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ABSTRACT 

This paper focuses on spherical shells with random geometric 
imperfections under uniform external pressure.  An extensive 
numerical investigation is performed to calculate the buckling 
loads of perfect and imperfect spherical shells.  To discuss the 
effects of initial geometric imperfections, a finite element ana- 
lysis model of the perfect spherical shell is considered to ob-
tain its first 60 modes.  Then, the consistent imperfect buckling 
analysis method is applied to analyze the nonlinear stability of 
the spherical shells with geometric imperfections.  The shapes 
of the shell in the 1st to 20th eigenmode are considered.  A 
lower buckling load is found corresponding to the 17th eigen- 
mode, which is different from the analysis-derived opinion that 
the buckling stress is often observed in the 1st eigenmode.  More- 
over, the random geometric imperfection method is applied to 
imperfect spherical shells by incorporating random geometric 
imperfections.  The statistical analysis of numerical results from 
200 random cases indicates that the calculated ultimate strength 
can be lowered to 5.58 MPa in this example, which is approxi- 
mately 87% of the result from the 1st eigenmode.  Therefore, it 
may be concluded that the random geometric imperfection me- 
thod can be used for analyzing the stability of structures with 
imperfections to obtain realistic results. 

I. INTRODUCTION 

The spherical configuration is usually considered ideal for 
deep submersibles.  However, various imperfections exist in 

structures or their materials.  Such initial geometric imperfections 
may greatly influence the load-carrying capacity of spherical 
pressure hulls.  Many experiments have demonstrated that the 
experimental buckling loads of spherical shells are lower than 
the corresponding theoretical capacities (Pan and Cui, 2010). 

Since the 1960s, a few researchers have focused on investi- 
gating how the imperfections of spherical shells affect the load- 
ing capacities of various structures.  Krenzke and Kiernan (1965) 
conducted four series of tests on more than 200 small spherical 
models with different imperfections and derived an empirical 
formula.  Even in the case of machined perfect spherical shells, 
the actual buckling loads were found to be only 70% of the 
ideal values.  Hutchinson (1967) investigated the initial post- 
buckling behavior of a spherical shell under external pressure 
based on Koiter’s general theory.  The effects of imperfections 
on the buckling strength of structures were also examined.  
Koga and Hoff (1969) studied the buckling and postbuckling 
behaviors of complete spherical shells under the assumption 
that random imperfections and the resulting elastic deformations 
are symmetric along a few diameters of the shell.  Kao proposed 
a formula based on Donnell-type nonlinear cylindrical shell 
theory to describe strain-displacement relationships by consider- 
ing initial imperfections (Kao, 1972). 

Morton et al. (1981) interpreted experimental results in the 
light of numerical analysis, imperfection sensitivity, and design 
codes.  Galletly et al. (1987) used a buckling program to cal- 
culate plastic buckling/collapse pressures of externally pres- 
surized imperfect hemispherical shells.  Fan (1989) investigated 
the postbuckling behavior and imperfection sensitivity of spherical 
shells with amplitude modulation.  The buckling modes were as- 
sumed to be the form of Legendre polynomials with an expo- 
nential function as a modulating factor.  Two axisymmetric initial 
imperfection shapes were studied, namely, localized increased- 
radius type and Legendre polynomial.  Galletly and Blachut 
(1991) showed that the test results of 28 welded hemispherical 
shells obtained at the David Taylor Model Basin (DTMB) can 
be predicted quite well by using simplified shape imperfections.  
Moreover, they pointed out that the residual stress was not con- 
sidered, and this might decrease a spherical shellʼs buckling 
resistance to external pressure.  Blachut and Galletly (1995) dis- 
cussed seven 580-mm-diameter spun steel hemispherical shells 
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subjected to external pressure.  They reported that the techniques 
employed proved to be entirely reliable for predicting the col- 
lapse strength of the spun steel hemispheres. 

Since 2000, researchers from developing countries, for ex- 
ample, China, have published a series of papers on the buckling 
loads of deep-sea submersibles.  Pan and Cui (2010) further 
modified the formula and pointed out that thin shells are more 
sensitive to imperfections than thick shells.  Yu et al. (2017) 
comprehensively analyzed the effects of specific imperfections 
caused by welding on the strength of shells by studying residual 
stress and deformations. 

