
Volume 27 Issue 1 Article 5

RECTANGLE-BASED APPROACHES FOR REPRESENTING FLOOD DATA IN RECTANGLE-BASED APPROACHES FOR REPRESENTING FLOOD DATA IN
SPATIAL INDICES SPATIAL INDICES

Ya-Hui Chang
Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan, R.O.C.,
yahui@ntou.edu.tw

Wen-Han Lee
Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan, R.O.C

Tai-Feng Ke
Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan, R.O.C

Follow this and additional works at: https://jmstt.ntou.edu.tw/journal

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Chang, Ya-Hui; Lee, Wen-Han; and Ke, Tai-Feng (2019) "RECTANGLE-BASED APPROACHES FOR REPRESENTING
FLOOD DATA IN SPATIAL INDICES," Journal of Marine Science and Technology: Vol. 27: Iss. 1, Article 5.
DOI: 10.6119/JMST.201902_27(1).0005
Available at: https://jmstt.ntou.edu.tw/journal/vol27/iss1/5

This Research Article is brought to you for free and open access by Journal of Marine Science and Technology. It has been
accepted for inclusion in Journal of Marine Science and Technology by an authorized editor of Journal of Marine Science and
Technology.

https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/vol27
https://jmstt.ntou.edu.tw/journal/vol27/iss1
https://jmstt.ntou.edu.tw/journal/vol27/iss1/5
https://jmstt.ntou.edu.tw/journal?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol27%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol27%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jmstt.ntou.edu.tw/journal/vol27/iss1/5?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol27%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages

Journal of Marine Science and Technology, Vol. 27, No. 1, pp. 35-45 (2019) 35
DOI: 10.6119/JMST.201902_27(1).0005

RECTANGLE-BASED APPROACHES
FOR REPRESENTING FLOOD DATA

IN SPATIAL INDICES*

Ya-Hui Chang, Wen-Han Lee, and Tai-Feng Ke

Key words: flood data, spatial index, R-tree.

ABSTRACT

Appropriate representation of flood data in indices is crucial
for efficient future querying. A common approach is to use mini-
mum bounding rectangles to build R-tree indices rather than
storing real complex objects; however, the results may be im-
precise. Herein, to improve the performance of this approach,
we discuss methods for producing corresponding rectangles.
The first method involves generating a set of small fixed-sized
squares, and the second one attempts to initially obtain a large
rectangle. The third approach recursively partitions the space
into four quadrants until the given size constraint is satisfied.
Experimental results based on the real flood data of two repre-
sentative cities demonstrate that the quadruple partitioning me-
thod can best approximate the original area using fewer cells
and is thus the recommended approach.

I. INTRODUCTION

Natural disasters caused by heavy rain have become increas-
ingly severe as a result of global warming. In certain regions
bounded by the ocean or rivers, the situation is even worse be-
cause of the complex interaction of rain, rivers, waves, and tides.
Researchers have investigated methods for creating flood-
forecasting systems or quickly identifying flood zones using near-
real time satellite data and other useful information. A more
detailed discussion of relevant research is provided in Section 6.

After identifying locations that will be or are already flooded,
the next critical step is to properly store spatial information in
indices for efficient future querying. This is not an easy task
because flood objects have irregular shapes that are dependent
on the geographical characteristics. Although some types of data-

(a) Real flood objects

(b) A minimum bounding rectangle

3

3 4

5

7
A

B

C

D

E

Fig. 1. Examples of real flood objects and minimum bounding rectangles.

base software have extended their type systems for users to re-
present complex geometrical objects using point sequences and
some parameters, a large flood object may consist of up to hun-
dreds of points or more. For example, three real flood objects
that occurred in Keelung city are displayed in Fig. 1(a). The left-
most one actually consists of 655 points. Such large amounts of
point data require a lot of storage space and also make the future
spatial operation (e.g., computing intersected areas) difficult to
process.

Therefore, researchers have proposed the approximation of
complex spatial objects using minimum bounding rectangles
(MBRs) because of their simplicity. Many spatial indices, such
as the R-tree index designed by Guttman (1984) and the R*-tree
index proposed by Beckmann et al. (1990) have utilized the MBRs
of spatial objects as the keys of index nodes to enable quick per-
formance of various spatial operations. However, MBRs may
cause inaccurate answers in some applications. An example is

Paper submitted 10/13/18; revised 11/28/18; accepted 01/17/19. Author for
correspondence: Ya-Hui Chang (e-mail: yahui@ntou.edu.tw).
1 Department of Computer Science and Engineering, National Taiwan Ocean
University, Keelung, Taiwan, R.O.C.

* This work was partially supported by the Ministry of Science and Technology
under Contract No. MOST 107-2221-E-019-043-.

36 Journal of Marine Science and Technology, Vol. 27, No. 1 (2019)

provided using the road network displayed in Fig. 1(b), in which
the gray object represents a flood object and its MBR is depicted
by dashed lines. In the event that a user wishes to depart from
node A and arrive at node D, the system erroneously judges that
the road is flooded and impassable because the dashed rectangle
intersects the road (B, C). If the path-planning system computes
the shortest path based on this information, it will identify the
path (A, E, D), which is longer than the real shortest unflooded
path (A, B, C, D).

Some researchers, such as Freeman and Shapira (1975) and
Brinkhoff et al. (1994), have discussed methods for reducing the
number of misjudgments by using different forms of approxi-
mation, but identifying optimal methods for flood objects is
difficult because of their irregular shapes. Moreover, more ac-
curate approximations tend to involve complex shapes, which are
difficult to use directly in building spatial indices for pruning
impossible matches. Therefore, in this paper, we advocate the
use of rectangles to retain the applicability of the most commonly
used R-tree index. However, rather than directly using the simple
MBR, we attempted to produce a set of smaller cells to more
accurately approximate the original flooded areas and reduce
the occurrence of misjudgment.

