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ABSTRACT 

Source localization in an ocean waveguide is a challenging 
problem because of the complexity of underwater acoustic propa- 
gation.  Matched-field processing (MFP) has attracted consider- 
able attention and has become a crucial technique for underwater 
acoustic source localization.  Compressive sensing can achieve 
spatial sparsity, thus improving spatial resolution, by imposing 
penalties based on l1-norm.  In this study, we developed a ro- 
bust super-resolution approach for source localization in an 
ocean waveguide, which utilizes the inherent sparse structure of 
the spatial localization problem and underwater sound propa- 
gation principle.  The proposed approach can be formulated as 
a sparse representation problem and further converted into a 
convex optimization problem with sparsity constraints.  Moreover, 
the approach can be easily implemented and efficiently solved 
using currently available convex optimization software toolboxes 
based on interior point algorithms, such as CVX.  The approach 
can also be extended to multiple-measurement scenarios for achiev- 
ing superior source localization performance.  In addition, the 
effect of the signal-to-noise ratio (SNR), a constraint parameter, 
and model mismatch on source localization performance was 
thoroughly analyzed using computer simulations.  Numerical si- 
mulation results demonstrated that in some challenging scenarios, 
the proposed approach exhibited superior performance compared 
with existing conventional methods, such as a low source locali- 
zation error and high mainlobe-to-sidelobe ratio. 

 
 

I. INTRODUCTION 

In array signal processing, source localization has become 
an active research area with applications in radar, sonar, electro- 
magnetic, medical imaging, and other fields (Chang et al., 2001; 
Hou et al., 2009; Jiang et al., 2017a).  Among such applications, 
underwater acoustic source localization in an ocean waveguide 
is a particularly challenging task in underwater acoustics (Shi 
et al., 2011c; Dosso and Wilmut, 2013; Song et al., 2015; Jiang 
et al., 2017b). 

Over the past 50 years, matched-field processing (MFP), 
which is a natural extension of classical plane wave beamform- 
ing to an ocean waveguide, has attracted considerable attention and 
has become a crucial technique for underwater acoustic source 
localization (Kuperman and Song, 2012).  However, although 
MFP is considerably more advanced than simple plane wave 
processing, it is evidently not perfect.  A primary limitation is 
the presence of sidelobes in Ambiguity Surface (AMS), and an-
other limitation can be its lack of resolution, particularly with 
regard to source depth.  To improve the performance of conven- 
tional MFP, numerous alternate approaches have subsequently 
been developed.  One of these approaches is the minimum- 
variance (MV) processor, which can strongly suppress sidelobes 
and has a considerably sharper and more focused peak at the ac- 
curate source localization than do other processors (Tolstoy, 
1993).  Nevertheless, the MV processor also has disadvantages 
(Shi et al., 2011a; Somasundaram et al., 2015).  In particular, it 
experiences severe performance degradation in the presence of 
errors in the model estimates of the field and under mismatch 
conditions (Shi et al., 2012).  Because of this sensitivity, quan- 
titative knowledge of environmental parameters must be ex-
tremely detailed and accurate (Shi et al., 2011b). 

Compressive sensing or compressive sampling (CS) is a novel 
sensing/sampling paradigm that is against the conventional sam- 
pling rate (the so-called Nyquist rate) and marks the beginning 
of a new era in the data acquisition literature (Candes and Wakin, 
2008; Orović et al., 2016).  With the rapid development in both 
theory and algorithms for sparse recovery in finite dimensions, 
compressive sensing has become an appealing field that has at- 
tracted considerable attention in the signal processing domain 
(Li and Zhang, 2015; Zhang et al., 2015).  Moreover, the broad 
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applicability of the CS framework has motivated notable studies 
in source localization (Rossi et al., 2014; Si et al. 2015). 

Through the CS framework, the inherent sparsity of underly- 
ing signals in space domains can be capitalized upon to achieve 
super-resolution localization in a noisy and coherent environment 
with few snapshots (Bilik, 2011; Yin et al., 2016).  Malioutov 
et al. (2005) enforced sparsity by imposing penalties based on 
l1-norms and used the singular value decomposition of a data ma- 
trix to improve the performance of CS in direction-of-arrival 
(DOA) estimation.  Gorodnitsky and Rao (1997) considered DOA 
estimation as an underdetermined problem and used a recursive 
weighted minimum-norm algorithm termed focal underdeter- 
mined system solver (FOCUSS) to determine its sparse solutions. 

