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ABSTRACT 

Appropriate representation of flood data in indices is crucial 
for efficient future querying.  A common approach is to use mini- 
mum bounding rectangles to build R-tree indices rather than 
storing real complex objects; however, the results may be im- 
precise.  Herein, to improve the performance of this approach, 
we discuss methods for producing corresponding rectangles.  
The first method involves generating a set of small fixed-sized 
squares, and the second one attempts to initially obtain a large 
rectangle.  The third approach recursively partitions the space 
into four quadrants until the given size constraint is satisfied.  
Experimental results based on the real flood data of two repre-
sentative cities demonstrate that the quadruple partitioning me- 
thod can best approximate the original area using fewer cells 
and is thus the recommended approach. 

I. INTRODUCTION 

Natural disasters caused by heavy rain have become increas- 
ingly severe as a result of global warming.  In certain regions 
bounded by the ocean or rivers, the situation is even worse be- 
cause of the complex interaction of rain, rivers, waves, and tides.  
Researchers have investigated methods for creating flood- 
forecasting systems or quickly identifying flood zones using near- 
real time satellite data and other useful information.  A more 
detailed discussion of relevant research is provided in Section 6. 

After identifying locations that will be or are already flooded, 
the next critical step is to properly store spatial information in 
indices for efficient future querying.  This is not an easy task 
because flood objects have irregular shapes that are dependent 
on the geographical characteristics.  Although some types of data- 

(a) Real flood objects

(b) A minimum bounding rectangle

3

3 4

5

7
A

B

C

D

E

 
Fig. 1.  Examples of real flood objects and minimum bounding rectangles. 

 

 
base software have extended their type systems for users to re- 
present complex geometrical objects using point sequences and 
some parameters, a large flood object may consist of up to hun-
dreds of points or more.  For example, three real flood objects 
that occurred in Keelung city are displayed in Fig. 1(a).  The left- 
most one actually consists of 655 points.  Such large amounts of 
point data require a lot of storage space and also make the future 
spatial operation (e.g., computing intersected areas) difficult to 
process. 

Therefore, researchers have proposed the approximation of 
complex spatial objects using minimum bounding rectangles 
(MBRs) because of their simplicity.  Many spatial indices, such 
as the R-tree index designed by Guttman (1984) and the R*-tree 
index proposed by Beckmann et al. (1990) have utilized the MBRs 
of spatial objects as the keys of index nodes to enable quick per- 
formance of various spatial operations.  However, MBRs may 
cause inaccurate answers in some applications.  An example is 
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provided using the road network displayed in Fig. 1(b), in which 
the gray object represents a flood object and its MBR is depicted 
by dashed lines.  In the event that a user wishes to depart from 
node A and arrive at node D, the system erroneously judges that 
the road is flooded and impassable because the dashed rectangle 
intersects the road (B, C).  If the path-planning system computes 
the shortest path based on this information, it will identify the 
path (A, E, D), which is longer than the real shortest unflooded 
path (A, B, C, D). 

Some researchers, such as Freeman and Shapira (1975) and 
Brinkhoff et al. (1994), have discussed methods for reducing the 
number of misjudgments by using different forms of approxi- 
mation, but identifying optimal methods for flood objects is 
difficult because of their irregular shapes.  Moreover, more ac- 
curate approximations tend to involve complex shapes, which are 
difficult to use directly in building spatial indices for pruning 
impossible matches.  Therefore, in this paper, we advocate the 
use of rectangles to retain the applicability of the most commonly 
used R-tree index.  However, rather than directly using the simple 
MBR, we attempted to produce a set of smaller cells to more 
accurately approximate the original flooded areas and reduce 
the occurrence of misjudgment. 

In this paper, we propose three methods for producing flooded 
cells.  The baseline approach is to partition the MBR of each 
flood object into a set of squares with a given side length.  This 
method is easily implemented but increases the difficulty of 
determining the proper side length.  A small side length can re- 
duce the degree of misjudgment, as depicted in Fig. 1(b), but may 
produce many cells; this could result in the creation of a big 
R-tree and slow subsequent spatial join operations.  Therefore, 
we designed the Minimum Intersection Rectangle (MIR) ap-
proach, which attempts to first obtain a “big” flooded cell be- 
fore running the baseline approach on the remaining space; the 
aim of this method is to reduce the total number of flooded cells 
being produced.  The final approach is the most flexible one in 
terms of the size of generated flooded cells.  It first partitions the 
MBR into four quadrants.  A component quadrant is returned as 
a flooded cell by itself if most of its space is flooded; otherwise, 
it is partitioned recursively.  The primary difficulty lies in how 
to appropriately process the point sequence representing a flood 
object to ensure that each sub-sequence within a quadrant con- 
tinues to form a reasonable shape after partitioning.  We have 
derived the properties of a valid sub-sequence and used them as 
the basis of the partitioning algorithm.  The contributions of this 
paper are summarized as follows: 

