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ABSTRACT 
We resolve the inverse problems of a second-order nonlinear 

oscillator to recover time-dependent damping function and non- 
linear restoring force, with the help of temporal boundary data 
measured at initial time and final time.  By using these data, a 
sequence of temporal boundary functions of time is derived, which 
satisfy the measured temporal boundary conditions automati- 
cally, and are at least the fourth-order polynomials of time.  All 
the temporal boundary functions and zero element constitute a 
linear space, and a new concept of energetic functional is in- 
troduced in the linear space, of which the energy is preserved 
for each energetic temporal boundary function.  We employ the 
energetic temporal boundary functions as the bases of nume- 
rical solutions.  Then, the linear systems are derived and the 
iterative algorithms used to recover the unknown nonlinear 
oscillators are developed from the energetic functional, which 
are convergent very fast.  We can recover the damping func-
tions and restoring forces of nonlinear oscillators, among them 
the nonlinear ship rolling oscillator and the Duffing nonlinear 
oscillator are of tested examples.  The required data are par-
simonious, merely the measured temporal boundary data of 
displacement and velocity, and the temporal boundary data of 
unknown function to be recovered. 

I. INTRODUCTION 
In this paper we are going to develop a very simple mathe- 

matical method to treat the following recovery problem of a 
nonlinear oscillator: 

 ( ) ( ) ( ) ( ) ( ), (0, ),x t c t x t H x F t t a+ + = ∈�� �  (1) 

where c(t) denotes the damping coefficient, F(t) and H(x) are 
the external excitation and restoring force, and x(t), ( )x t� , and 

( )x t��  are displacement, velocity, and acceleration of the response 
of a system, respectively.  However, this is a set of index-three 
differential algebraic equations (Liu, 2008a), which is difficult 
to solve because the amplification of small errors and perturba-
tions in the displacement result in severe numerically ill-posed 
conditions.  Generally, there are different inverse problems of 
Eq. (1): (a) identifying the damping coefficient c(t), (b) identi-
fying the nonlinear restoring force H(x), and (c) identifying the 
unknown forcing function F(t). 

The topic (c) has been studied by the author and his co-workers 
(Liu and Chang, 2016; Liu et al., 2016).  In this paper we turn 
our attention to the topics (a) and (b).  For the purpose to solve 
the topic (a), we supplement the following temporal boundary 
data of x and c: 

 0 0(0) , ( ) , (0) , ( ) ,a ax x x a x x x x a x= = = =� � � �  (2) 

 0 0(0) , ( ) , (0) , ( ) ,a ac c c a c c c c a c= = = =� � � �  (3) 

where c(t) depends on time and 0ac ≠� . 
It means that we will use these measured data in Eqs. (2) 

and (3) to recover the unknown coefficient function c(t) in a time 
interval of (0, )t a∈ .  Identification of viscous damping and non- 
viscous damping were presented by Adhikari and Woodhouse 
(2001a, 2001b).  Meanwhile, an iteration method for solving vis- 
coelastic motion with fractional differential operator of damp- 
ing was also developed (Ingman and Suzdalnisky, 2001).  Recently, 
Liu (2008a) has developed a Lie-group shooting method to iden- 
tify c(t), which is however resorted on the displacement data 
measured in a whole time interval.  By the same token, we will 
recover the nonlinear restoring force in Section 4. 

The inverse problem is a severely ill-posed problem, since 
very close input data may correspond to enough different re- 

Paper submitted 01/15/19; revised 03/14/19; accepted 03/29/19.  Author for 
correspondence: Jiang-Ren Chang (e-mail: cjr@mail.ntou.edu.tw). 
1 Center for Numerical Simulation Software in Engineering and Sciences,
College of Mechanics and Materials, Hohai University, Nanjing, Jiangsu, China.