In ocean acoustics, Xenaki et al. (2014) thoroughly analyzed 
the performance of CS in DOA estimation, particularly in chal- 
lenging scenarios, such as those involving coherent arrivals and 
single-snapshot data; they finally demonstrated the high-resolution 
capabilities and robustness of CS on experimental array data.  
Edelmann and Gaumond (2011) applied CS to the beamforming 
of measured underwater acoustic data from the BASE07 ex-
periment and showed that compressive beamforming has finer 
angular resolution and greater interference suppression than does 
conventional beamforming.  Additionally, CS was introduced 
to considerably mitigate the computational workload by “com- 
pressing” these computations of MFP (Mantzel et al., 2012).  
Forero and Baxley (2014) presented a robust scheme for shallow- 
water source localization that utilizes the inherent sparse struc- 
ture of the localization problem, and they developed an iterative 
solver based on block-coordinate descent. 

Research has established CS as a valuable tool for source lo- 
calization; however, research has primarily established this from 
a plane-wave perspective, seldom considering an ocean wave- 
guide.  Therefore, the aim of this study was to achieve superior 
resolution and suppressed sidelobes by introducing a spatial- 
sparsity constraint into shallow-water source localization.  In 
contrast to the study by Mantzel et al. (2012), we used sparsity 
to improve source localization performance and did not address 
the computational challenges of computing replicas for large grids.  
Moreover, unlike the study by Forero and Baxley (2014), we for- 
mulated the underwater source localization problem as a convex 
optimization problem and applied the CVX tool to efficiently 
solve nondifferentiable functions (l1-norms) in both single- and 
multiple-measurement scenarios.  The primary contributions of 
this study are as follows: (1) formulating the source localiza-
tion problem in an ocean waveguide as a sparse representation 
problem and converting this problem into a convex optimization 
problem with a sparsity constraint, which can be efficiently solved 
using the well-established toolbox CVX; and (2) extending a 
single-measurement algorithm to a multiple-measurement sce-
nario and achieving superior source localization performance, 
including robustness against model mismatch. 

The remainder of this article is organized as follows: Section 
II presents preliminary information on CS, and the sparse signal 
recovery algorithm is considered in this section.  In Section III, 
underwater acoustic propagation theory in an ocean waveguide 

is introduced, and the traditional MFP techniques are described.  
In Section IV, the source localization problem in an ocean wave- 
guide is reformulated as a sparse representation problem, and the 
source localization algorithm with a sparsity constraint in the 
ocean waveguide is then proposed.  Section V presents a detailed 
analysis of numerical results by using synthetic data.  The con- 
clusions are provided in Section VI. 

II. CS PROBLEM AND SPARSE SIGNAL 
RECOVERY ALGORITHM 

CS is a novel sensing/sampling paradigm that entails captur- 
ing and representing compressible signals at a rate that is signi- 
ficantly below the Nyquist rate (Eldar and Kutyniok, 2012).  In 
general, several natural signals can be expressed in a convenient 
orthonormal basis.  For example, any signal x  RN (where RN 
represents an N-dimensional Euclidean space and N is the cor- 
responding dimension) can be expanded in an orthonormal basis 

1 2, , , N        as follows: 

 
1

or
N

i i
i

s


 x ψ x Ψs  (1) 

where s denotes the coefficient sequence of x, ,i is  x ψ  

T
iψ x , and  T  denotes transposition.  Clearly, x  and s  are 

equivalent representations of the signal, with x in the time or 
space domain and s in the  domain. 

The signal x is strictly sparse because almost all of its entries 
are zero.  The signal x is K-sparse if it is a linear combination 
of at most K basis vectors.  The signal x is compressible in that 
Eq. (1) has only a few large coefficients and several small co- 
efficients (Baraniuk, 2007). 

Consider a general linear measurement process that computes 

M inner products between x  and a collection of vectors  
1

M

j j
  

as follows: 

 , orj jy  x y Φx  (2) 

If Eq. (1) is substituted into Eq. (2), y can be written as 
follows: 

   y Φx ΦΨs Θs  (3) 

where the sensing matrix Θ ΦΨ  is the product of the meas- 
urement matrix M NΦ  and the transformation matrix N NΨ .  

Notably, M  is a number and determines the number of vectors 
j (j = 1, , M) used for generating a linear measurement 
process.  In general, M is less than N; thus, Eq. (3) is under-
determined and does not have a unique solution.  Moreover, 
Eq. (3) is a typical compressive sensing problem, which in-
volves designing a reconstruction algorithm to recover s  from 
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only M  K measurements y. 
The sparse signal recovery algorithm entails taking M meas- 

urements in the vector y, measurement matrix , and trans-
formation matrix Ψ  to reconstruct the length- N  signal x or 
equivalently its sparse coefficient vector s. 