 
(1) We investigate the problem of representing flood data in 

indices.  We advocate the idea of generating smaller rectan-
gles by partitioning the MBRs of flood objects to reduce 
the occurrence of misjudgment while maintaining the easy 

construction of spatial indices. 
(2) We designed three partitioning algorithms.  Algorithm FS 

(FixedSized) produces a set of squares with a specified side 
length.  Algorithm MIR creates a large rectangle and a set of 
smaller rectangles.  Algorithm Quad (Quadruple) recursively 
partitions the space into four quadrants if necessary and may 
generate flooded cells with different sizes.  To address the 
problem of appropriately processing the point sequence re- 
presenting a flood object to successfully perform the recursive 
procedure, we investigated the characteristics of reasonable 
shapes possessed by flood objects and designed the algorithm 
accordingly. 

(3) We have implemented the proposed three approaches and 
conducted extensive empirical studies using the real flood 
data of two representative cities.  The primary metrics used 
to compare the flooded cells returned with each method are 
the area covered by these cells and the number of produced 
cells.  The experimental results revealed that the Quad ap- 
proach was optimal for approximating the real flooded area 
with fewer cells. 

 
The remainder of this paper is organized as follows.  In Section 

2, we formally define the problem to solve and discuss Algorithm 
FS.  In Section 3 and Section 4, we present Algorithm MIR and 
Algorithm Quad, respectively.  Finally, experimental results are 
provided in Section 5, related works are discussed in Section 6, 
and conclusions are provided in Section 7. 

II. PROBLEM DESCRIPTION AND  
THE FIXED-SIZE APPROACH 

We first formally define the terms used in this paper and the 
problem to be solved.  We also describe the fixed-size ap-
proach in this section.  Although the data being processed are 
geographic, we assume the Cartesian coordinate system for 
simplicity, where the x axis represents the longitude values and 
the y axis represents the latitude values. 

 
Definition 1 A point p refers to a specific geographic location 
and is identified by a pair of longitude and latitude values, which 
will be referred as x and y values throughout the remainder of 
this manuscript. 

 
Definition 2 A flood object is denoted by the variable f and is 
represented by a sequence of points (p1, , pn), which forms a 
simply connected domain1 and the area inside of which is 
flooded. 

 
Definition 3 A rectangle r is identified by its lower left point 
(minx, miny) and upper right point (maxx, maxy) and denoted by 
the quadruple [minx, miny, maxx, maxy].  The sides of the rec-
tangle are parallel to the x and y axes, respectively. 

1 A domain D is considered to be simply connected if every closed curve in D can be continuously shrunk to any point in D without leaving D (Kreyszig (2011)). 
Note that most flood objects satisfy this constraint because of geographical characteristics, as indicated in Fig. 1(a). If a flood object is not simply connected, we 
will decompose it into several objects, where each one satisfies such constraints in the preprocess stage. 
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Algorithm FS
Input: f //a flood object, e //the fixed side length of a cell
Output: OutputList

1: initialize OutputList and TempList as null;
2: set r as MBR(f) with the quadruple [minx, miny, maxx, maxy]; 
3: if r.size < e2 then 
4:     return OutputList.add(r).
5: end if 
6: lng ← m2Lng(e); lat ← m2Lat(e); 
7: set p as the point located at (minx, miny); 
8: while (p.x + lng < maxx) and (p.y + lat < maxy) do 
9:      add the cell located at p into TempList;
10:    advance p properly;
11: end while
12: partition the rightmost and uppermost remaining area;
13: for each square c in TempList do 
14:     if intersects(f, c) then
15:          OutputList.add(c);
16:     end if
17: end for
18: return OutputList.  

Fig. 2.  Algorithm FS. 
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Fig. 3.  Examples of fixed-size flooded cells. 

 
 

Definition 4 A flooded cell, denoted by c, is a rectangle that 
has been constructed based on a flood object and all or part of 
the area inside the cell c is flooded. 

 
In this paper, we discuss the problem of producing flooded 

cells for constructing rectangle-based spatial indices.  As dis-
cussed in Section 1, the simplest form is the MBR of a flood ob- 
ject, but it might cover too much space and yield imprecise results.  
Therefore, our first approach, Algorithm FS, was to divide the 
MBR into many smaller fixed-sized cells.  As indicated in Fig. 
2, we first identified the MBR of the given flood object f and 
then directly returned the MBR as the only flooded cell if it was 
already relatively small (L1-5).  Otherwise, we partitioned the 
MBR into a set of squares with the side length e.  Because the 
parameter e was provided in meters, it was required first to be 
converted to the equivalent longitude and latitude values (L6), 
and the partitioning process began from the lower left point of 
the MBR to the upper right point (L7-12).  After obtaining the 
set of squares, the function intersection in L14 ensured that only 
those squares overlapping the given flood object f were returned. 