In addition, consideration of random defects in a shell is im- 
portant.  In the early stage, researchers have focused on formu- 
lating probability functions by using measured data (Elishakoff 
and Arbocz, 1982; Ivanova and Trendafilova, 1992; Arbocz and 
Hol, 1995; Chryssanthopoulos and Poggi, 1995).  With the de- 
velopment of computer technology, the Monte Carlo simulation 
method has been used extensively to study random defects in 
shells.  Bielewicz and GórskI (2002) used random variables or 
random fields to describe geometric imperfections in shells.  
Subsequently, they employed the Monte Carlo method com- 
bined with a finite element analysis (FEA) program.  Schenk 
and Schuëller (2003) modeled geometric imperfections as a 
two-dimensional Gaussian stochastic process with prescribed 
second-moment characteristics based on a data bank of measured 
imperfections.  In 2007, they numerically generated the realiza- 
tions of both boundary and geometric imperfections based on 
the Karhunen-Loève expansion (Schenk and Schuëller, 2007).  
Papadopoulos and Papadrakakis (2005) described initial geo- 
metric imperfections as a two-dimensional univariate stochastic 
field with statistical properties.  In the stochastic vulnerability- 
based robust design procedure of isotropic shell structures, un- 
certain initial geometric as well as material and thickness pro- 
perties are modeled as a random field (Papadopoulos and Lagaros, 
2009).  To investigate the direct global buckling mode of thick- 
walled tubes, Fyllingen et al. (2007) modeled the geometric im- 
perfections by assuming Gaussian random fields.  Caitríonade 
et al. (2012) characterized the variation in radius as a two- 
dimensional random field and developed an algorithm to gen- 
erate realizations of this field.  However, the random geometric 
imperfection method has seldom been applied for calculating the 
limit strength of spherical shells.  In fact, almost all spherical 
shells have initial geometric imperfections that originate during 
manufacture. 

In this study, random geometric imperfections of pressurized 
spherical shells were considered in a FEA model, and a pro- 
babilistic method was applied.  The spherical shells were as- 
sumed to be made of titanium alloy.  Commercial FEA software 
ABAQUS was employed for performing the FEA. 

II. LINEAR BUCKLING ANALYSIS  
OF SPHERICAL HULL 

Usually, buckling loads from the 1st eigenmode method are ap- 
plied in engineering projects for design purpose.  However, these  
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Fig. 1.  Stress-strain curve of titanium alloy (Pranesh et al., 2017). 
 
 

loads do not naturally represent the worst case.  It may be more 
important to perform nonlinear buckling analysis based on a 
higher-order mode method.  For example, Zhang et al. (2018) 
presented 360 types of geometrically and materially nonlinear 
analysis, all of which are based on the 1st buckling-mode (ei-
genmode) imperfection for geometrically imperfect spherical 
pressure hulls. 

In this study, we calculated buckling loads up to the 60th- 
order eigenmode. 

1. Geometric Parameters and Material Properties 

Herein, a manned vehicle is considered and discussed.  Its 
spherical pressure shell was made of titanium alloy.  Its elastic 
modulus E was 114,800 MPa, Poisson ratio   was 0.3, and yield 
strength S was 828 MPa.  The stress-strain curve is shown in 
Fig. 1 (Pranesh et al., 2017).  The minimum internal diameter 
was 2,100 mm, and the uniform wall thickness t was 10 mm. 

2. Linear Buckling Analysis 

Linear buckling analysis was performed to obtain the elastic 
critical buckling loads of the perfect structure.  In ABAQUS, the 
elastic critical buckling behavior can be determined as follows: 

   0l iK    (1) 

where i are eigenvalues (elastic critical buckling resistance), K 

is the tangent stiffness matrix, and i  are buckling mode shapes 

(eigenvectors). 
The obtained buckling mode shapes did not represent the 

actual magnitudes of deformation at the critical buckling loads 
because they have been normalized. 

1) Buckling Loads of Spherical Shells 

For perfect spherical shells, the critical elastic buckling load 
of a complete sphere under external pressure can be calculated  
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Table 1.  Linear buckling loads of a perfect spherical shell determined using a theoretical formula and the FEA method. 

Calculated results of elastic buckling   
T (mm) 

 
Rm (mm) Theory results This paper (Pranesh et al., 2017) andRelative error (%)

5 1052.5 3.14  3.14 3.12 0.00 
6 1053 4.51 4.51 -- 0.02 
7 1053.5 6.14 6.13 -- 0.16 
8 1054 8.01 8.01 -- 0.00 
9 1054.5 10.12 10.12 -- 0.00 
10 1055 12.49  12.48 12.41 0.08 
11 1055.5 15.09 15.09 -- 0.00 
12 1056 17.94 17.95 -- 0.06 
13 1056.5 21.04 21.02 -- 0.08 
14 1057 24.38 24.37 -- 0.04 
15 1057.5 27.96  27.94 27.69 0.07 
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Fig. 2.  Boundary conditions of FE model. 