In this paper, we propose three methods for producing flooded
cells. The baseline approach is to partition the MBR of each
flood object into a set of squares with a given side length. This
method is easily implemented but increases the difficulty of
determining the proper side length. A small side length can re-
duce the degree of misjudgment, as depicted in Fig. 1(b), but may
produce many cells; this could result in the creation of a big
R-tree and slow subsequent spatial join operations. Therefore,
we designed the Minimum Intersection Rectangle (MIR) ap-
proach, which attempts to first obtain a “big” flooded cell be-
fore running the baseline approach on the remaining space; the
aim of this method is to reduce the total number of flooded cells
being produced. The final approach is the most flexible one in
terms of the size of generated flooded cells. It first partitions the
MBR into four quadrants. A component quadrant is returned as
a flooded cell by itself if most of its space is flooded; otherwise,
it is partitioned recursively. The primary difficulty lies in how
to appropriately process the point sequence representing a flood
object to ensure that each sub-sequence within a quadrant con-
tinues to form a reasonable shape after partitioning. We have
derived the properties of a valid sub-sequence and used them as
the basis of the partitioning algorithm. The contributions of this
paper are summarized as follows:

(1) We investigate the problem of representing flood data in

indices. We advocate the idea of generating smaller rectan-
gles by partitioning the MBRs of flood objects to reduce
the occurrence of misjudgment while maintaining the easy

construction of spatial indices.
(2) We designed three partitioning algorithms. Algorithm FS

(FixedSized) produces a set of squares with a specified side
length. Algorithm MIR creates a large rectangle and a set of
smaller rectangles. Algorithm Quad (Quadruple) recursively
partitions the space into four quadrants if necessary and may
generate flooded cells with different sizes. To address the
problem of appropriately processing the point sequence re-
presenting a flood object to successfully perform the recursive
procedure, we investigated the characteristics of reasonable
shapes possessed by flood objects and designed the algorithm
accordingly.

(3) We have implemented the proposed three approaches and
conducted extensive empirical studies using the real flood
data of two representative cities. The primary metrics used
to compare the flooded cells returned with each method are
the area covered by these cells and the number of produced
cells. The experimental results revealed that the Quad ap-
proach was optimal for approximating the real flooded area
with fewer cells.

The remainder of this paper is organized as follows. In Section

2, we formally define the problem to solve and discuss Algorithm
FS. In Section 3 and Section 4, we present Algorithm MIR and
Algorithm Quad, respectively. Finally, experimental results are
provided in Section 5, related works are discussed in Section 6,
and conclusions are provided in Section 7.

II. PROBLEM DESCRIPTION AND
THE FIXED-SIZE APPROACH

We first formally define the terms used in this paper and the
problem to be solved. We also describe the fixed-size ap-
proach in this section. Although the data being processed are
geographic, we assume the Cartesian coordinate system for
simplicity, where the x axis represents the longitude values and
the y axis represents the latitude values.

Definition 1 A point p refers to a specific geographic location
and is identified by a pair of longitude and latitude values, which
will be referred as x and y values throughout the remainder of
this manuscript.

Definition 2 A flood object is denoted by the variable f and is
represented by a sequence of points (p1, , pn), which forms a
simply connected domain1 and the area inside of which is
flooded.

Definition 3 A rectangle r is identified by its lower left point
(minx, miny) and upper right point (maxx, maxy) and denoted by
the quadruple [minx, miny, maxx, maxy]. The sides of the rec-
tangle are parallel to the x and y axes, respectively.

1 A domain D is considered to be simply connected if every closed curve in D can be continuously shrunk to any point in D without leaving D (Kreyszig (2011)).
Note that most flood objects satisfy this constraint because of geographical characteristics, as indicated in Fig. 1(a). If a flood object is not simply connected, we
will decompose it into several objects, where each one satisfies such constraints in the preprocess stage.

 Y.-H. Chang et al.: Indexing Flood Data Using Rectangles 37

Algorithm FS
Input: f //a flood object, e //the fixed side length of a cell
Output: OutputList

1: initialize OutputList and TempList as null;
2: set r as MBR(f) with the quadruple [minx, miny, maxx, maxy];
3: if r.size < e2 then
4: return OutputList.add(r).
5: end if
6: lng ← m2Lng(e); lat ← m2Lat(e);
7: set p as the point located at (minx, miny);
8: while (p.x + lng < maxx) and (p.y + lat < maxy) do
9: add the cell located at p into TempList;
10: advance p properly;
11: end while
12: partition the rightmost and uppermost remaining area;
13: for each square c in TempList do
14: if intersects(f, c) then
15: OutputList.add(c);
16: end if
17: end for
18: return OutputList.

Fig. 2. Algorithm FS.

4

3

2

1

0 1 2 3 4

4

3

2

1

0 1 2 3 4
X X

YY

(a) (b)
Fig. 3. Examples of fixed-size flooded cells.

Definition 4 A flooded cell, denoted by c, is a rectangle that
has been constructed based on a flood object and all or part of
the area inside the cell c is flooded.

In this paper, we discuss the problem of producing flooded

cells for constructing rectangle-based spatial indices. As dis-
cussed in Section 1, the simplest form is the MBR of a flood ob-
ject, but it might cover too much space and yield imprecise results.
Therefore, our first approach, Algorithm FS, was to divide the
MBR into many smaller fixed-sized cells. As indicated in Fig.
2, we first identified the MBR of the given flood object f and
then directly returned the MBR as the only flooded cell if it was
already relatively small (L1-5). Otherwise, we partitioned the
MBR into a set of squares with the side length e. Because the
parameter e was provided in meters, it was required first to be
converted to the equivalent longitude and latitude values (L6),
and the partitioning process began from the lower left point of
the MBR to the upper right point (L7-12). After obtaining the
set of squares, the function intersection in L14 ensured that only
those squares overlapping the given flood object f were returned.