An example is provided in Fig. 3(a).  The shaded object re- 
presents a flood object.  Its MBR is depicted by dashed lines, 
and the flooded cells have solid edges.  The set of the 13 smaller 

flooded cells clearly offers a better approximation of the flood 
object than the MBR in terms of their respective unused space.  
This measurement was formally defined by the coverage ratio 
(cr), which compares the total sizes of constructed flooded cells 
ci with that of the original flood object f as follows: 

 
.

.

c sizeicr
f size

   (1) 

Based on our method of producing flooded cells, the cr value 
is always larger than one.  Moreover, if the cr value is smaller 
and near to one, the total sizes of flooded cells will be similar 
to that of the original flood object and the inaccurate situation 
depicted in Fig. 1(b) is most likely to be avoided.  Although 
smaller flooded cells yield favorable cr values, an extremely 
small e value is impractical because more cells will be produced.  
Compare the flooded cells displayed in Figs. 3(a) and (b) re- 
spectively, in which those in (a) have the side length “1” and 
those in (b) have the side length “0.5”.  We can see that their cr 
values are 13:(41/4) and their counts are 13:41.  To determine 
the side length solely based on the cr value, we should set it as 
“0.5”; however, generating many flooded cells poses two dis- 
advantages.  First, the intersection operation between two spatial 
objects, as specified in L14 of Fig. 2, is relatively costly com- 
pared with other operations.  Second, more cells would expand 
the R-tree index, which would negatively affect future querying 
efficiency.  Because an effective method for determining an ap- 
propriate e value that achieves a balance between avoiding mis- 
judgment and demonstrating adequate querying efficiency was 
not obvious, we designed other partitioning methods and com- 
pared their performance, as detailed in the following sections. 

III. MINIMUM INTERSECTION RECTANGLES 

By examining the flood object in Fig. 3(b), we can discern that 
its center part is partitioned into many cells, which seems un- 
necessary.  In this section, we propose another partitioning method 
that involves creating a “big” flooded cell around the center part 
first with the aim of reducing the total number of flooded cells.  
Rather than identifying an optimal method that requires com-
plicated computation, we designed a heuristic approach based 
on the intersection points of the shape.  Specifically, given a flood 
object and its MBR, we first identified the center of the MBR o 
and then assigned the coordinate axes x and y accordingly.  For 
easy reference, we sometimes refer to a specific axis by the di- 
rections east (E), north (N), west (W), and south (S), as indicated 
in Fig. 4(a).  The intersection points and the particular specified 
flooded cells are then defined as follows: 

 
Definition 5 An intersection point, θ, is a point where the 
flood object intersects the x or y axis.  We use the superscript d, 
such as  d, to represent the direction of the intersection point.  
The intersection point may have already existed in the point se- 
quence representing the flood object or be computed through  
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Fig. 4.  Examples of intersection points between a flood object and axes. 

 
 

Algorithm MIR
Input: f //a flood object, e //the minimum side length of a cell 
Output: OutputList

1: initialize OutputList and TempList as Null;
2: set r as MBR(f) with the quadruple [minx, miny, maxx, maxy]; 
3: if(r.size < e2) then 
4:       return OutputList.add(r).
5: end if 
6: if not within(r.center, f) then 
7:        return Outputlist.add(FS(f)). 
8: end if 
9: for each point s[i] representing  f do 
10:     if InAxis(s[i]) then
11:            d ← GetDirection(s[i], r.center);
12:            UpdateAxisPoint(s[i], d);
13:     else if Cross(s[i], s[i+1]) then
14:              ← GetInterPoint(s[i], s[i+1], r.center);
15:            d ← GetDirection(  , r.center);
16:           UpdateAxisPoint(  , d);
17:      end if
18: end for
19: MIR ← SetMIR(); OutputList.add(MIR); 
20: TempList ←  FS(r-MIR, e);  
21: for each cell c in TempList do  
22:     if intersects(f, c) then
23:          OutputList.add(c);
24:     end if
25: end for
26: return OutputList.

θ
θ

θ

 
Fig. 5. Algorithm MIR. 

 
 

interpolation. 
 

Definition 6 Consider a flood object f, the MBR center of which 
o is located inside f.  For the four directions east, north, west, 
and south, the intersection points nearest to o were obtained.  
The rectangle with the four specified intersection points on the 
sides was termed the MIR of f. 

 
First note that we require the center of the MBR to be located 

inside the flood object.  Otherwise, as depicted in Fig. 4(b), the 
center part of the flood object will not cover much of the flooded 
space to meet the motivation, so there is no need to use this me- 
thod.  Also note that there is a nearest requirement for determin-
ing among multiple intersection points in the same direction.  
As shown in Fig. 4(c), there are three intersection points in the 

north.  We adopt the conservative approach and choose the one 

nearest to the center, i.e., 3
N , so that a higher percentage of 

the space covered by an MIR is flooded. 
The corresponding MIR Algorithm is displayed in Fig. 5.  