 

 
analytically as follows: 
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where pcr is the critical elastic buckling stress, E is the Young’s 
modulus of the material, t is the thickness of the sphere, and Rm 
is the mean radius of the sphere. 

In ABAQUS, the shell element is adopted in the FEA model.  
In total, the model comprises 23,330 nodes and 7,776 elements.  
The boundary conditions employed in the FEA model are shown 
in Fig. 2.  For node 1, the displacements along the x- and y- 
directions are restrained.  For nodes 2 and 3, the displacements 
along the y- and z-directions are restrained, that is, Ux = Uy = 0.  
In this way, the boundary conditions can help hold rigid body 
movements without affecting relative deformation considerably. 

We considered a thin spherical shell with internal diameter 
2,100 mm as an example.  Its linear buckling load was calculated 
using a theoretical formula and the FEA method.  The correspond- 
ing results are summarized in Table 1. 

From Table 1, the numerical results are very close to the 
theoretical values.  For all cases, the maximal relative error 
was less than 0.2%. 

Table 2.  Buckling mode shapes of first 10 modes. 

The nth
mode 

1th 2nd 3rd 4th 

Graphic
mode 
shape 

 
The nth
mode 

5th 6th 7th 8th 

Graphic
mode 
shape 
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mode 

9th 10th 

Graphic
mode 
shape 

 
 
 

2) Buckling Shapes and Related Buckling Loads 

The first 60 mode shapes were easily obtained by using 
ABAQUS.  Because of the symmetric properties of both the shell 
structure and external water pressure, a few modes appeared in 
pairs.  The first 10 mode shapes are graphically shown in Table 2, 
where the scale ratio is 1:100. 

Among the different modes from the 1st mode to the 60th 
mode, the critical buckling load increased from 12.479 to 12.525 
MPa, which is an increase of 0.4%.  This result is consistent with 
previous findings (Teng and Rotter, 2004). 

III. NONLINEAR BUCKLING ANALYSIS OF 
SPHERICAL SHELLS BASED ON THE 
CONSISTENT IMPERFECT METHOD 

The maximum loading capacity of this shell under the per- 
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Fig. 3. Pressure vs. deflection of spherical shells (with initial deflection of 

1.7583 mm). 

 
 

fect condition was 12.51 MPa (Pranesh et al., 2017).  We used 
the Riks method as the nonlinear solver to estimate nonlinear 
buckling loads.  In the calculation, geometric nonlinearities were 
considered as large deformations in ABAQUS.  In addition, 
the material was assumed to be plastic, as indicated in Fig. 1.  
First, the first 20 mode shapes obtained through linear buckling 
analysis were used directly in the consistent imperfect mode 
method as the initial mode shapes.  To compare the results with 
those obtained using the random defect method, the maximum 
magnitude of imperfection was set to 1.7583 mm, which is the 
same as the value derived in Section IV(2).  This ensures that 
the comparison between both methods is more meaningful.  The 
initial displacements at each node for a certain mode can be scaled 
proportionally.  Those displacements are considered initial geo- 
metric imperfections in nonlinear analysis. 

Fig. 3 shows the relationship between pressure increase and 
deflection.  From the magnified part shown in Fig. 3, it can be 
concluded that the 17th mode corresponds to the worst case, 
that is, the minimum buckling load is 6.11 MPa.  As indicated 
in Fig. 3, the maximum elastic-plastic buckling load occurred 
for most modes when the deflection was approximately 1.0 mm.  
At deflections greater than 1.0 mm, the buckling load may de- 
crease significantly with increasing deflection. 

For each mode, the maximum loading capacity values are 
listed in Table 3. 

As indicated in Fig. 3 and Table 3, it can be concluded that 
the structure is sensitive to the initial geometric imperfections.   

Table 3. Maximum loading capacity under initial geometry 
imperfections based on eigenvalue buckling modes. 

Mode 1 2 3 4 5 

Maximum loading 
capacity (MPa) 

6.39 7.01 7.02 6.96 7.23

Mode 6 7 8 9 10 

Maximum loading 
capacity (MPa) 

7.19 6.68 6.60 6.60 6.31

Mode 11 12 13 14 15 

Maximum loading 
capacity (MPa) 

6.61 6.61 6.68 6.38 6.20

Mode 16 17 18 19 20 

Maximum loading 
capacity (MPa) 

6.12 6.11 6.66 6.18 6.18

 
 

Moreover, the 1st buckling mode may not correspond to the 
worst initial case.  To determine the worst initial imperfection, 
it is necessary to tentatively consider the first several modes as 
the initial imperfection. 