An example is provided in Fig. 3(a). The shaded object re-
presents a flood object. Its MBR is depicted by dashed lines,
and the flooded cells have solid edges. The set of the 13 smaller

flooded cells clearly offers a better approximation of the flood
object than the MBR in terms of their respective unused space.
This measurement was formally defined by the coverage ratio
(cr), which compares the total sizes of constructed flooded cells
ci with that of the original flood object f as follows:

.

.

c sizeicr
f size

  (1)

Based on our method of producing flooded cells, the cr value
is always larger than one. Moreover, if the cr value is smaller
and near to one, the total sizes of flooded cells will be similar
to that of the original flood object and the inaccurate situation
depicted in Fig. 1(b) is most likely to be avoided. Although
smaller flooded cells yield favorable cr values, an extremely
small e value is impractical because more cells will be produced.
Compare the flooded cells displayed in Figs. 3(a) and (b) re-
spectively, in which those in (a) have the side length “1” and
those in (b) have the side length “0.5”. We can see that their cr
values are 13:(41/4) and their counts are 13:41. To determine
the side length solely based on the cr value, we should set it as
“0.5”; however, generating many flooded cells poses two dis-
advantages. First, the intersection operation between two spatial
objects, as specified in L14 of Fig. 2, is relatively costly com-
pared with other operations. Second, more cells would expand
the R-tree index, which would negatively affect future querying
efficiency. Because an effective method for determining an ap-
propriate e value that achieves a balance between avoiding mis-
judgment and demonstrating adequate querying efficiency was
not obvious, we designed other partitioning methods and com-
pared their performance, as detailed in the following sections.

III. MINIMUM INTERSECTION RECTANGLES

By examining the flood object in Fig. 3(b), we can discern that
its center part is partitioned into many cells, which seems un-
necessary. In this section, we propose another partitioning method
that involves creating a “big” flooded cell around the center part
first with the aim of reducing the total number of flooded cells.
Rather than identifying an optimal method that requires com-
plicated computation, we designed a heuristic approach based
on the intersection points of the shape. Specifically, given a flood
object and its MBR, we first identified the center of the MBR o
and then assigned the coordinate axes x and y accordingly. For
easy reference, we sometimes refer to a specific axis by the di-
rections east (E), north (N), west (W), and south (S), as indicated
in Fig. 4(a). The intersection points and the particular specified
flooded cells are then defined as follows:

Definition 5 An intersection point, θ, is a point where the
flood object intersects the x or y axis. We use the superscript d,
such as  d, to represent the direction of the intersection point.
The intersection point may have already existed in the point se-
quence representing the flood object or be computed through

38 Journal of Marine Science and Technology, Vol. 27, No. 1 (2019)

(a)

θW
1

θN
1

θS
1

θE
1

O
W

S

N

E

(b)

θW
1

θS
1

θS
1

θW
2

θN
1

θN
2

O

S

N

W E

(c)

θ W
1

θS
1

θN
1

θN
2

θN
3 θE

1
O

S

N

W E

Fig. 4. Examples of intersection points between a flood object and axes.

Algorithm MIR
Input: f //a flood object, e //the minimum side length of a cell
Output: OutputList

1: initialize OutputList and TempList as Null;
2: set r as MBR(f) with the quadruple [minx, miny, maxx, maxy];
3: if(r.size < e2) then
4: return OutputList.add(r).
5: end if
6: if not within(r.center, f) then
7: return Outputlist.add(FS(f)).
8: end if
9: for each point s[i] representing f do
10: if InAxis(s[i]) then
11: d ← GetDirection(s[i], r.center);
12: UpdateAxisPoint(s[i], d);
13: else if Cross(s[i], s[i+1]) then
14: ← GetInterPoint(s[i], s[i+1], r.center);
15: d ← GetDirection(, r.center);
16: UpdateAxisPoint(, d);
17: end if
18: end for
19: MIR ← SetMIR(); OutputList.add(MIR);
20: TempList ← FS(r-MIR, e);
21: for each cell c in TempList do
22: if intersects(f, c) then
23: OutputList.add(c);
24: end if
25: end for
26: return OutputList.

θ
θ

θ

Fig. 5. Algorithm MIR.

interpolation.

Definition 6 Consider a flood object f, the MBR center of which
o is located inside f. For the four directions east, north, west,
and south, the intersection points nearest to o were obtained.
The rectangle with the four specified intersection points on the
sides was termed the MIR of f.

First note that we require the center of the MBR to be located

inside the flood object. Otherwise, as depicted in Fig. 4(b), the
center part of the flood object will not cover much of the flooded
space to meet the motivation, so there is no need to use this me-
thod. Also note that there is a nearest requirement for determin-
ing among multiple intersection points in the same direction.
As shown in Fig. 4(c), there are three intersection points in the

north. We adopt the conservative approach and choose the one

nearest to the center, i.e., 3
N , so that a higher percentage of

the space covered by an MIR is flooded.
The corresponding MIR Algorithm is displayed in Fig. 5.