A classical approach to Eq. (3) is to determine the solution 
with minimum energy (l2-norm) by solving the following: 

 
2

min . .s t s y Θs  (4) 

where . .s t  denotes “subject to.”  The optimization problem Eq. 
(4) has a convenient analytical solution: 

   1T T 
s Θ ΘΘ y  (5) 

However, l2-norm minimization aims to minimize the signal 
energy rather than its sparsity; hence, it almost never deter-
mines a K-sparse solution.  By definition, an ideal measure of 
sparsity is to count the number of nonzero entries in s, which is 
mathematically termed l0-norm (denoted by 

0
s ).  Therefore, 

sparsity can be imposed on s by minimizing l0-norm as follows: 

 
0

min . .s t s y Θs  (6) 

Eq. (6) is a difficult combinatorial optimization problem, 
and this problem is numerically unstable and NP-hard.  In pre- 
vious studies, numerous algorithms have been proposed, includ- 
ing greedy algorithms as well as l1 and lp relaxations (Donoho, 
2006).  For l1 and lp relaxations, recent research has proven 
that if the signals are sufficiently sparse with respect to a sens- 
ing matrix, Eq. (6) is equivalent to the following: 

 
1

min . .s t s y Θs  (7) 

This is a convex optimization problem, which can be reduced 
to a linear program termed basis pursuit, whose computational 
complexity is approximately 3( )O N  (Candès, 2006).  Further- 
more, because of the convexity of l1-norm, the global optimum 
can be conveniently determined. 

III. TRADITIONAL MFP FOR SOURCE 
LOCALIZATION IN OCEAN WAVEGUIDE 

In underwater acoustics, acoustic propagation is described 
using a pressure disturbance or field traveling through the ocean, 
where the water medium and boundaries (the surface and the 
bottom) can vary temporally and spatially.  The theoretical basis 
underlying all mathematical models of acoustic propagation is 
the wave equation, which is derived from the fundamental equa- 
tions of state, continuity, and motion (Jensen et al., 2011; Schmidt 
and Jensen, 2012).  With the maturation of modeling technology 
over previous decades, four types of propagation models are avail- 

water
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Fig. 1. Underwater acoustic propagation and MFP implementation in ocean 

waveguide. 

 
 

able, namely Ray theory, fast field program, parabolic equation, 
and normal-mode (NM) model (Tolstoy, 1993; Jiang et al., 2017).  
The principal advantages of the NM model include high-accuracy 
and rapid calculation.  Therefore, the NM model is generally 
preferred for MFP.  For consistency and simplicity, all results 
computed particularly for this study were generated using the 
NM model. 

The problem considered in this study involved calculating 
the response to an isotropic point source in a stratified acoustic 
medium, as indicated schematically in Fig. 1. 

Within a layer, the solution is governed by the following 
acoustic wave equation: 

 
2

( ) ( )1 1
( )

( ) 2( ) ( )
s

tt

z z r
P P s t

z rz c z

 
 

  
      

 
 (8) 

where P(r, z, t) is the acoustic pressure as a function of depth z, 
range r, and time t.  In addition, c(z), (z), and s(t) represent the 
sound speed, density, and isotropic point source, respectively. 

Assume that s(t) has only a single frequency component .  
The source time series can then be represented as follows: 

 ( ) j ts t e   (9) 

which generates a pressure field with the same harmonic time 
dependence as follows: 

 ( , , ) ( , ) j tP r z t p r z e   (10) 

Substituting Eqs. (9) and (10) into Eq. (8) yields the Helmholtz 
equation: 

 
2

2

( ) ( )1 1
( )

( ) 2( )
sz z rp p

r z p
r r r z z z rc z

 
 

                  
 (11) 

Using the technique of separation of variables and the boun- 
dary condition, we can derive the following (Etter, 2013): 

 4

1

( , ) ( ) ( )
( ) 8

mjk r
j

m s m
ms m

j e
p r z e Z z Z z

z r k


 






   (12) 
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where km and Zm are the eigenvalue and eigenfunction, respec- 
tively.  Furthermore, p(r, z) is referred to as the Green’s function 
G(r, z), which forms the basis for representing signals used in 
MFP. 

