eigen-components from two subma-
trices with half dimension of the original matrix.  Then, the sym- 
metric property of eigenvectors is employed to develop the FFBE 
estimation method of MIMO STBC-OFDM systems.  Theoretic 
analysis and simulation results validate that the proposed FFBE 
method can achieve the same performance of FBA.  But the 
computation complexity of the EFBE requires only one fourth 
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of FBA.  Moreover, the proposed FFBE achieve a smaller NMSE 
of estimated CIR and lower BER than those by FOE.  The com- 
putation complexity of the proposed FFBE is almost one half of 
that required in FOE.  Simulations show that the proposed FFBE 
achieves over four times speedup of FBA on average and is fa- 
vorable for strict memory constraint. 

APPENDIX A 

PROOF OF LEMMA 1 

We give the proof of Lemma 1 in this appendix. 
 

Proof 
If ei is the eigenvector of ST with eigenvalue i, substituting 

the symmetric structure of 





 AB

BAST
 into (25), and partition- 

ing the eigenvector as 





2

1

i

i
i e

e
e , we get  

 
1 2 1

2 1 2

i i i i

i i i i





 


 

Ae Be e

Ae Be e
 (52) 

Combine the above equations and obtain 

 
     

  
1 2 1 2
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i i

j j j

j j

    
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A B e B A e e e

A B e e
 (53) 

(53) indicates that i is also the eigenvalue of matrix (A  jB) 
and the corresponding eigenvector eai is equal to  1 2i ije e  

for 1 2i ije e .  Similarly, from (52), we get 

 
     

  
1 2 1 2

1 2                                       

i i i i i

i i

j j j

j j

    

  

A B e B A e e e

A B e e
 (54) 

(54) means that the eigenvalue of matrix (A  jB) is equal to i 
and the corresponding eigenvector ebi is equal to  1 2i ije e  

for 1 2i ij e e .  (53) and (54) show the relation of eigencom- 

ponents between the matrices ST and (A  jB).  The derivations 
could be performed in reverse direction. 

If ,a i  and eai are the eigenvalue and eigenvector of matrix 

(A  jB), which satisfy 

   , , 1, ,ai a i aij λ i t  A B e e   (55) 

Premultiply (55) by j, and get 

   , , 1, ,ai a i aij j λ j i t  A B e e   (56) 

Combine (55) and (56), we have 

, ,

ai ai ai ai

a i T a i

ai ai ai aij j j j
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e e e eA B
S

e e e eB A
 (57) 

(57) indicates the eigencomponents of ST can be obtained from 
the eigenvalue ,a i  and eigenvector eai of matrix (A  jB),  

that is 
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e
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 (58) 

Similarly, if ,b i  and ebi represent the eigenvalue and eigen- 

vector of matrix  jA B , which satisfy
 

   , , 1, ,bi b i bij λ i t  A B e e   (59) 

From (59) and multiplying (59) by -j, we get 

, ,

bi bi bi bi

b i T b i

bi bi bi bij j j j
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(60) shows the eigencomponents of ST can be obtained for those 
of matrix  jA B , that is 

 , , , 1, ,
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We then prove eigenvector ei obtained from , 1, ,ai i te  , 

eigenvector of (A  jB), are distinct from , 1, ,bi i te  , eigen- 

vector of (A  jB).  Assume that eigenvector ie obtained from  

(A  jB) has the same direction as one eigenvector of (A  jB), 
which satisfy 

 

ai bi

ai bi

k
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Rewrite (62) as 

 

ai bi

ai bi

k

k




 

e e

e e
 (63) 

(63) implies k = 0.  Thus, we validate that half of eigenvectors 
, 1, , 2i i te   of TS  can be obtained from eai, and half of ei 

obtained from ebi. 
(58) and (61) give the proof of Lemma 1. 
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