As discussed, if the center of the MBR of the object was located 
outside of the shape, using this partitioning method served no ad- 
vantage and we directly invoked Algorithm FS to partition this 
flood object (L6-8).  Otherwise, we examined the s[i] in the point 
sequence representing the flood object (L9-18).  First, we deter- 
mined whether the point was located directly on the x or y axis.  
If so, we identified the direction of the axis and recorded the 
intersection point nearest to the center in that axis observed thus 
far (L10-12).  Otherwise, if two adjacent points crossed a certain 
axis, we computed the intersection point through interpolation 
and similarly updated and recorded the nearest one (L13-16).  
After concluding an examination of the entire point sequence, 
we constructed the MIR based on the four nearest intersection 
points and returned it as a flooded cell (L19).  Finally, we par- 
titioned the remaining space between the MBR and MIR using 
Algorithm FS, and only cells that intersected the original flood 
object were returned (L20-25). 

IV. QUADRUPLE PARTITIONING 

The MIR method may be suitable for those flood objects that 
are “fat” in the center.  However, for certain thin-shaped objects 
that are commonly seen in the flooded regions along river banks, 
the MIR may be too small or too big to be useful.  Therefore, we 
propose a more flexible method in which the sizes of constructed 
flooded cells could differ.  The idea was to divide the MBR of 
a flood object into four quadrants.  If a high percentage of the 
space covered by a quadrant was flooded, we directly returned 
the quadrant as a flooded cell.  Otherwise, we performed the par- 
titioning procedure recursively on the quadrant until it satisfied 
the threshold constraint.  Fig. 6(a) presents an example, in which 
the four quadrants are denoted as Q1, Q2, Q3, and Q4.  Supposing 
that the threshold constraint was that more than half of the 
quadrant must be flooded, quadrants Q1 and Q3 clearly meet 
the requirement and can be flooded cells by themselves.  In con- 
trast, Q2 and Q4 must be further partitioned.  We can see that the 
generated flooded cells have varying sizes. 
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Fig. 6.  Examples of the quadruple partitioning and formulating proper point sequences for sub-flood objects. 

 
 
Although the procedure for partitioning seems similar to that 

for constructing a Quadtree in Finkel and Bentley (1974), pro- 
cessing the flood data represented as point sequences is nontrivial.  
Using the flood object depicted in Fig. 6(b) as an example and 
supposing that part of the point sequence representing the ori- 
ginal flood object is (p1, p2, p3, p4, p5), we must further partition 
Q2 because the flooded area within the Q2 quadrant does not 
exceed the percentage threshold.  However, we cannot directly 
use the point sequence (p2, p3, p4) to represent the sub-flood 
object in this quadrant because the resultant polygon significantly 
differs from the shaded area.  A more appropriate method is to 

form the point sequence ( 1
W , p2, p3, p4, 1

N , o) for the sub- 

flood object, where points 1
W  and 1

N  are the intersection points 

on the borders of Q2, as indicated in Definition 6, and o is the 
center of the MBR. 

Further note that we cannot directly insert the center of the MBR 
into the sub-point sequence in all cases.  Consider Fig. 6(c).  The 
center o is not located inside the original flood object; therefore, 
it is not on the boundary of any sub-object and should not appear 
in any sub-point sequence.  As an example, the appropriate point 

sequence for the sub-flood object in Q2 should be ( 1
W , p1, p2, 

1
N , 2

N , 2
W ), without the center o.  As demonstrated by the two 

aforementioned representative examples, we derive the follow- 
ing property to enable the sub-point sequence to more accurately 
approximate the real flooded area based on where the center of 
the MBR is located: 

 
Property 1 For a flood object f , if the center of the MBR o is 
within the shape, the sub-point sequence for each quadrant Q 
should consist of the intersection points on Q’s borders and o.  
Otherwise, the sub-point sequence should only consist of the 
intersection points on the borders. 