2 Department of Marine Engineering, National Taiwan Ocean University,
Keelung, Taiwan, R.O.C. 

3 Department of Systems Engineering and Naval Architecture, National Tai wan
Ocean University, Keelung, Taiwan, R.O.C. 

4 Center of Excellence for Ocean Engineering, National Taiwan Ocean University,
Keelung, Taiwan, R.O.C. 



 C.-S. Liu et al.: Identifying Nonlinear Oscillators by an Energetic Functional 203 

 

sults.  The inverse problem related to the determination of the 
leading coefficient of the Sturm-Liouville equation from the 
boundary measurements has been studied by Hasanov and Shores 
(1997), and the numerical methods have been developed by 
Hasanov and Pektas (2002), Seyidmamedov and Hasanov (2002), 
Hasanov and Seyidmamedov (2002), and Liu (2011).  Basically, 
the dynamic inverse problem (1)-(3) is more difficult, of which 
no similar results as that for the Sturm-Liouville equation exists 
in the literature. 

The dissipation of energy in a mechanical system is often 
described by a viscous damping term and a friction element, 
while the conservative part is described by a nonlinear spring 
element.  The resulting dynamic equation is useful because it 
can be used mathematically as a model to simulate the nonlinear 
oscillation behavior.  However, we may encounter the problem 
that the material properties of structure are not yet known, and 
then the resulting oscillatory problem is an inverse vibration 
problem.  To identify the damping term and the restoring force 
of a newly received structure are of great importance for the 
design, control and stability analysis of machines, vehicles and 
structural systems, of which the vibration behavior is heavily 
dependent on the mathematical modelling. 

Liu (2008b) has developed a Lie-group shooting method to 
identify the restoring force, which resorted on the displacement 
data in a whole time interval.  The conjugate gradient method 
to estimate the time-dependent stiffness coefficients (Huang, 
2001) and balancing energy technique (Liang and Feeny, 2006) 
to estimate damping parameters were also proposed.  In addi-
tion, Kerschen et al. (2006) have given a comprehensive review 
of the developments of some useful methods in the nonlinear 
system identification of structural dynamics.  The parameter iden- 
tification is a major step towards the establishment of a struc- 
tural model with good predictive capability.  The restoring force 
surface method or force state mapping method is a simple 
procedure allowing a direct identification of restoring force for 
nonlinear mechanical systems.  The basic procedures were intro- 
duced by Masri and Caughey (1979), and then extended by 
Crawley and Aubert (1986), Crawley and O′Donnel (1986), and 
Duym et al. (1995).  Namdeo and Manohar (2008) have identified 
nonlinear system parameters from the measured time histories 
of response under known excitations.  Although this numerical 
method has been applied to mechanical experiments, how to 
ensure numerical stability and avoid noise disturbance are not 
reported especially for the polynomial function with high-order.  
In recent years, studies on the developments of model free non- 
linear restoring force identification with their numerical and ex- 
perimental validation have been presented.  Some results have 
attracted much attention of this field (He et al., 2012; Xu et al., 
2012). 

Usually, in the realm of the inverse vibration problems, the 
data required are the displacement, velocity and/or acceleration 
measured in a whole time interval.  In this paper we are going 
to propose a novel approach by using the temporal boundary 
measurements to recover the damping function and identify 
the nonlinear oscillator, like that in the identification of the lead- 

ing coefficient of the Sturm-Liouville problem with boundary 
data (Hasanov and Shores, 1997).  This identification technique 
if possible would be much data saving and time saving in the 
solutions of the nonlinear inverse vibration problems. 

The remainder of this paper is arranged as follows.  In Sec- 
tion 2 we introduce a new concept of the energy functional in 
terms of temporal boundary functions, which constitute a linear 
space of all polynomial functions of time with at least the fourth- 
order, and satisfy the measured temporal boundary conditions.  
In Section 3 we derive the iterative algorithm to recover the 
unknown damping functions and two examples are given.  In 
Section 4 we derive the iterative algorithm to recover the un- 
known restoring forces, and four numerical examples are given 
for the identification of different type restoring forces.  Finally, 
the conclusions are drawn in Section 5. 