Fig. 1 presents a schematic of MFP implementation in an ocean 
waveguide.  The acoustic source s0(t) (star symbol) is located 
at an unknown location  0 0 0, sr r z


, and its transmitting sig- 

nal is recorded along an N-element receiver array after multi-
path propagation.  According to the aforementioned NM model, 
the solutions to the wave equation at the array locations are 
represented as  0 , iG r r

 
, (i = 1, , N) ( ir


 represents the lo- 

cation for the ith element), and can be incorporated into a signal 

vector 
T

0 0 1 0 2 0( , ) ( , ), ( , ), , ( , )NG G G   G r r r r r r r r
         (where 

1 2[ , , , ]Nr r r r
    ), which is the measured acoustic field on 

the vertical array.  A modeled acoustic field for a candidate 

source located at ( , )s sr zr


 can be denoted as ˆ ( , )s G r r
 

 
T

1 2
ˆ ˆ ˆ( , ), ( , ), , ( , )s s s NG G G 

 r r r r r r
      .  The actual source location 

0r


 may be inferred by matching the measured acoustic field 

0( , )G r r
 

 with the simulated acoustic signals ˆ ( , )sG r r
 

 obtained 

by varying the candidate source location (dot symbols) r


 
( , )sr z  throughout a search grid area.  MFP is a generalization 

of plane wave beamforming, wherein a steering vector (or re- 
plica) is derived from the Green’s function of the ocean wave- 
guide; therefore, the conventional MFP algorithm with the Bartlett 
processor can be formulated as follows (Baggeroer et al., 1993; 
Yang, 2014):  

 H( , ) ( , ) ( , )B s s sP r r w r r Kw r r
     

 (13) 

where ( , )B sP r r
 

 represents the output power of the Bartlett 

processor, 
ˆ ( , )

( , )
ˆ ( , )

s
s

s


G r r

w r r
G r r

  
   represents the normalized weight 

vector, H
0 0( , ) ( , )K G r r G r r
   

 represents the cross-spectral 

matrix, H( )  represents complex conjugate transposition, and 

  represents the expected value.  For convenience, Eq. (13) 

is denoted by MFP-B in the following sections. 
The MV processor is one of the most commonly used adap- 

tive array algorithms for MFP; it is designed to be optimum in 
the sense that the output noise power is minimized subject to 
the constraint that the signal is undistorted by the processor 
(Le Touze et al., 2012).  The formulation of the MFP algorithm 
with the MV processor can be expressed as follows:  

 
H 1

1
( , )

( , ) ( , )M s
s s

P r r
w r r K w r r

 
     (14) 

where ( , )M sP r r
 

 is the output power of the MV processor and 

1( )  is the matrix inversion.  For convenience, Eq. (14) is de- 

noted by MFP-M in the following sections. 

IV. SPARSE SIGNAL REPRESENTATION  
AND SOURCE LOCALIZATION  
WITH SPARSITY CONSTRAINT 

In this section, we formulate the source localization problem 
as a sparse representation problem.  For simplicity, first con-
sider the single-snapshot scenario.  Let  1 2, , , , ,m Mr r r r

      

(where mr


 belongs to the search grid area) be a sampling grid 

of all source locations of interest (Fig. 1); we can construct the 

sensing matrix o( , )G r r
 

 by using Green’s functions correspond- 

ing to each potential source location as its columns: 

  o
1 2( , ) ( , ), ( , ), , ( , )MG r r r r r r r r

       G G G  (15) 

where  o
1 2, , , Mr r r r

     and o( , )G r r
 

 is an overcomplete 

representation in terms of all possible source locations. 
Consider K narrowband signals ( )ks t  (where k = 1, , K) 

in the search grid area of interest, and reformulate the signals 
( )ks t  using a new M  1 vector ( )tS , where the mth element 

( )ms t  is nonzero and equal to ( )ks t  if source k is from mr


 for 

some k and is zero otherwise.  The source localization problem 
is then recast as a sparse representation problem (Malioutov, 
2011): 

 o( ) ( , ) ( ) ( )t t t X G r r S N
 

 (16) 

where 

T

1 2( ) ( ), ( ), , ( )Nt x t x t x t   X   denotes sensor outputs; 

 T1 2( ) ( ), ( ), , ( )Mt s t s t s tS   denotes sparse signal repre-

sentation; 

T

1 2( ) ( ), ( ), , ( )Nt n t n t n t   N   denotes additive noise. 