 
We also hope for the sub-point sequence of each quadrant to 

continue to form a simply connected domain as the original flood 
object does.  This condition facilitates future spatial calculation, 
such as computing the size of the sub-flood object.  Therefore, we 
directly ceased the recursive partitioning procedure when we dis- 
covered that not just any sub-object would satisfy this property.  
The main challenge lies in how to perform the detection task 
easily, and we propose to use the number of intersection points 
due to its direct relationship with the shapes of sub-objects.  In 

the following, we first provide some definitions for assisting 
the detection process: 

 
Definition 7 For a flood object f, the term IP(f, d) represents 
the number of f ’s intersection points located on the axis in the 
d direction.  Moreover, the term MIP(f) is the maximum value 
obtained from the four directions, and the term SIP(f) is their 
sum.  These two terms are formally defined as follows: 

 
{ , , , }

( ) ( , )max
d E N W S

MIP f IP f d


  (2) 

 
{ , , , }

( ) ( , )
d E N W S

SIP f IP f d


   (3) 

We now exhaustively present the possible shapes of sub-flood 
objects based on the values of MIP(f) and SIP(f ).  Note that the 
shape of the original flood object f forms a simply connected do- 
main; therefore, we do not need to consider the shape with holes.  
More intersection points correspond to more complex shapes, and 
thus the following discussion starts from the smallest possible 
number of MIP(f): 

Case I: MIP(f) = 1 

In this case, the point sequence of a reasonable flood object 
f passes through the axis in each direction exactly once (i.e., 
the flood object covers all quadrants and also contains the cen- 
ter o).  For the flood object f presented in Fig. 6(a), IP(f, E) = 
IP(f, N) = IP(f, W) = IP(f, S) = 1.  Therefore, MIP(f) = 1 and 
SIP(f) = 4.  We can see that the sub-flood objects for all quadrants 
form simply connected domains. 

Case II: MIP(f ) = 2 

In this case, the point sequence of f either leaves and later 
re-enters a certain quadrant to create two intersection points on 
the border or does not appear in a certain quadrant and has no 
corresponding intersection points.  That is, all IP(f, d)’s are even 
and either 0 or 2.  Three sub-cases based on the value of SIP(f ) 
are as follows: 

1) SIP(f) = 4 

For the flood object depicted in Fig. 6(c), IP(f, N) = IP(f, W) = 
2 and IP(f, E) = IP(f, S) = 0.  In this case, the shape of the ob- 
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Fig. 7.  Examples of sub-flood objects which form simply connected domains or not. 

 
 

ject f does not contain the center o and does not cover quadrant 
Q4.  However, the shapes of the sub-objects located within qua- 
drants Q1-Q3 still form simply connected domains. 

2) SIP(f) = 6 

In Fig. 7(a), IP(f, N) = IP(f, W) = IP(f, S) = 2 and IP(f, E) = 0.  
We can see that the original object also does not contain the 
center o.  However, it covers all quadrants and every sub-flood 
object still forms simply connected domains. 

3) SIP(f) = 8 

In this case, IP(f, d) = 2 for all directions d.  The only possible 
means is the point sequence separately entering a particular 
quadrant from two directions, as indicated by the two gray areas 
in the quadrant Q4 of Fig. 7(b).  The shape of the sub-object lo- 
cated within Q4 will clearly not form a simply connected domain. 

Case III: MIP(f)  3 

Consider Fig. 7(c).  IP(f, S) = 3 and IP(f, E) = IP(f, N) = 
IP(f, W) = 1.  We can see that the point sequence of the original 
flood object leaves and re-enters Q3 more than once.  This cuts 
its shape off by the y axis, and the shape of the sub-object in Q3 
does not form a simply connected domain.  We can easily see that 
a similar situation would occur with more intersection points. 

From the aforementioned exhaustive cases, we can derive the 
following property for the shapes of sub-flood objects: 

 
Theorem 1 All four sub-objects of a flood object f continue to 
form simply connected domains if one of the following two con- 
ditions are true: (1) the center of the MBR of f is located within 
f and MIP(f) = 1; (2) the center of the MBR of f is located out- 
side of f, MIP(f) = 2, and two or three directions d  {E, N, W, S} 
establish IP(f, d) as equal to 2. 

 
Proof 

The first condition was directly obtained from Case I.  The 
second condition was formed by combining the first and second 
sub-cases of Case II.  

 
Algorithm Quad was designed using the two aforementioned 

properties and is specified in Fig. 8.  It is invoked in a recursive 
manner and the stopping condition is provided in L3.  Basically, 
we directly returned the MBR as a flooded cell if its size was re- 

Algorithm Quad
Input: f //a flood object, ts //the size threshold, tr //the ratio threshold
Output: OutputList

1: initialize OutputList as Null;
2: set r as MBR(f);
3: if (r.size < ts) or (f.size/r.size > tr) then 
4:     return OutputList.add(r).
5: end if 
6: InFlag ← FALSE; 
7: if within(r.center, f) then 
8:     InFlag ← TRUE;
9: end if 
10: for each point s[i] representing f do 
11:  d1 ← GetDirection(s[i], r.center);
12:  if d1 ∈ {E, N, W, S} then