II. ENERGETIC FUNCTIONAL OF  
TEMPORAL BOUNDARY FUNCTIONS 

For a linear conservative system: 

 ( ) ( ) 0x t kx t+ =�� , 

by multiplying x�  on both sides we have 

 2 21 0
2 2

d kx x
dt
⎛ ⎞+ =⎜ ⎟
⎝ ⎠
� , 

 ( ) ( )2 2

0 0

1( )
2

t t dx kx x d x kx d
d

ξ ξ ξ
ξ

+ = +∫ ∫�� � �  

 2 2 2 21 ( ) (0) ( ) (0) 0
2 2

kx t x x t x⎡ ⎤ ⎡ ⎤= − + − =⎣ ⎦ ⎣ ⎦� � , 

such that the energy is conserved, i.e., 

 2 2 2 2
0 0

1 1( ) ( ) Constant
2 2 2 2

k kx t x t x x+ = + =� � , 

where the initial displacement x(0) = x0 and initial velocity 
0(0)x x=� �  determine the energy of free vibration.  When the 

damping term is added into the above equation the method of 
balancing energy was used by Liang and Feeny (2006, 2011) 
to identify the damping parameters. 

The energy formulation can be extended to nonlinear systems, 
and the resulting equation is an energy equation.  This motivates 
us to use the energy functional as a mathematical tool to iden- 
tify the nonlinear system.  Usually, the given data in Eq. (2) are 
not zero, which leaves us an obstacle to set up a linear space to 
be introduced below.  Before embarking the analysis we seek a 
variable transformation by 

 ( ) ( ) ( )y t x t b t= − , (4) 
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where 

 

3
0 03

2
0 0 0 02

1( ) 2 2

1 3 3 2

a a

a a

b t x x x a x a t
a

x x x a x a t x t x
a

= − + +⎡ ⎤⎣ ⎦

− − + + + +⎡ ⎤⎣ ⎦

� �

� � �
 (5) 

is a homogenized function of time, such that we have a new sys- 
tem with homogeneous temporal boundary conditions of y(t): 

( ) ( ) ( ) ( ) ( ) ( ( ) ( )) ( ), (0, ),y t b t c t y t b t H y t b t F t x a⎡ ⎤+ + + + + = ∈⎣ ⎦
�� ��� �  (6) 

 (0) 0, ( ) 0, (0) 0, ( ) 0.y y a y y a= = = =� �  (7) 

Multiplying Eq. (6) by ( ) ( )y t b t+ �� , integrating it from t = 0 
to t = a and in view of Eqs. (7) and (2), we can obtain the fol- 
lowing energy identity: 

 
{ }2

0

2 2
0 0 0

( ) ( ) ( ) ( ) ( ) ( )  

1 ( ) ( ) : ,
2

a

a a

c t y t b t F t y t b t dt

x x Q x Q x d

⎡ ⎤ ⎡ ⎤+ − +⎣ ⎦ ⎣ ⎦

⎡ ⎤= + + − =⎣ ⎦

∫ � �� �

�
 (8) 

where ( ) ( )Q x H x dx= ∫  and 0d  is a constant.  In above, the 

damping dissipation, the potential energy, the kinetic energy 
and the external work are balanced.  This equation is useful for 
the reconstruction of the damping coefficient c(t). 

Really, we cannot exactly know y(t) in Eqs. (6) and (8), be- 
cause c(t) is an unknown function to be determined.  However, 
we can set up some functions to approximate y(t).  First, we can 
derive the temporal boundary function which automatically sa- 
tisfies the temporal boundary conditions in Eq. (7): 

 4 3 2 1( ) ( 2 ) , 1.j
jB t t at at t j−= − + ≥  (9) 

They are at least the fourth-order polynomial temporal boun- 
dary functions, satisfying the following homogeneous temporal 
boundary conditions: 

 (0) 0, ( ) 0, (0) 0, ( ) 0.j j j jB B a B B a= = = =� �  (10) 