In general, the actual number of sources is small compared 
with all probable source locations of interest.  Therefore, the 
underlying AMS for source localization is sparse, and Eq. (16) 
can be solved using the l1-norm methodology, as described in 
Section II.  In the presence of the noise field N(t), Eq. (16) can 
be solved as follows (Edelmann and Gaumond, 2011): 

 o

1 2
min ( ) . . ( , ) ( ) ( )t s t t t  S G r r S X

 
 (17) 

where  is the upper bound (or constraint parameter) for noise 
energy (l2-norm).  Eq. (17) represents the source localization 
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algorithm with the sparsity constraint in the ocean waveguide; 
for convenience, it is denoted by SLSC-I in the following 
sections. 

In particular scenarios, including nonstationary sources, single- 
measurement processing may have advantages, and we can solve 
Eq. (17) for each measurement sequentially.  However, for sta- 
tionary sources, source localization estimation with multiple meas- 
urements is of relatively high practical importance and has the 
following form:  

  o
1( ) ( , ) ( ) ( ), , , Tt t t t t t  X G r r S N

    (18) 

Let  1 2( ), ( ), , ( )Tt t tX X X X ,  1 2( ), ( ), , ( )Tt t tS S S S , 

and  1 2( ), ( ), , ( )Tt t tN N N N .  Eq. (18) can be further refor- 

mulated in a compact form as follows: 

 o( , ) X G r r S N
 

 (19) 

The signal is generally sparse in space and not in time.  Hence, 
determining the numerical solution to Eq. (19) is slightly com- 
plex.  To address this concern, we should first compute the l2- 
norm of all time samples of a particular spatial index of S, such 

as 2
1 2 2

( ), ( ), , ( )l
i i i i Tt t t   S S S S , and penalize the l1-norm 

of 2 2 2 2
1 2, , ,l l l l

M
   S S S S  (Li and Zhang, 2015).  Subsequently, 

Eq. (19) can be solved as follows: 

 2 o

21
min . . ( , )l s t  S G r r S X

 
 (20) 

where  is the upper bound (or constraint parameter) for noise 
energy (l2-norm).  For convenience, Eq. (20), which deals with 
multiple snapshots, is denoted by SLSC-II in the following 
sections. 

In practice, Eqs. (17) and (20) are convex optimization prob- 
lems and can be readily addressed using various tools, such as the 
l1-MAGIC package (Candès and Romberg, 2015), SeDuMi 
software (Sturm, 1999), and CVX toolbox (Boyd and Vanden-
berghe, 2004).  In this study, we proposed the use of the CVX 
toolbox, which can solve considerably more complex convex 
optimization problems, including several problems with non-
differentiable functions, such as l1-norms compared with other 
tools (Grant and Boyd, 2015). 

In summary, the procedure for implementing our proposed 
algorithm (or obtaining the solution) is summarized as follows: 

 
(1) Discretize the observable space and determine a sampling 

grid of all source locations of interest. 

(2) According to Eq. (15), construct the sensing matrix o( , )G r r
 

 

by using Green functions corresponding to each potential 
source location as its columns. 

(3) Acquire the sensor outputs and form the array data samples 

X(t) or  1 2( ), ( ), , ( )Tt t tX X X X .  If the algorithm 

SLSC-I is selected, proceed to Step (4).  If algorithm 
SLSC-II is selected, proceed to Step (5). 

(4) According to Eq. (17), set the constraint parameter  and 
call the CVX toolbox to seek S(t) that minimizes 

1
( )tS  

under the constraint condition o

2
( , ) ( ) ( )t t  G r r S X
 

.  

proceed to Step (6). 
(5) According to Eq. (20), set the constraint parameter  and 

call the CVX toolbox to seek S that minimizes 2

1

lS  

under the constraint condition o

2
( , )  G r r S X
 

. 

(6) Finally, compute the signal energy from different sampl- 
ing grids of all source locations of interest and present an 
ambiguity surface.  Subsequently, define the location esti- 
mates for the acoustic sources by using the location of the 
largest peaks on the ambiguity surface. 

V. NUMERICAL RESULTS OBTAINED  
USING SYNTHETIC DATA 

This section details computer simulations conducted to eva- 
luate the performance of our proposed algorithm.  The signal- 
to-noise ratio (SNR) array for a single array measurement is 
defined in decibels as follows: 

 

o

2
10

2

( , ) ( )
SNR 20log

( )

t

t

 
 
 
 

G r r S

N

 
 (21) 

1. AMS for Coherent Source Localization in Ocean 
Waveguide 

First, we considered a coherent source localization example 
in a complex ocean environment with a depth-varying sound 
speed profile.  Such environments are appropriate for demon-
strating the performance of the proposed algorithm. 