13:      d2 ← d1;
14:      d1 ← GetDirection(s[i−1], r.center);
15:         ← s[i];
16:  else if Cross(s[i], s[i+1]) then
17:          ← GetInterPoint(s[i], s[i+1], r.center);
18:      d2 ← GetDirection(  , r.center);
19:  else
20:      Seq[d1].add(s[i]); continue;
21:  end if
22:  UpdateAxisCount( , d2);
23:  if not SatisfyProperty(InFlag) then
24:      return OutputList.add(r).
25:  end if
26:  Seq[d1].add(s[i]);
27:  if Cross(s[i], s[i+1]) then
28:      Seq[d1].add(  );
29:  end if
30:  if InFlag then
31:      Seq[d1].add(r.center);
32:  end if
33:  d3 ← GetDirection(s[i+1], r.center);
34:  Seq[d3].add(  );
35: end for
36: for each quadrant d do 
37:  OutputList.add(Quad(Seq[d], ts, tr));
38: end for
39: return OutputList.

θ

θ

θ

θ

θ

θ

 
Fig. 8.  Algorithm Quad. 

 
 

latively small based on the threshold ts or highly similar to that 
of the flood object according to the threshold tr.  If partitioning 
was required, we first set the value of the variable InFlag to sig- 
nal whether the MBR’s center is located inside the flood object 
(L6- 9), which is a crucial property, as stated in Observations 1-2.   
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Fig. 9.  Flooded cells based on the Keelung data set. 

 
 

We then examined each point representing the flood object in 
sequence (L10-35).  In most cases, we simply determined which 
quadrant within which this point was located (L11) and ap-
pended it to the corresponding sub-point sequence (L20).  By 
contrast, when an intersection point was detected (L12-15) or 
obtained through interpolation (L16-18), we were required to 
increase the count for that particular axis (L22) and determine 
whether the property of the simply connected domain was still 
true based on Observation 2 (L23).  If we expected a violation 
to occur, we directly returned the MBR as the flooded cell (L24).  
Otherwise, we were required to properly form the sub-point se- 
quences for the two quadrants adjacent to the intersection point 
as stated in Observation 1.  Specifically, the intersection point 
should always be inserted into the sub-point sequence for the pre- 
vious quadrant (L26-29), but the center of the MBR was required 
only if it was located within the object (L30-32).  Moreover, 
the intersection point was also required to be inserted into the sub- 
point sequence for the next quadrant (L33-34).  After examining 
all points representing the flood object, this algorithm was in- 
voked recursively to process each quadrant with its correspond- 
ing sub-point sequence. 

V. EXPERIMENTAL RESULTS 

We designed several experiments to evaluate and compare 
the performance of the three proposed partitioning methods, 
which will be referenced and denoted as FS, MIR, and Quad.  
For the purpose of comparison, we also implemented the MBR 
approach, which directly uses the MBR of each flood object as 
the flooded cell without any partitioning. 

The programs of the proposed methods are implemented in 
Visual C, and the experiments are performed on a personal 
computer with Intel i7-2600 3.4GHz CPU and 16GB memory.  
The default value of the parameter e, i.e., the side length of the 
flooded cell required by the FS method, is set as 50 m by ob- 
serving the smallest possible real flood objects, unless explicitly 
specified.  Besides, the parameter tr required by the Quad me- 

thod is set as 0.95 since we wish the value as close to one as 
possible.  The flood data were obtained from the government 
website2 and the empirical studies were conducted on two re- 
presentative cities, Taipei (411 flood objects) and Keelung 
(436 flood objects). 

1. Flooded Cells Produced by the Partitioning Algorithms 

We first compared the set of flooded cells produced by each 
partitioning algorithm and applied two metrics, which are the 
coverage ratio based on Eq. (1) and the numbers of produced cells.  
Note that both values are the smaller the better.  To examine how 
the parameter e affects the output of the FS approach, we use three 
values 40 m, 50 m, and 60 m, and their results are denoted as 
FS40, FS50, and FS60, respectively. 

The experimental results based on the Keelung data set are 
presented in Fig. 9.  By first examining the coverage ratio dis- 
played in Fig. 9(a), the MBR approach can be seen to exhibit 
the largest coverage ratio, indicating that the flooded cells pro- 
duced using this method usually cover a great deal of extra space.  
By contrast, the Quad approach produced the smallest coverage 
ratio, demonstrating that its flooded cells could best approxi- 
mate the original flooded areas.  Regarding other approaches, 
no much difference was observed between the FS approach and 
the MIR approach because of the shapes of the original flood 
objects.  We compared the number of cells produced by each me- 
thod, as displayed in Fig. 9(b).  The MBR approach could be 
seen to produce the least number of cells because each flood 
object corresponded to exactly one flooded cell.  Notably, the 
Quad approach produced fewer cells than the FS40 and FS50 
approaches did.  This was a result of its ability to produce a 
single cell covering a great deal of flooded space.  However, be- 
cause the stopping criteria was relatively strict (i.e., 95% of the 
cell space should be flooded), more cells were produced than the 
MIR and FS60 approaches. 