IV.  NONLINEAR BUCKLING ANALYSIS  
OF SPHERICAL HULL WITH RANDOM 

GEOMETRIC IMPERFECTIONS 

1. Normal Distribution of Geometric Imperfection 

In real engineering design, the random imperfection method 
should be more applicable and reliable.  The imperfections of 
spherical shells can be assumed to follow a normal distribution 
(Pranesh et al., 2017).  Imperfections may be caused by dif- 
ferent processes such as fabrication and welding. 

For an imperfect model, the relationship between the actual and 
theoretical coordinates of each node can be written as follows: 

 0i iX X R   (3) 

where Xi is the 3D coordinate of node i in a real model; Xi0 is 
the 3D coordinate of node i in an ideally perfect model; and R 
is the maximum geometric imperfection at each node of the 
structure. 

The initial deflection at each node is a variable defined as  
x = Xi  Xi0.  It can be assumed to follow a normal distribution: 
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where f(x) is the probability density function,  is the expected 
value, and  is the standard deviation.Therefore, the proba- 
bility distribution of 3D coordinates at each node i in the real 
model can be expressed as follows: 
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Fig. 4.  Flowchart of the random geometric imperfection method. 

 
 

where P(x) is the accumulated probability. 
Based on (Elishakoff, 1999), the probability of the node co- 

ordinates within the error range was 99.73% when the ratio be- 
tween the maximum geometric imperfection and its standard 
deviation was 3.0 (that is, R/σ = 3).  This is also called the “Three 
Sigma rule.”  Furthermore, the aforementioned equations can 
be transformed as follows: 

 /R n   (6) 

where n is a value between 2 and 6. 
The flowchart for calculating the maximum loading capa- 

city of a spherical shell under pressure by using the random de- 
flection method is shown in Fig. 4. 

2. FEA Model of a Spherical Shell with Random Geometric 
Imperfections 

In the following sections, the random geometric imperfection 
method is used to analyze the stability of spherical shells under 
pressure.  The maximum allowable geometric imperfection is 
approximately 0.5% of the nominal mean radius (DNV, 2009).   

(a) (b)  
Fig. 5. (a) Mesh of a perfect spherical shell.  (b) Mesh of a spherical shell 

with random imperfections. 
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Fig. 6(a).  Distribution of 200 random imperfections at this node. 
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Fig. 6(b).  Probability density function of random geometric imperfections. 

 

 
For this sphere, the maximum allowable geometric imperfection 
R was approximately 5.275 mm.  According to the “Three Sigma 
rule” (Elishakoff, 1999), the standard deviation of geometrical 
imperfections σ was 5.275/3 = 1.7583 mm if n is set to 3. 

Fig. 5(a) represents a perfect shell, and Fig. 5(b) represents 
an imperfect shell with random geometric imperfections. 

The distribution of random geometric imperfections at a cer- 
tain node, as shown in Fig. 5(b), can be visualized in Fig. 6(a), 
with its median value at 0, 0, and 1060 mm.  Furthermore, Fig. 
6(b) presents the normal distribution of these geometric imper- 
fections. 
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Table 4. Maximum loading capacity under random initial 
geometry imperfections. 

Maximum loading capacity (MPa) 

7.08 7.54 7.61 7.34 7.48 
7.07 7.10 7.29 7.43 7.28 
7.52 7.68 6.92 7.38 7.27 
6.96 7.61 7.51 7.55 7.11 
7.56 6.49 7.28 7.25 7.10 
7.57 7.37 7.24 7.35 6.84 
7.23 7.45 7.28 7.29 7.27 
7.65 7.69 7.83 6.84 6.89 
6.93 7.28 7.67 7.66 7.43 
6.91 7.56 7.25 7.24 7.25 
7.29 7.34 7.21 7.30 7.40 
7.28 6.83 7.38 7.24 7.59 
7.13 7.47 7.49 7.55 7.52 
7.39 7.51 6.94 7.79 6.82 
7.35 6.33 7.43 6.89 7.33 
7.27 6.31 7.04 7.26 6.57 
7.45 6.50 7.02 7.16 7.02 
7.41 7.44 6.97 7.44 6.98 
7.20 6.74 6.30 7.44 7.67 
7.03 7.23 7.37 7.35 7.22 
7.08 7.61 7.70 7.24 7.18 
6.97 7.23 7.70 6.91 7.50 
7.11 7.49 6.85 6.93 7.58 
7.33 7.25 7.53 7.00 7.40 
7.24 7.37 7.49 7.18 7.54 
7.29 7.13 7.34 7.23 7.52 
7.57 7.43 7.36 7.31 7.09 
7.25 7.23 7.70 7.41 7.24 
7.73 7.00 7.13 6.82 6.32 
7.29 7.28 7.73 6.93 6.91 
7.10 7.24 7.32 7.09 7.54 
7.33 6.94 7.46 7.26 7.46 
7.14 7.27 7.10 7.40 7.50 
7.41 7.03 7.19 7.42 7.19 
6.80 6.83 6.91 6.80 7.11 
6.97 6.31 7.14 7.25 7.19 
7.41 6.99 7.39 7.19 7.46 
7.47 6.41 7.11 7.40 6.75 
5.58 7.53 7.25 6.99 7.41 
7.39 6.88 7.40 7.26 7.17 