The ocean profile was converted into one involving three 
piecewise linear segments, defining a double-duct profile (Fig. 2).  
The sound speed varied from 1500 m/s (at the surface and at a 
depth of 3000 m) to 1550 m/s (at a depth of 1000 m and at the 
bottom, which was assumed to be at a depth of 5000 m).  The 
bottom was determined to be fluid with a sound speed of 2000 
m/s and a density of 2.0 g/cm3.  Two coherent acoustic sources 
were observed in this horizontally stratified ocean.  One source 
was located at a depth of 150 m and a range of 180 km from a 
vertical line array (VLA), whereas the other was at a depth of 
230 m and a range of 130 km.  The VLA was a 19-element array 
of hydrophones spaced at 50 m, and the uppermost element 
was at a depth of 55 m; thus, the total length of the array was 
900 m.  The field at the hydrophones was calculated at a frequency 
of 10 Hz by using an NM propagation model.  Specifically, 42 
modes were available for the double-duct problem solved using 
the numerical code Kraken.  However, for simplicity, only the  



22 Journal of Marine Science and Technology, Vol. 27, No. 1 (2019 ) 

 

 

1000 m

Range (km)
180

130

S1
S2

1 = 1.0 g/cm3

с2 = 2000 m/s

с1

2 = 2.0 g/cm3

3000 m

1500 1550
SV (m/s)

sediment

water

5000

0
150
230

reciever array

►►

D
ep

th
 (m

)
►

►

► ►

ρ

ρ
 

Fig. 2.  Ocean waveguide with double-duct profile. 
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Fig. 3.  First nine modes for double-duct problem. 

 
 

first nine modes are plotted in Fig. 3. 
The SNR was set to 20 dB (upper bound -5= 1 10   and 

-5= 1 10  ).  The total number of multiple measurements was 
16.  The numerical search grid for localization spanned from 
100 to 220 km, with a 1-km spacing in range, and from 50 to 
290 m, with a 10-m spacing in depth.  Fig. 4 illustrates the 
normalized AMS results from all three processors with a sin-
gle snapshot and multiple snapshots. 

The Bartlett processor is robust to a small training sample 
size.  Therefore, the AMS results from the processes with the 
single snapshot and multiple snapshots were approximately 
the same, as illustrated in Figs. 4(a) and 4(b), respectively.  
However, several high sidelobes were observed.  MFP-B dis- 

played strong ambiguities competing with the true source po- 
sitions.  Figs. 4(c) and 4(d) present the AMS results from MFP-M 
with a single snapshot and multiple snapshots, respectively.  
Figs.4(c) and 4(d) are considerably different.  Typically, a small 
training sample size engenders a considerable degradation of 
the performance of the MV processor, and this thus explains 
the difference between the two figures.  As shown in Fig. 4(c), 
noise interfered with the two coherent signals, preventing these 
signals from being distinguished.  Fig. 4(d) indicates a high- 
level pseudo-peak, signifying a false target (i.e., a point of the 
highest power indicated by an arrow).  Hence, in this scenario, 
MFP-B and MFP-M could not perform adequately in capturing 
signals and precisely locating the sources.  Finally, the results  
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Fig. 4.  AMS results observed for all three processors. 

 
 

in Figs. 4(e) and 4(f) are consistent with the proposed theore- 
tical arguments associated with Eqs. (17) and (20), describing 
the sparsity-constraint properties of SLSC-type algorithms.  As 
shown in Fig. 4(e), SLSC-I could suppress all noise and precisely 
locate coherent sources.  However, the actual estimated ampli- 
tudes of the two coherent sources were considerably different 
(i.e., one was approximately 0.2, whereas the other was nearly 
0.8).  In contrast to SLSC-I, SLSC-II had two separated large 
peaks, which were considerably sharper and more focused at 
the accurate source positions (indicated using arrow), as presented 
in Fig. 4(f).  For multiple snapshots, SLSC-II could evidently 
discern the two closely spaced sources.  Accordingly, the nu- 
merical simulation results indicate that the SLSC-type algorithms 
could perform adequately in localizing coherent sources in the 
complex ocean environment with a depth-varying sound speed 
profile and could provide higher resolution than could MFP-B 
and MFP-M. 