We then examined the experimental results based on the 
Taipei data set depicted in Fig. 10.  The performances of the pro- 
posed methods in Taipei were similar to those in Keelung.  This  

2 http://dmap.ncdr.nat.gov.tw. 



42 Journal of Marine Science and Technology, Vol. 27, No. 1 (2019 ) 

 

 

2 11k
10k
9k
8k
7k
6k
5k
4k
3k
2k
1k
0

1.8

1.6

1.4

1.2

1
MBR FS40 FS50 FS60 MIR Quad MBR FS40 FS50 FS60 MIR Quad

C
ov

er
ag

e 
ra

tio

(a) Coverage ratio (b) Number  
Fig. 10.  Flooded cells based on the Taipei data set. 
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demonstrates that our partitioning algorithms were all better 
approximations of the original flood objects than the MBR ap- 
proach, regardless of the city geographical characteristics.  Fi- 
nally, comparing the outcomes of FS40 and FS50, we can see that 
the coverage ratio of the former is indeed better than that of the 
later (about 0.96 times), but the number of flooded cells will 
increase a lot (about 1.5 times).  By contrast, the coverage ratio 
of FS60 will be even larger than that of the MIR approach and 
is unacceptable.  Therefore, we will use 50 m as the side length 
of the flooded cell for the remaining sets of experiments. 

2. Execution Time of the Partitioning Algorithms 

In this subsection, we evaluate the difference in execution 
time among partitioning methods.  First, we examined the time 
required to produce flooded cells.  Several spatial operations are 
involved in this task, which include the function intersects de- 
termining whether the two rectangles overlap (L14 of Algorithm 
FS), the size computation and comparison (L3 of Algorithm FS, 
Algorithm MIR, and Algorithm Quad), and the function within 
performing the point containment test (L6 of Algorithm MIR and 
L7 of Algorithm Quad).  All of these spatial operations were im- 
plemented in Boost C libraries, and we summed up the times 
required to perform these spatial operations to approximate the 
complexity of each algorithm because they are more expensive 
than other standard operations. 

The experimental results for the Keelung city are displayed in 
Fig. 11.  The partitioning time (Fig. 11(a)) is obviously affected 
by spatial complexity (Fig. 11(b)).  We can also see that the FS me- 
thod is relatively straightforward and required the least amount of 
time.  The Quad algorithm was the slowest because of its com- 
plexity.  Regarding the MIR method, although the number of 
generated flooded cells was successfully reduced (Fig. 9(b)), it 
required each element in the point sequence to be examined and 
costly spatial operations to be performed and thus was slower than 
the FS method.  The experimental results for Taipei city are pre- 
sented in Fig. 12, and indicate that the time required for execu-
tion was less for Taipei city data set than that for the Keelung 
data set because of fewer input flood objects; however, the re- 
lative performances among the four methods are similar. 

We then compared the time required to create the R-tree for 
the Keelung data set.  As depicted in Fig. 13(a), the MBR me- 
thod was the fastest and the FS method was the slowest because 
they were primarily affected by the number of produced flooded 
cells, as indicated in Fig. 9(b).  The indexing time for the Taipei 
data set is displayed in Fig. 13(b).  The performance was the same 
for the four methods, all of which could complete construction 
of the index within 0.06 seconds. 

3. Comparisons of the Application Results 

To further evaluate the effects of different sets of flooded cells, 
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we created a path-planning system for flooded regions.  This sys- 
tem first identifies impassable roads that are intersected with any 
flooded cell.  These roads are then removed, and the remaining 
roads are used to run the shortest path algorithm proposed by 
Dijkstra (1959).  Those shortest paths produced based on different 
sets of flooded cells are then compared.  To perform the experi-
ments, we randomly produced 150 pairs of source points and tar- 
get points and randomly retained 30 data items for which at least 
one method produced a detour in response to flooding.  For each 
method, we computed the normalized length difference (nld) 
between the unflooded detour and the original shortest path and ob- 
tained the average using the following equation, where a smaller 

nld value is preferred and corresponds to shorter average detours: 

length of the unflooded detour-length of the original path
length of the original path

number of paths
nld 


 (4) 

From a comparison of the path lengths based on the Keelung  
data set, as depicted in Fig. 14(a), we can see that the Quad me- 
thod produced the smallest value, suggesting that it could iden- 
tify the shortest average detour.  Specifically, the average difference 
in length caused by the MBR method was 2.5 times of that caused 
by the Quad method, demonstrating an obvious difference.  The 
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experimental results for Taipei city are displayed in Fig. 14(b).  
However, because more roads are available in Taipei to plan the 
detour, the lengths of the shortest paths obtained by different 
methods were not significantly different.  Therefore, for an or- 
dinary city without many alternative roads, reducing the misjudg- 
ment by properly partitioning flood data is remarkably helpful 
for obtaining a shorter detour. 