From Eqs. (9) and (10) it is obvious that when ( )jB t  is a 
temporal boundary function, ( )jB tβ , β ∈R  is also a temporal 
boundary function, and when ( )jB t  and ( )kB t  are temporal 
boundary functions, ( ) ( )j kB t B t+  is also a temporal boundary 
function.  The temporal boundary functions are closure under 
a scalar multiplication and addition, such that the set of 

 { }( ) , 1,jB t j ≥  (11) 

and the zero element constitute a linear space of temporal boun- 
dary functions, allowing the combination of ( )jB t  to be another 
linear element: 

 1( ) ( )  not summed,( ), 1,j j j jE t B t B t jjγ += + ≥  (12) 

which is also an element of the linear space, satisfying 

 (0) 0, ( ) 0, (0) 0, ( ) 0.j j j jE E a E E a= = = =� �  (13) 

Now the problem is how to determine jγ  for each linear 
element of ( )jE t . 

Because ( )jE t  already satisfies the temporal boundary condi- 
tions in Eq. (13), we turn our attention to the energy identity (8), 
from which we can approximate y(t) by ( )jE t , and obtain 

 { }2

00
( ) ( ) ( ) ( ) ( ) ( )  

a

j jc t E t b t F t E t b t dt d⎡ ⎤ ⎡ ⎤+ − + =⎣ ⎦ ⎣ ⎦∫ � �� � , (14) 

which is an energetic functional of ( )jE t  defined in the linear 
space. 

Inserting Eq. (12) for ( )jE t  and 

 1( ) ( ) ( )j j j jE t B t B tγ += +� � �  (15) 

into Eq. (14), we can derive a quadratic nonlinear equation for 
jγ : 

 2
2 1 0 0j ja a aγ γ+ + = , (16) 

where 

 

( )

( ) ( ) ( ){ }
( ) ( ){ }

2
2 0

1 10

2

0 1 1 00

( ) B ,

2 ( ) B ( ) B ( )B  ,

( ) B ( ) ( ) B ( )  ,

a

j

a

j j j

a

j j

a c t t dt

a c t t b t t F t t dt

a c t t b t F t t b t dt d

+

+ +

=

⎡ ⎤= + −⎣ ⎦

⎡ ⎤ ⎡ ⎤= + − + −⎣ ⎦ ⎣ ⎦

∫

∫

∫

�

�� � �

� �� �

 

  (17) 

The solution of jγ  in Eq. (16) is 

 
2

1 1 0 2

2

4
2j

a a a a
a

γ
− − −

= . (18) 

The linear element ( )jE t  in Eq. (12) upon endowing with 
the above jγ  is an energetic temporal boundary function, which 
not only satisfies the temporal boundary conditions, but also pre-
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serves the energy in Eq. (14). 
Up to here it is witnessed to determine jγ  by using the en- 

ergy functional in Eq. (14).  Due to this reason, ( )jE t  is called 
an energetic temporal boundary function, and correspondingly 
the numerical method based on ( )jE t  to be introduced below 
is an energetic temporal boundary function method (ETBFM). 

III. RECOVERING THE DAMPING FUNCTIONS 

Because the temporal boundary data of c(t) are given in Eq. 
(3) we can introduce the following translation function of t: 

 

3
0 03

2
0 0 0 02

1( ) 2 2

1         3 3 2 ,

a a

a a

d t c c c a c a t
a

c c c a c a t c t c
a

= − + +⎡ ⎤⎣ ⎦

+ − + + + +⎡ ⎤⎣ ⎦

� �

� � �
 (19) 

such that we have 

 0 0(0) , ( ) , (0) , ( ) .a ad c d a c d c d a c= = = =� �� �  (20) 

We suppose that the unknown damping function c(t) can be 
expanded by 

 ( )
1

( ) ( )
m

k k
k

c t d t b E t
=

= +∑ , (21) 

which automatically satisfies 0(0)c c= , ( ) ac a c= , 0(0)c c=� �  
and ( ) ac a c=� � , due to Eqs. (20) and (13). 