2. Source Localization Performance versus SNR 

In previous sections, we analyze AMS results for MFP-B, 
MFP-M, SLSC-I, and SLSC-II.  Source localization perfor- 
mance is highly dependent on the SNR at a receiving array.  
Accordingly, from a statistical perspective, we closely inves-
tigated the performance of the aforementioned algorithms by 
considering source localization with varying SNRs.  Source lo- 
calization performance was determined to be based on the source 
localization error (SLE) and mainlobe-to-sidelobe ratio (MSR), 
where SLE is defined as the Euclidean distance: 

    2 2

0 0SLE peak peakr r z z     (22) 

where r0 and z0 represent the range and depth of the true source, 

respectively, whereas rpeak and zpeak represent the range and 
depth of the highest peak in AMS, respectively.  In addition, 
the MSR is defined as follows: 

 10MSR 20log peak

max-sidelobe

P

P

 
  

 
 (23) 

where Ppeak and rmax-sidelobe represent the power of the highest 
peak and power of the maximum sidelobe in AMS, respec-
tively. 

Consider the Pekeris waveguide in Fig. 5.  The waveguide 
for this numerical simulation was range-independent with a 
bottom depth of 1000 m and had a homogeneous fluid layer 
with a sound speed of 1500 m/s overlying a bottom with a sound 
speed of 2000 m/s and density of 2.0 g/cm3.  The acoustic 
source was located at a depth of 150 m and a range of 180 km from 
the VLA.  The VLA was a 19-element array of hydrophones 
spaced at 50 m, and the uppermost element was at a depth of 
55 m; therefore, the total length of the array was 900 m.  The re- 
plica search grid for localization extended from 100 to 220 km, 
with a 1-km spacing in range, and from 100 to 290 m, with a 10-m 
spacing in depth.  The VLA data were generated at a frequency 
of 10 Hz by using an NM propagation model. 

In the scenario involving a single snapshot, the constraint 
parameter was set to  = 1  10-5, SNR changed from -10 to 30 
dB, and number of Monte Carlo trials was 200 (each point in 
the plot represents the average of 200 trials).  Fig. 6 presents a 
comparison of the numerical results obtained using MFP-B, 
MFP-M, and SLSC-I with a single snapshot. 

Fig. 6(a) provides a comparison of the three processors in terms 
of the SLE as a function of SNR.  The numerical results for all 
three processors improved as the SNR increased, although some  



24 Journal of Marine Science and Technology, Vol. 27, No. 1 (2019 ) 

 

 

180 (km)

с2 = 2000 m/s

2 = 2.0 g/cm3
sediment

water

source

0 m

Zs = 150 m

D = 1000 m

reciever array

►►

ρ

с1 = 1500 m/s

1 = 1.0 g/cm3ρ

 
Fig. 5.  Pekeris waveguide with environmental parameters. 
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Fig. 6.  SLE and MSR versus SNR in scenario involving single snapshot. 

 
 

processor results were determined to asymptote to an approxi- 
mately constant value at higher SNRs.  For example, the SLE 
for MFP-M, MFP-B, and SLSC-I was approximately 0 at the 
SNRs of more than 24, 5, and -5 dB, respectively.  The perfor- 
mance of MFP-B and SLSC-I was considerably superior to that 
of MFP-M at intermediate SNRs, (where the SNR varied from 
5 to 24 dB).  However, when the SNR was less than 5 dB, the 
performance of SLSC-I was slightly worse than that of MFP-B.  
Fig. 6(b) shows a comparison of the performance of the three 
processors in terms of the MSR versus SNRs.  At lower SNRs 
(where the SNR varied from -10 to 4 dB), the MSRs for all three 
processors were approximately 0.  When the SNR was higher 
than 4 dB, the MSR increased with the SNR for all processors.  
SLSC-I outperformed MFP-B and MFP-M, whereas MFP-M 
performed slightly better than MFP-B at higher SNRs, with sig- 
nificant differences (MSR of ~ 20 dB) when the SNR was 30 dB. 

In the scenario involving multiple snapshots, the constraint 
parameter was set to -4= 1 10  , SNR was varied from -10 to 
10 dB, and number of Monte Carlo trials was 200 (each point 
in the plot represents the average of 200 trials).  Fig. 7 illus-
trates the numerical results obtained using MFP-B, MFP-M, 
and SLSC-II with multiple snapshots. 

The results in Fig. 7 are similar to those in Fig. 6.  As shown 
in Fig. 7(a), the performance of MFP-B and SLSC-II was con- 
siderably superior to that of MFP-M overall, whereas the per- 
formance of SLSC-II was slightly worse than that of MFP-B at 
lower SNRs (SLE differences of approximately 2 grids at an SNR 
of -6 dB).  As illustrated in Fig. 7(b), the MSR performance of  
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Fig. 7.  SLE and MSR versus SNR in scenario involving multiple snapshots. 