VI. RELATED WORK 

This paper mainly discussed the proper representation of flood 
objects in spatial indices for efficient future reference.  Because 
the exact algorithms for managing complex geometric objects 
are usually complicated as well as difficult and time-consuming 
to implement in practice, researchers have proposed various 
methods for approximating an arbitrary closed curve, and the 
rectangle is the preferred form because of its simplicity.  For ex- 
ample, the minimum-area encasing rectangle was proposed by 
Freeman and Shapira (1975) and the maximum enclosing rec- 
tangle was proposed by Brinkhoff et al. (1994).  In the book 
written by Har-Peled (2011), one chapter discusses how to ap- 
proximate the minimum volume bounding box of a point set in 
any dimension, and exact algorithms in 2D and 3D are provided.  
However, we could not directly apply these types of rectangles 
in this paper because they are allowed to rotate to certain de- 
grees, which does not meet our requirements as discussed in 
Definition 3. 

Besides, efficiently indexing multidimensional spatial data 
has been an prominent research problem.  Gaede and Günther 
(1998) surveyed many structures, the R-tree index being one of 
the most widely applied.  It can be used in many spatial opera- 
tions, such as the simple overlapping operation as well as more 
complicated queries, such as the kNN (nearest neighbor) queries, 
as discussed by Roussopoulos et al. (1995) or in geographical 
data, as discussed by Schubert et al. (2013).  Following the initial 
construction algorithm of the R-tree index designed by Guttman 
(1984), other researchers have studied its variations to improve 
querying performance.  For example, Beckmann et al. (1990) pro- 
posed the R*-tree to incorporate a combined optimization of areas, 
margins, and overlaps of each enclosing rectangle of the inner 
node.  Ang and Tan (1997) discussed a favorable linear algo-
rithm to split the node.  More complex indices have also been 
proposed by extending the original structure to meet different 
information needs.  For example, Lu and Shahabi (2017) studied 
geo-tagged aerial videos, the field-of-views of which are irre- 
gular quadrilateral shapes.  They proposed a TetraRtree structure 
to represent the four corners of each quadrilateral and thereby 
efficiently determine whether a given object appears in a par-
ticular video.  Although such a structure is not appropriate for 
flood data, these research results merit further study. 

Finally, we reviewed literature on flood-forecasting systems.  
For example, Thielen et al. (2009) described the European Flood 
Alert System for providing flood forecasting in transnational 
river basins.  It has large-scale applications, including in grid 
architecture for the integration of several national hydrologic 

and meteorological services.  The web-based flood forecasting 
system (WFFS) discussed in Li et al. (2006) is a small to medium- 
sized system, meaning that it is component-based and applies 
the Java technique.  Chang et al. (2013) described a system for 
Linpien city, located in the southern part of Taiwan, that predicts 
the water level of each region three hours in advance according 
to current information regarding the weather, nearby river flow, 
and tide.  In addition to the complete system, some researchers 
have focused on specific functions.  For example, Granell et al. 
(2010) identified tasks that are frequently required by flood fore- 
casting systems, such as formatting data, and presented them as 
web services.  Jhong et al. (2017) and Yu and Coulthard (2015) 
studied how to create inundation maps, and Groeve and Riva 
(2009) and Liu et al. (2017) quickly identified flood zones using 
near-real time satellite data and other useful information.  Chang 
et al. (2017) proposed to transform computed numerical data into 
landmark-based messages to provide more informative warning 
messages.  Our research results should be suitable for incorpora- 
tion into such systems to extend their functionality. 

VII. CONCLUSION 

Proper representation of flood objects in spatial indices is cru- 
cial for providing an efficient querying facility.  For example, 
after a sudden heavy rain, we may wish to know whether a cer- 
tain road is safe or impassable.  In this paper, we advocate parti- 
tioning the minimum bounding rectangles of flood objects into 
smaller rectangles to reduce the possibility of misjudgment and 
facilitate the construction of an R-tree index.  The main chal-
lenge lies in identifying a suitable method for processing the 
point sequence representing a flood object and determining the 
optimal size of the rectangle.  We designed three partitioning 
methods based on different motivations to address this problem. 

To evaluate the proposed three methods, we performed com- 
prehensive experiments based on data of two representative cities.  
Unsurprisingly, the Quad approach, which generates flooded cells 
of different sizes to cope with the shape of the original flooded 
area, can usually successfully avoid misjudgment and exhibited 
the best performance.  Moreover, the simplest FS approach 
also demonstrated excellent performance when the side length 
was set as 50 m.  Notably, the value “50” was the smallest side 
length observed from the flood objects used for the experiments 
and may serve as a prime candidate when applying our system 
to other regions; however, the optimal value may vary slightly, 
and further study should be conducted on this topic. 
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