Then, we use the above c(t) with an initial guess of kb  to set 
up the system of linear elements ( )jE t  by the method in Section 

2.  During the iteration process, ( )jE t  are modified by c(t), 
which is varying step-by-step. 

We can derive a system of linear algebraic equations by in- 
serting c(t) of Eq. (21) and different ( )jE t  with 1, ,j m= …  
into Eq. (14): 

( ) ( )

( ) ( ) ( ) ( )

2

0

2

0 0 0

( )  

( )  ( )  

a

k j k

a a

j j

b E t b t E t dt

d F t E t b t dt d t E t b t dt

⎡ ⎤+⎣ ⎦

⎡ ⎤ ⎡ ⎤= + + − +⎣ ⎦ ⎣ ⎦

∫

∫ ∫

�� �

� �� �
 (22) 

Solving this linear system we can determine the expansion co- 
efficients kb , 1, ,k m= … .  Then, we can estimate c(t) by Eq. (21). 

1. Iterative Algorithm 
The numerical procedures of the energetic temporal boun- 

dary function method (ETBFM) are summarized as follows. 
 

(1) Give m, ε, and an initial guess of ( )T
1, , mb b=b … , 

(2) For 1, ,k = …  calculate 

 ( ) ( ) ( )1j j j jE t B t B tγ += + , 

 ( )
1

( ) ( )
m

k
j j

j

c t d t b E t
=

= +∑ , 

 and calculate a2, a1 and a0 in Eq. (17), 
(3) Calculate jγ  by Eq. (18), 

 ( ) ( ) ( )1j j j jE t B t B tγ += + , 

 ( ) ( ) ( )1j j j jE t B t B tγ += +� � � , 

(4) Insert the above ( )jE t  and ( )jE t�  into Eq. (22), and solve 

the linear system to obtain 1k
jb + .  If the following conver- 

gence criterion for the relative norm of kb  is satisfied: 

 1k k ε+ − ≤b b , (23) 

 then stop the iterations; otherwise, go to (2) to the next 
step.  Notice that 2

1 0 24a a a−  in Eq. (18) may be negative 

in the first iteration, and we use 2
1 0 24a a a−  to avoid the 

interruption of program. 

2. Recovering c(t) 
In this section we solve the inverse coefficient problem of 

nonlinear oscillator by recovering the unknown damping func- 
tion c(t) by using the temporal boundary data. 

Example 1 
This example is given by 

 ( ) ( ) ( )2( ) 3 sin , ( ) sin ,c t t t x t tπ= − + =  

 3( )H x x xα β= + , (24) 

where the exact F(t) can be derived according to Eq. (1).  The 
above H(x) is the restoring force of the Duffing nonlinear os- 
cillator. 

Under m = 2, ε = 10-3, a = 1, α = 5 and β = 2, the iterative 
algorithm converges with 5 steps as shown in Fig. 1(a).  Upon 
comparing with the exact c(t), good result is obtained with the 
maximum error being 0.154 as shown in Fig. 1(b).  Additionally, 
the different m  andε  are considered to test convergence speed 
and numerical accuracy, and the numerical result is shown in 
Table 1.  Table 1 shows that the maximum error increases from 
0.107 to 1.224 when m  increases.  That is, the numerical error  
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Table 1. Different m and ε affect the different convergences 
of the present scheme. 

m ε Maximum error Iterative number 
2 0.153 5 
4 0.556 10 
6 

10-3 
1.224 93 

2 10-2 0.107 2 
2 10-4 0.759 54 
4 10-2 0.496 4 
4 8 × 10-4 0.569 12 
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Fig. 1. For the second-order nonlinear oscillator of example 1 solved by the 

ETBFM iterative algorithm, (a) convergence rate, and (b) com-
paring recovered and exact damping coefficients. 

 
 

and iterative numbers increase when using the stringent criti-
cal condition and large m. 