As discussed, if the center of the MBR of the object was located
outside of the shape, using this partitioning method served no ad-
vantage and we directly invoked Algorithm FS to partition this
flood object (L6-8). Otherwise, we examined the s[i] in the point
sequence representing the flood object (L9-18). First, we deter-
mined whether the point was located directly on the x or y axis.
If so, we identified the direction of the axis and recorded the
intersection point nearest to the center in that axis observed thus
far (L10-12). Otherwise, if two adjacent points crossed a certain
axis, we computed the intersection point through interpolation
and similarly updated and recorded the nearest one (L13-16).
After concluding an examination of the entire point sequence,
we constructed the MIR based on the four nearest intersection
points and returned it as a flooded cell (L19). Finally, we par-
titioned the remaining space between the MBR and MIR using
Algorithm FS, and only cells that intersected the original flood
object were returned (L20-25).

IV. QUADRUPLE PARTITIONING

The MIR method may be suitable for those flood objects that
are “fat” in the center. However, for certain thin-shaped objects
that are commonly seen in the flooded regions along river banks,
the MIR may be too small or too big to be useful. Therefore, we
propose a more flexible method in which the sizes of constructed
flooded cells could differ. The idea was to divide the MBR of
a flood object into four quadrants. If a high percentage of the
space covered by a quadrant was flooded, we directly returned
the quadrant as a flooded cell. Otherwise, we performed the par-
titioning procedure recursively on the quadrant until it satisfied
the threshold constraint. Fig. 6(a) presents an example, in which
the four quadrants are denoted as Q1, Q2, Q3, and Q4. Supposing
that the threshold constraint was that more than half of the
quadrant must be flooded, quadrants Q1 and Q3 clearly meet
the requirement and can be flooded cells by themselves. In con-
trast, Q2 and Q4 must be further partitioned. We can see that the
generated flooded cells have varying sizes.

 Y.-H. Chang et al.: Indexing Flood Data Using Rectangles 39

(a) (b) (c)

W

S

N

E
O

Q1

Q4

Q2

Q3

θS
1

θE
1

θN
1

θW
1

W

S

N

E
O

P1

P2
P3

P4
P5

θN
2

θN
1

θW
1 θW

2

W

S

N

E

P1

P2

O

Fig. 6. Examples of the quadruple partitioning and formulating proper point sequences for sub-flood objects.

Although the procedure for partitioning seems similar to that

for constructing a Quadtree in Finkel and Bentley (1974), pro-
cessing the flood data represented as point sequences is nontrivial.
Using the flood object depicted in Fig. 6(b) as an example and
supposing that part of the point sequence representing the ori-
ginal flood object is (p1, p2, p3, p4, p5), we must further partition
Q2 because the flooded area within the Q2 quadrant does not
exceed the percentage threshold. However, we cannot directly
use the point sequence (p2, p3, p4) to represent the sub-flood
object in this quadrant because the resultant polygon significantly
differs from the shaded area. A more appropriate method is to

form the point sequence (1
W , p2, p3, p4, 1

N , o) for the sub-

flood object, where points 1
W and 1

N are the intersection points

on the borders of Q2, as indicated in Definition 6, and o is the
center of the MBR.

Further note that we cannot directly insert the center of the MBR
into the sub-point sequence in all cases. Consider Fig. 6(c). The
center o is not located inside the original flood object; therefore,
it is not on the boundary of any sub-object and should not appear
in any sub-point sequence. As an example, the appropriate point

sequence for the sub-flood object in Q2 should be (1
W , p1, p2,

1
N , 2

N , 2
W), without the center o. As demonstrated by the two

aforementioned representative examples, we derive the follow-
ing property to enable the sub-point sequence to more accurately
approximate the real flooded area based on where the center of
the MBR is located:

Property 1 For a flood object f , if the center of the MBR o is
within the shape, the sub-point sequence for each quadrant Q
should consist of the intersection points on Q’s borders and o.
Otherwise, the sub-point sequence should only consist of the
intersection points on the borders.

We also hope for the sub-point sequence of each quadrant to

continue to form a simply connected domain as the original flood
object does. This condition facilitates future spatial calculation,
such as computing the size of the sub-flood object. Therefore, we
directly ceased the recursive partitioning procedure when we dis-
covered that not just any sub-object would satisfy this property.
The main challenge lies in how to perform the detection task
easily, and we propose to use the number of intersection points
due to its direct relationship with the shapes of sub-objects. In

the following, we first provide some definitions for assisting
the detection process:

Definition 7 For a flood object f, the term IP(f, d) represents
the number of f ’s intersection points located on the axis in the
d direction. Moreover, the term MIP(f) is the maximum value
obtained from the four directions, and the term SIP(f) is their
sum. These two terms are formally defined as follows:

{ , , , }

() (,)max
d E N W S

MIP f IP f d


 (2)

{ , , , }

() (,)
d E N W S

SIP f IP f d


  (3)

We now exhaustively present the possible shapes of sub-flood
objects based on the values of MIP(f) and SIP(f). Note that the
shape of the original flood object f forms a simply connected do-
main; therefore, we do not need to consider the shape with holes.
More intersection points correspond to more complex shapes, and
thus the following discussion starts from the smallest possible
number of MIP(f):

Case I: MIP(f) = 1

In this case, the point sequence of a reasonable flood object
f passes through the axis in each direction exactly once (i.e.,
the flood object covers all quadrants and also contains the cen-
ter o). For the flood object f presented in Fig. 6(a), IP(f, E) =
IP(f, N) = IP(f, W) = IP(f, S) = 1. Therefore, MIP(f) = 1 and
SIP(f) = 4. We can see that the sub-flood objects for all quadrants
form simply connected domains.