 

3. Results and Discussions 

Two hundred initial geometric imperfections can be generated 
using MATLAB.  The maximum loading capacity values ob- 
tained in 200 simulations are summarized in Table 4, with the 
minimum, maximum, and mean values being 5.58 MPa, 7.83 MPa, 
and 7.23 MPa, respectively.  If compared with the result of 12.51 
MPa calculated using the perfect model (Pranesh et al., 2017), 
they are approximately 45.9%, 64.4%, and 59.5%, respec-
tively.  The results show that the maximum loading capacity of 
the spherical shell structure is very sensitive to the initial geo- 

Table 5. Probability confidence level corresponding to each 
critical stress. 

Mode Maximum Probability of 

1 6.39 99.57 

2 7.01 75.41 

3 7.02 74.42 

4 6.96 80.06 

5 7.23 50.00 

6 7.19 54.97 

7 6.68 95.72 

8 6.60 97.55 

9 6.60 97.55 

10 6.31 99.80 

11 6.61 97.37 

12 6.61 97.37 

13 6.68 95.72 

14 6.38 99.60 

15 6.20 99.94 

16 6.12 99.97 

17 6.11 99.98 

18 6.66 96.26 

19 6.18 99.95 

20 6.18 99.95 

 
 

metric imperfection, as is consistent with the findings of pre-
vious studies (Pan and Cui, 2010; Pranesh et al., 2017). 

Based on the “Three Sigma rule,” the design critical load is 
as follows: 

 3 6.27 MPa      (7) 

Its probability reliability is 99.87%. 
After we obtained the results using the random geometric 

imperfection method, the results obtained using the consistent 
imperfection mode method can be re-evaluated on the basis of 
reliability analysis.  The calculated probability is summarized 
in Table 5. 

In addition, the maximum allowable pressure derived using 
the local dimple method is 7.05 MPa (Pan and Cui, 2010), and 
its reliability is approximately 71.29%. 

It can be deduced from Table 5 that the lower-order buckl- 
ing mode need not represent the worst mode initial geometric 
imperfection.  For example, with the consistent imperfection 
mode, the 5th mode can produce the maximum loading capa- 
city of 7.23 MPa, with the corresponding reliability of only 50%.  
If this value is selected as the design value, it would certainly 
lead to a risk. 

V. CONCLUSIONS 

Based on the aforementioned results and discussions, it can be 
concluded that the stability of pressurized spherical shells is 
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sensitive to initial geometric imperfections, which is consistent 
with previous findings (Pan and Cui, 2010). 

In this study, the maximum initial geometric imperfection of 
0.5% of the nominal mean radius was incorporated into FEA 
models.  First, the consistent imperfection mode method was 
applied to calculate the maximum loading capacity.  The 1st- 
order buckling mode of the structure did not guarantee the mini- 
mum buckling strength.  Instead, the results from the 17th-order 
mode yielded the minimum value of 6.11 MPa, lower than the 
value obtained from the traditional 1st-order mode model.  This 
indicates that the stability of a spherical shell under pressure 
with the lowest-order buckling mode of the structure as the initial 
geometric imperfection distribution mode is not necessarily the 
most unfavorable value. 

In addition, the random geometric imperfection method can 
be applied.  A normal distribution function was utilized to re- 
present the random distribution of imperfections in reality.  In 
total, 200 simulations were completed to ensure a more ac- 
curate and reliable maximum loading capacity physically.  The 
calculations showed that the minimum value stood at approxi- 
mately 87% of the result obtained using the 1st eigenmode me- 
thod and approximately 79% of the result obtained using the local 
dimple method.  Overall, the calculated maximum loading ca- 
pacity of the spherical shell was approximately 45% of the 
perfect structural limit strength for this example. 

Finally, the imperfections caused by welding were not con- 
sidered in this study.  However, such imperfections do exist 
invariably in the manufacture of spherical shells for deep-sea 
submersible vehicles.  This will be considered in our future work. 
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