Example 2 
This example is given by 

 2 3 2 2( ) 3 2 exp( 2 1), ( ) 10 ,c t t t t t H x x x= + + + − = −  (25) 

where ( )( ) sinx t t= , and the exact F(t) can be derived accord- 
ing to Eq. (1).  The above H(x) is the restoring force of a ship 
rolling nonlinear oscillator (Thompson, 1997). 
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Fig. 2. For the second-order nonlinear oscillator of example 2 solved by the 
ETBFM iterative algorithm, (a) convergence rate, and (b) com-
paring recovered and exact damping coefficients. 

 
 
Under m = 5, a = 1 and ε = 10-3, the iterative algorithm 

converges with 5 steps as shown in Fig. 2(a).  Upon comparing 
with the exact c(t), good result is obtained as shown in Fig. 
2(b), where the maximum error is 0.355. 

IV. IDENTIFYING THE RESTORING FORCES 

In this section we attempt to recover the unknown restoring 
force H(x) through boundary measurements of supplemented 
data.  This problem is more difficult than that in Section 3.  In 
general, the restoring forces problems can be roughly divided 
into two categories, ( , )H x x� and H(x).  First, the restoring forces 

( , )H x x�  is a function of both displacement and velocity, which 
cannot be separable.  Chen (2007) and Chen et al. (2013) ap- 
plied the characteristic time expansion method for estimating 
nonlinear restoring forces ( , )H x x� .  Another determined restor- 
ing forces H(x) with the given damping term, and the restoring 
forces and damping term can be separable.  Previously, Liu 
(2008b) has developed a Lie-group shooting method to solve 
this problem, of which however many internal data of displace- 
ments are needed. 

In order to recover H(x) and avoided multiple roots occurrence, 
the motion of x(t) is supposed to be a monotonic function of t.  
We first view ( )( ) ( )H t H x t=  as a time function of t, and then 
inverting the relation of x(t) to t(x) and inserting it into ( )H t =  
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( )( ) ( )H t x H x=  we can obtain H(x).  A monotonic motion is 
easily obtained by applying a monotonic external force of F(t) 
on the system. 

Here we suppose that H(t) is in the following form: 

 ( )
1

( ) ( )
m

j j
j

H t D t c E t
=

= +∑ , (26) 

where 

 

3
0 03

2
0 0 0 02

1( ) 2 2

1 3 3 2 .

a a

a a

D t H H H a H a t
a

H H H a H a t H t H
a

⎡ ⎤= − + +⎣ ⎦

⎡ ⎤+ − + + + +⎣ ⎦

� �

� � �
 (27) 

The data 0 (0)H H= , ( )aH H a= , 0 (0)H H=� �  and aH =�  

( )H a�  are supposed to be provided. 
The numerical procedures of the energetic temporal boun- 

dary function method (ETBFM) to recover H are summarized 
as follows. 

 
(1) Give m, ε, and an initial guess of ( )T

1, , mc c=c … , 
(2) For 1, ,k = …  calculate 

 ( ) ( ) ( )1j j j jE t B t B tγ += + , 

 ( )
1

( ) ( )
m

k
j j

j

H t D t c E t
=

= +∑ , 
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 where ( )2 2
0 0 2.aD x x= −� �  

(3) Calculate 
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Fig. 3. For the second-order nonlinear oscillator of example 3 solved by the 
ETBFM iterative algorithm, (a) convergence rate, and (b) com-
paring recovered and exact restoring force functions. 

 
 

(4) Insert the above ( )jE t  and ( )jE t�  into 

 
( ) ( )

( ) ( ) ( ) ( ) ( )

2

0
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( )  

( )  ( )  ,
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j j
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∫

∫ ∫

��
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 and solve this linear system to obtain 1k
jc + .  If the follow- 

ing convergence criterion for the relative norm of kc  is 
satisfied: 

 1k k ε+ − ≤c c , 

then stop the iterations; otherwise, go to (2) to the next step.  
In the first iteration, 2

1 0 24a a a−  may be negative, and we 

use 2
1 0 24a a a−  to avoid the interruption of program. 