Case II: MIP(f) = 2

In this case, the point sequence of f either leaves and later
re-enters a certain quadrant to create two intersection points on
the border or does not appear in a certain quadrant and has no
corresponding intersection points. That is, all IP(f, d)’s are even
and either 0 or 2. Three sub-cases based on the value of SIP(f)
are as follows:

1) SIP(f) = 4

For the flood object depicted in Fig. 6(c), IP(f, N) = IP(f, W) =
2 and IP(f, E) = IP(f, S) = 0. In this case, the shape of the ob-

40 Journal of Marine Science and Technology, Vol. 27, No. 1 (2019)

(a) (b) (c)

θE
1θE

2θW
2θW

1

θN
1

θN
2

θS
2

θS
1

W

S

N

EO

P1

P2

θS
1

θS
3

θS
2

θE
1

θN
1

θW
1

W

S

N

E
O

θN
1

θN
2

θS
2

θN
1

θW
1 θW

1

W

S

N

E
O

P1

P2

Fig. 7. Examples of sub-flood objects which form simply connected domains or not.

ject f does not contain the center o and does not cover quadrant
Q4. However, the shapes of the sub-objects located within qua-
drants Q1-Q3 still form simply connected domains.

2) SIP(f) = 6

In Fig. 7(a), IP(f, N) = IP(f, W) = IP(f, S) = 2 and IP(f, E) = 0.
We can see that the original object also does not contain the
center o. However, it covers all quadrants and every sub-flood
object still forms simply connected domains.

3) SIP(f) = 8

In this case, IP(f, d) = 2 for all directions d. The only possible
means is the point sequence separately entering a particular
quadrant from two directions, as indicated by the two gray areas
in the quadrant Q4 of Fig. 7(b). The shape of the sub-object lo-
cated within Q4 will clearly not form a simply connected domain.

Case III: MIP(f)  3

Consider Fig. 7(c). IP(f, S) = 3 and IP(f, E) = IP(f, N) =
IP(f, W) = 1. We can see that the point sequence of the original
flood object leaves and re-enters Q3 more than once. This cuts
its shape off by the y axis, and the shape of the sub-object in Q3
does not form a simply connected domain. We can easily see that
a similar situation would occur with more intersection points.

From the aforementioned exhaustive cases, we can derive the
following property for the shapes of sub-flood objects:

Theorem 1 All four sub-objects of a flood object f continue to
form simply connected domains if one of the following two con-
ditions are true: (1) the center of the MBR of f is located within
f and MIP(f) = 1; (2) the center of the MBR of f is located out-
side of f, MIP(f) = 2, and two or three directions d  {E, N, W, S}
establish IP(f, d) as equal to 2.

Proof

The first condition was directly obtained from Case I. The
second condition was formed by combining the first and second
sub-cases of Case II. 

Algorithm Quad was designed using the two aforementioned

properties and is specified in Fig. 8. It is invoked in a recursive
manner and the stopping condition is provided in L3. Basically,
we directly returned the MBR as a flooded cell if its size was re-

Algorithm Quad
Input: f //a flood object, ts //the size threshold, tr //the ratio threshold
Output: OutputList

1: initialize OutputList as Null;
2: set r as MBR(f);
3: if (r.size < ts) or (f.size/r.size > tr) then
4: return OutputList.add(r).
5: end if
6: InFlag ← FALSE;
7: if within(r.center, f) then
8: InFlag ← TRUE;
9: end if
10: for each point s[i] representing f do
11: d1 ← GetDirection(s[i], r.center);
12: if d1 ∈ {E, N, W, S} then

13: d2 ← d1;
14: d1 ← GetDirection(s[i−1], r.center);
15: ← s[i];
16: else if Cross(s[i], s[i+1]) then
17: ← GetInterPoint(s[i], s[i+1], r.center);
18: d2 ← GetDirection(, r.center);
19: else
20: Seq[d1].add(s[i]); continue;
21: end if
22: UpdateAxisCount(, d2);
23: if not SatisfyProperty(InFlag) then
24: return OutputList.add(r).
25: end if
26: Seq[d1].add(s[i]);
27: if Cross(s[i], s[i+1]) then
28: Seq[d1].add();
29: end if
30: if InFlag then
31: Seq[d1].add(r.center);
32: end if
33: d3 ← GetDirection(s[i+1], r.center);
34: Seq[d3].add();
35: end for
36: for each quadrant d do
37: OutputList.add(Quad(Seq[d], ts, tr));
38: end for
39: return OutputList.

θ

θ

θ

θ

θ

θ

Fig. 8. Algorithm Quad.

latively small based on the threshold ts or highly similar to that
of the flood object according to the threshold tr. If partitioning
was required, we first set the value of the variable InFlag to sig-
nal whether the MBR’s center is located inside the flood object
(L6- 9), which is a crucial property, as stated in Observations 1-2.

 Y.-H. Chang et al.: Indexing Flood Data Using Rectangles 41

2 19k
18k
17k
16k
15k
14k
13k
12k
11k
10k
9k
8k
7k
6k
5k
4k
3k
2k
1k
0

1.8

1.6

1.4

1.2

1
MBR FS40 FS50 FS60 MIR Quad MBR FS40 FS50 FS60 MIR Quad

C
ov

er
ag

e
ra

tio

(a) Coverage ratio (b) Number
Fig. 9. Flooded cells based on the Keelung data set.

We then examined each point representing the flood object in
sequence (L10-35). In most cases, we simply determined which
quadrant within which this point was located (L11) and ap-
pended it to the corresponding sub-point sequence (L20). By
contrast, when an intersection point was detected (L12-15) or
obtained through interpolation (L16-18), we were required to
increase the count for that particular axis (L22) and determine
whether the property of the simply connected domain was still
true based on Observation 2 (L23). If we expected a violation
to occur, we directly returned the MBR as the flooded cell (L24).
Otherwise, we were required to properly form the sub-point se-
quences for the two quadrants adjacent to the intersection point
as stated in Observation 1. Specifically, the intersection point
should always be inserted into the sub-point sequence for the pre-
vious quadrant (L26-29), but the center of the MBR was required
only if it was located within the object (L30-32). Moreover,
the intersection point was also required to be inserted into the sub-
point sequence for the next quadrant (L33-34). After examining
all points representing the flood object, this algorithm was in-
voked recursively to process each quadrant with its correspond-
ing sub-point sequence.

V. EXPERIMENTAL RESULTS

We designed several experiments to evaluate and compare
the performance of the three proposed partitioning methods,
which will be referenced and denoted as FS, MIR, and Quad.
For the purpose of comparison, we also implemented the MBR
approach, which directly uses the MBR of each flood object as
the flooded cell without any partitioning.

The programs of the proposed methods are implemented in
Visual C, and the experiments are performed on a personal
computer with Intel i7-2600 3.4GHz CPU and 16GB memory.
The default value of the parameter e, i.e., the side length of the
flooded cell required by the FS method, is set as 50 m by ob-
serving the smallest possible real flood objects, unless explicitly
specified. Besides, the parameter tr required by the Quad me-

thod is set as 0.95 since we wish the value as close to one as
possible. The flood data were obtained from the government
website2 and the empirical studies were conducted on two re-
presentative cities, Taipei (411 flood objects) and Keelung
(436 flood objects).

1. Flooded Cells Produced by the Partitioning Algorithms

We first compared the set of flooded cells produced by each
partitioning algorithm and applied two metrics, which are the
coverage ratio based on Eq. (1) and the numbers of produced cells.
Note that both values are the smaller the better. To examine how
the parameter e affects the output of the FS approach, we use three
values 40 m, 50 m, and 60 m, and their results are denoted as
FS40, FS50, and FS60, respectively.

The experimental results based on the Keelung data set are
presented in Fig. 9. By first examining the coverage ratio dis-
played in Fig. 9(a), the MBR approach can be seen to exhibit
the largest coverage ratio, indicating that the flooded cells pro-
duced using this method usually cover a great deal of extra space.
By contrast, the Quad approach produced the smallest coverage
ratio, demonstrating that its flooded cells could best approxi-
mate the original flooded areas. Regarding other approaches,
no much difference was observed between the FS approach and
the MIR approach because of the shapes of the original flood
objects. We compared the number of cells produced by each me-
thod, as displayed in Fig. 9(b). The MBR approach could be
seen to produce the least number of cells because each flood
object corresponded to exactly one flooded cell. Notably, the
Quad approach produced fewer cells than the FS40 and FS50
approaches did. This was a result of its ability to produce a
single cell covering a great deal of flooded space. However, be-
cause the stopping criteria was relatively strict (i.e., 95% of the
cell space should be flooded), more cells were produced than the
MIR and FS60 approaches.

We then examined the experimental results based on the
Taipei data set depicted in Fig. 10. The performances of the pro-
posed methods in Taipei were similar to those in Keelung. This

2 http://dmap.ncdr.nat.gov.tw.

42 Journal of Marine Science and Technology, Vol. 27, No. 1 (2019)

2 11k
10k
9k
8k
7k
6k
5k
4k
3k
2k
1k
0

1.8

1.6

1.4

1.2

1
MBR FS40 FS50 FS60 MIR Quad MBR FS40 FS50 FS60 MIR Quad

C
ov

er
ag

e
ra

tio

(a) Coverage ratio (b) Number
Fig. 10. Flooded cells based on the Taipei data set.

2.5 30k

26k

22k

18k

14k

28k

24k

20k

16k

12k
10k
8k
6k
4k
2k
0

2

1.5

1

0.5

1
FS MIR Quad FS MIR Quad

Ti
m

e
(s

)

(a) Time (b) Complexity
Fig. 11. Partitioning time based on the Keelung data set.

demonstrates that our partitioning algorithms were all better
approximations of the original flood objects than the MBR ap-
proach, regardless of the city geographical characteristics. Fi-
nally, comparing the outcomes of FS40 and FS50, we can see that
the coverage ratio of the former is indeed better than that of the
later (about 0.96 times), but the number of flooded cells will
increase a lot (about 1.5 times). By contrast, the coverage ratio
of FS60 will be even larger than that of the MIR approach and
is unacceptable. Therefore, we will use 50 m as the side length
of the flooded cell for the remaining sets of experiments.

2. Execution Time of the Partitioning Algorithms

In this subsection, we evaluate the difference in execution
time among partitioning methods. First, we examined the time
required to produce flooded cells. Several spatial operations are
involved in this task, which include the function intersects de-
termining whether the two rectangles overlap (L14 of Algorithm
FS), the size computation and comparison (L3 of Algorithm FS,
Algorithm MIR, and Algorithm Quad), and the function within
performing the point containment test (L6 of Algorithm MIR and
L7 of Algorithm Quad). All of these spatial operations were im-
plemented in Boost C libraries, and we summed up the times
required to perform these spatial operations to approximate the
complexity of each algorithm because they are more expensive
than other standard operations.

The experimental results for the Keelung city are displayed in
Fig. 11. The partitioning time (Fig. 11(a)) is obviously affected
by spatial complexity (Fig. 11(b)). We can also see that the FS me-
thod is relatively straightforward and required the least amount of
time. The Quad algorithm was the slowest because of its com-
plexity. Regarding the MIR method, although the number of
generated flooded cells was successfully reduced (Fig. 9(b)), it
required each element in the point sequence to be examined and
costly spatial operations to be performed and thus was slower than
the FS method. The experimental results for Taipei city are pre-
sented in Fig. 12, and indicate that the time required for execu-
tion was less for Taipei city data set than that for the Keelung
data set because of fewer input flood objects; however, the re-
lative performances among the four methods are similar.