Example 3 
This example is given by 

 3( ) 5 2H x x x= + , (28) 



208 Journal of Marine Science and Technology, Vol. 27, No. 3 (2019 ) 
 

 

200
180
160
140
120
100

80
60
40
20

0
0.0 0.4 0.8 1.2

x
(b)

1.6 2.0

0 2 4 6
Number of iterations

(a)

8

H
(x

)

Numerical
Exact

1E+1

1E-1
1E-2
1E-3
1E-4
1E-5
1E-6

1E+0

R
es

id
ua

l

 
Fig. 4. For the second-order nonlinear oscillator of example 4 solved by the 

ETBFM iterative algorithm, (a) convergence rate, and (b) com-
paring recovered and exact restoring force functions. 

 

 

of a Duffing oscillator.  We take ( ) ( )2( ) 3 sinc t t tπ= − + , 
2( )x t t=  and the exact F(t) can be derived according to Eq. (1).  

Under m = 2, a = 1 and ε = 10-2, the iterative algorithm con-
verges with 2 steps as shown in Fig. 3(a).  Upon comparing 
with the exact H(x), good result is obtained with the maximum 
error being 0.173 as shown in Fig. 3(b). 

Example 4 
In this example we recover 

 2( ) 150 25H x x x= + , (29) 

of a ship rolling oscillator; we take ( ) ( )2( ) 3 sinc t t tπ= − + , 
( ) 2x t t=  and the exact F(t) can be derived according to Eq. 

(1).  Under m = 1, a = 1 and ε = 10-5, the iterative algorithm 
converges with 8 steps as shown in Fig. 4(a).  Upon comparing 
with the exact H(x), good result is obtained with the maximum 
error being 3.77 as shown in Fig. 4(b). 

Example 5 
The restoring force to be recovered is 

 2 3 4( ) 100 50 20 10H x x x x x= + + + . (30) 
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Fig. 5. For the second-order nonlinear oscillator of example 5 solved by the 

ETBFM iterative algorithm, (a) convergence rate, and (b) com-
paring recovered and exact restoring force functions. 

 
 
We take ( ) ( )2( ) 3 sinc t t tπ= − + , ( ) 2x t t=  and the exact 

F(t) can be derived by Eq. (1).  Under m = 2, a = 1 and ε = 10-3, 
the iterative algorithm converges within 12 steps as shown  
in Fig. 5(a).  Upon comparing with the exact H(x), good result is 
obtained with the maximum error being 2.47 as shown in Fig. 5(b). 

Example 6 
The restoring force to be recovered is 

 ( ) 300 30 xH x x e= − , (31) 

and we take ( ) ( )2( ) 3 sinc t t tπ= − + , ( ) 2x t t=  and the exact 
F(t) can be derived according to Eq. (1).  Under m = 2 and ε = 
10-3, the iterative algorithm converges within 35 steps as 
shown in Fig. 6(a).  Upon comparing with the exact H(x), 
whose maximum value is about 391, reasonable result is obtained 
with the maximum error being 28.91 shown in Fig. 6(b). 

V. CONCLUSIONS 
In this paper we have transformed the dynamic inverse prob- 

lems to recover the damping functions and the restoring forces 
of the second-order nonlinear oscillators into linear systems to 
determine the expansion coefficients of the unknown functions.   
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Fig. 6. For the second-order nonlinear oscillator of example 6 solved by the 

ETBFM iterative algorithm, (a) convergence rate, and (b) com-
paring recovered and exact restoring force functions. 

 
 

The energy identity derived from the oscillatory equation was 
used to set up a linear space of the energetic temporal boundary 
functions, which not only satisfy the given temporal boundary 
conditions but also preserve the energy.  We can quickly recover 
the unknown damping functions and the nonlinear oscillators 
in the linear space, which is supplemented by extra temporal 
boundary data.  Six numerical examples are used to confirm the 
efficiency and accuracy of the presented energetic temporal boun- 
dary functions method, of which the convergence is very fast, 
from two steps to thirty-five steps. 
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