We then compared the time required to create the R-tree for
the Keelung data set. As depicted in Fig. 13(a), the MBR me-
thod was the fastest and the FS method was the slowest because
they were primarily affected by the number of produced flooded
cells, as indicated in Fig. 9(b). The indexing time for the Taipei
data set is displayed in Fig. 13(b). The performance was the same
for the four methods, all of which could complete construction
of the index within 0.06 seconds.

3. Comparisons of the Application Results

To further evaluate the effects of different sets of flooded cells,

 Y.-H. Chang et al.: Indexing Flood Data Using Rectangles 43

2 20k
18k

14k
16k

12k
10k
8k
6k
4k
2k
0

1.5

1

0.5

1
FS MIR Quad FS MIR Quad

Ti
m

e
(s

)

(a) Time (b) Complexity
Fig. 12. Partitioning time based on the Taipei data set.

0.12 0.12

0.1

0.06

0.08

0.04

0.02

0

0.1

0.08

0.04

0.06

0.02

0
FSMBR MBRMIR Quad FS MIR Quad

Ti
m

e
(s

)

(a) Keelung (b) Taipei
Fig. 13. Indexing time.

30% 30%

20%

10%

0%

20%

10%

0%
FSMBR MBRMIR Quad FS MIR Quad

Le
ng

th
 d

iff
er

en
ce

(a) Keelung (b) Taipei
Fig. 14. Difference in length.

we created a path-planning system for flooded regions. This sys-
tem first identifies impassable roads that are intersected with any
flooded cell. These roads are then removed, and the remaining
roads are used to run the shortest path algorithm proposed by
Dijkstra (1959). Those shortest paths produced based on different
sets of flooded cells are then compared. To perform the experi-
ments, we randomly produced 150 pairs of source points and tar-
get points and randomly retained 30 data items for which at least
one method produced a detour in response to flooding. For each
method, we computed the normalized length difference (nld)
between the unflooded detour and the original shortest path and ob-
tained the average using the following equation, where a smaller

nld value is preferred and corresponds to shorter average detours:

length of the unflooded detour-length of the original path
length of the original path

number of paths
nld 


 (4)

From a comparison of the path lengths based on the Keelung
data set, as depicted in Fig. 14(a), we can see that the Quad me-
thod produced the smallest value, suggesting that it could iden-
tify the shortest average detour. Specifically, the average difference
in length caused by the MBR method was 2.5 times of that caused
by the Quad method, demonstrating an obvious difference. The

44 Journal of Marine Science and Technology, Vol. 27, No. 1 (2019)

experimental results for Taipei city are displayed in Fig. 14(b).
However, because more roads are available in Taipei to plan the
detour, the lengths of the shortest paths obtained by different
methods were not significantly different. Therefore, for an or-
dinary city without many alternative roads, reducing the misjudg-
ment by properly partitioning flood data is remarkably helpful
for obtaining a shorter detour.

VI. RELATED WORK

This paper mainly discussed the proper representation of flood
objects in spatial indices for efficient future reference. Because
the exact algorithms for managing complex geometric objects
are usually complicated as well as difficult and time-consuming
to implement in practice, researchers have proposed various
methods for approximating an arbitrary closed curve, and the
rectangle is the preferred form because of its simplicity. For ex-
ample, the minimum-area encasing rectangle was proposed by
Freeman and Shapira (1975) and the maximum enclosing rec-
tangle was proposed by Brinkhoff et al. (1994). In the book
written by Har-Peled (2011), one chapter discusses how to ap-
proximate the minimum volume bounding box of a point set in
any dimension, and exact algorithms in 2D and 3D are provided.
However, we could not directly apply these types of rectangles
in this paper because they are allowed to rotate to certain de-
grees, which does not meet our requirements as discussed in
Definition 3.

Besides, efficiently indexing multidimensional spatial data
has been an prominent research problem. Gaede and Günther
(1998) surveyed many structures, the R-tree index being one of
the most widely applied. It can be used in many spatial opera-
tions, such as the simple overlapping operation as well as more
complicated queries, such as the kNN (nearest neighbor) queries,
as discussed by Roussopoulos et al. (1995) or in geographical
data, as discussed by Schubert et al. (2013). Following the initial
construction algorithm of the R-tree index designed by Guttman
(1984), other researchers have studied its variations to improve
querying performance. For example, Beckmann et al. (1990) pro-
posed the R*-tree to incorporate a combined optimization of areas,
margins, and overlaps of each enclosing rectangle of the inner
node. Ang and Tan (1997) discussed a favorable linear algo-
rithm to split the node. More complex indices have also been
proposed by extending the original structure to meet different
information needs. For example, Lu and Shahabi (2017) studied
geo-tagged aerial videos, the field-of-views of which are irre-
gular quadrilateral shapes. They proposed a TetraRtree structure
to represent the four corners of each quadrilateral and thereby
efficiently determine whether a given object appears in a par-
ticular video. Although such a structure is not appropriate for
flood data, these research results merit further study.

Finally, we reviewed literature on flood-forecasting systems.
For example, Thielen et al. (2009) described the European Flood
Alert System for providing flood forecasting in transnational
river basins. It has large-scale applications, including in grid
architecture for the integration of several national hydrologic

and meteorological services. The web-based flood forecasting
system (WFFS) discussed in Li et al. (2006) is a small to medium-
sized system, meaning that it is component-based and applies
the Java technique. Chang et al. (2013) described a system for
Linpien city, located in the southern part of Taiwan, that predicts
the water level of each region three hours in advance according
to current information regarding the weather, nearby river flow,
and tide. In addition to the complete system, some researchers
have focused on specific functions. For example, Granell et al.
(2010) identified tasks that are frequently required by flood fore-
casting systems, such as formatting data, and presented them as
web services. Jhong et al. (2017) and Yu and Coulthard (2015)
studied how to create inundation maps, and Groeve and Riva
(2009) and Liu et al. (2017) quickly identified flood zones using
near-real time satellite data and other useful information. Chang
et al. (2017) proposed to transform computed numerical data into
landmark-based messages to provide more informative warning
messages. Our research results should be suitable for incorpora-
tion into such systems to extend their functionality.

VII. CONCLUSION

Proper representation of flood objects in spatial indices is cru-
cial for providing an efficient querying facility. For example,
after a sudden heavy rain, we may wish to know whether a cer-
tain road is safe or impassable. In this paper, we advocate parti-
tioning the minimum bounding rectangles of flood objects into
smaller rectangles to reduce the possibility of misjudgment and
facilitate the construction of an R-tree index. The main chal-
lenge lies in identifying a suitable method for processing the
point sequence representing a flood object and determining the
optimal size of the rectangle. We designed three partitioning
methods based on different motivations to address this problem.

To evaluate the proposed three methods, we performed com-
prehensive experiments based on data of two representative cities.
Unsurprisingly, the Quad approach, which generates flooded cells
of different sizes to cope with the shape of the original flooded
area, can usually successfully avoid misjudgment and exhibited
the best performance. Moreover, the simplest FS approach
also demonstrated excellent performance when the side length
was set as 50 m. Notably, the value “50” was the smallest side
length observed from the flood objects used for the experiments
and may serve as a prime candidate when applying our system
to other regions; however, the optimal value may vary slightly,
and further study should be conducted on this topic.

REFERENCES

Ang, C. H. and T. C. Tan (1997). New linear node splitting algorithm for R-trees.
In Proceedings of the 5th International Symposium on Advances in Spatial
Databases (SSD’97), LNCS 1262.

Beckmann, N., H. Kriegel, R. Schneider and B. Seeger (1990). The R*-tree:
An efficient and robust access method for points and rectangles. In Pro-
ceedings of the ACM SIGMOD conference.

Brinkhoff, T., H.-P. Kriegel, R. Schneider and B. Seeger (1994). Multi-step pro-
cessing of spatial joins. In Proceedings of the ACM SIGMOD conference.

Chang, Y.-H., Y.-T. Liu and Y.-Y. Tan (2017). Landmark-based summarized

 Y.-H. Chang et al.: Indexing Flood Data Using Rectangles 45

messages for flood warning. Transactions in GIS 21(5), 847-861.
Chang, Y.-H., P.-S. Wu, Y.-T. Liu and S.-P. Ma (2013). An effective flood fore-

casting system based on web services. In Advances in Intelligent Systems
and Applications-Volume 2, pages 681-690. Springer.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Nu-
merische Mathematik 1, 269-271.

Finkel, R. A. and J. L. Bentley (1974). Quad trees: A data structure for retrieval
on composite keys. Acta Informatica 4, 1-9.

Freeman, H. and R. Shapira (1975). Determining the minimum-area encasing rec-
tangle for an arbitrary closed curve. Communications of the ACM 18(7),
409-413.

Gaede, V. and O. Günther (1998). Multidimensional access methods. ACM
Computing Survey 30(2), 170-231.

Granell, C., L. Diaz and M. Gould (2010). Service-oriented applications for en-
vironmental models: Reusable geospatial services. Environmental Mod-
elling & Software 25(2), 182-198.

Groeve, T. D. and P. Riva (2009). Global real-time detection of major floods
using passive microwave remote sensing. In Proceedings of the 33rd Inter-
national Symposium on Remote Sensing of Environment Stresa.

Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching.
In Proceedings of the ACM SIGMOD conference.

Har-Peled, S. (2011). Geometric Approximation Algorithms. America Mathematical
Society, 1 edition.

Hart, P. E., N. J. Nilsson and B. Raphael (1968). A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems Science

and Cybernetics 4(2), 100-107.
Jhong, B.-C., J.-H. Wang and G.-F. Lin (2017). An integrated two-stage support

vector machine approach to forecast inundation maps during typhoons.
Journal of Hydrology 547, 236-252.

Kreyszig, E. (2011). Advanced Engineering Mathematics. John Wiley & Sons,
Inc., 10 edition.

Li, X.-Y., K. W. Chau, C. Cheng and Y. S. Li (2006). A web-based flood fore-
casting system for shuangpai region. Advances in Engineering Software
37(3), 146-158.

Liu, X., H. Sahli, Y. Meng, Q. Huang and L. Lin (2017). Flood inundation map-
ping from optical satellite images using spatiotemporal context learning
and modest adaboost. Remote Sensing 9(6), 617.

Lu, Y. and C. Shahabi (2017). Efficient indexing and querying of geo-tagged
aerial videos. In Proceedings of the ACM SIGSPATIAL conference.

Roussopoulos, N., S. Kelley and F. Vincent (1995). Nearest neighbor queries.
In Proceedings of the ACM SIGMOD conference.

Schubert, E., A. Zimek and H.-P. Kriegel (2013). Geodetic distance queries on
R-trees for indexing geographic data. In Proceedings of the International
Symposium on Spatial and Temporal Databases (SSTD), LNCS 8098.

Thielen, J., J. Bartholmes, M.-H. Ramos and A. de Roo (2009). The European
flood alert system-part 1: Concept and development. Hydrology and Earth
System Sciences, 13(2).

Yu, D. and T. J. Coulthard (2015). Evaluating the importance of catchment
hydrological parameters for urban surface water flood modelling using a
simple hydro-inundation model. Journal of Hydrology, 524, 385-400.

	RECTANGLE-BASED APPROACHES FOR REPRESENTING FLOOD DATA IN SPATIAL INDICES
	Recommended Citation

	untitled