 
 

SLSC-II improved with the decreasing noise.  Furthermore, 
SLSC-II outperformed MFP-B and MFP-M overall, whereas 
the MSR of MFP-M was higher than that of MFP-B by nearly 
10 dB.  However, in contrast to the scenario involving the sin- 
gle snapshot, the performance of the SLSC-type algorithms 
was significantly improved in the scenario involving multiple 
snapshots, as shown in Fig. 7.  For example, SLSC-II had an SLE 
of approximately 0 grids and MSR of 170 dB at an SNR of 0 
dB, whereas SLSC-I had an SLE of approximately 3 grids and 
an MSR of 0 dB.  Moreover, the snapshot number had almost 
no influence on MFP-B. 

On the basis of the results presented in this section, we can 
conclude that the SLSC-type algorithms exhibited a consid-
erably higher resolution (i.e., lower SLE and higher MSR) and 
higher performance than did MFP-B and MFP-M provided 
that scenarios were appropriately conditioned (i.e., preventing 
excessively low SNRs, such as lower than 5 dB in the scenario 
involving the single snapshot and lower than -4 dB in that in- 
volving multiple snapshots). 

3. Influence of Model Mismatch 

Previous studies have indicated that a major limitation of 
source localization in the ocean waveguide is sensitivity to 
model mismatches that occur when an inaccurate model is 
established for the ocean waveguide (e.g., sound speed profile 
errors, channel depth errors, and sensor position errors) (Bilik, 
2011).  The aforementioned scenarios did not consider the mis- 
match between the propagation environment and the adopted 
acoustic model.  However, in practical applications, uncertain-
ties in model parameter values must be addressed.  An under- 
water source localization algorithm utilizes information on the 
environment by using Green’s functions.  Green’s functions 
contain all information on an underwater sound propagation 
environment or channel.  Green’s functions are functions of 
underwater sound propagation environments or channel pa-
rameters.  If these parameters are erroneous or affected by 
interference (or the underwater environment includes a model 
mismatch), Green’s function perturbation occurs.  Therefore, 
the model mismatch can be defined by using Green’s function 
perturbation.  Moreover, its influence on source localization 
performance can be further studied.  The model mismatch is 
defined as follows: 
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Fig. 8. SLE and MSR versus model mismatch in scenario involving 
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Fig. 9. SLE and MSR versus model mismatch in scenario involving 
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where 
F

  and 0( , )G r r
 

 denote Frobenius norm and Green’s 

function perturbation, respectively. 
To illustrate the influence of model mismatch, we compared 

the performance of all three processors against different model 
mismatches, as illustrated in Figs. 8 and 9, which respectively 
correspond to a single snapshot and multiple snapshots.  As 
shown in Fig. 8, the simulation condition was the same as that 
described in Section 5.2, except that the model mismatch changed 
from -20 to 10 dB.  The acoustic source was located at a depth 
of 150 m and a range of 180 km from the VLA, and the num- 
ber of Monte Carlo trials was 200. 

As the model mismatch increased, the SLEs for all proc-
essors increased and the MSRs decreased (Fig. 8).  Previous 
studies on MFP have indicated the robustness of MFP-B to 
model mismatches (Kuperman and Song, 2012).  As expected, 
MFP-B had the lowest SLEs overall.  SLSC-I was comparable 
to MFP-B at a low model mismatch (i.e., less than -8-dB dis-
turbance, as shown Fig. 8(a)); however, its performance was 
slightly worse at higher model mismatches (i.e., more than 
-8-dB disturbance).  MFP-M was highly sensitive to the model 
mismatch and exhibited the worst performance of all processors.  
When the disturbance was -10 dB, MFP-B and SLSC-I exhi- 

bited accurate source localization results (an SLE of approxi- 
mately 0 grids, as shown in Fig. 8(a)), whereas MFP-M had an 
SLE of 30 grids.  In addition, Fig. 8(b) illustrates plots of the 
MSR against model mismatch.  When the model mismatch was 
lower than -5 dB, SLSC-I evidently outperformed MFP-B and 
MFP-M.  However, when the model mismatch was higher than 
-5 dB, all three processors exhibited the same MSR (approxi- 
mately equal to 0 dB). 

Fig. 9 shows the results for the scenario involving multiple 
snapshots.  The simulation conditions were the same as those in 
the preceding scenario, except that the model mismatch changed 
from -10 to 5 dB, and the number of Monte Carlo trials was 200. 

As presented in Fig. 9(a), MFP-B and SLSC-II exhibited 
considerably lower SLEs than did MFP-M for lower model 
mismatches (where the disturbance was less than 0 dB).  How- 
ever, when the model mismatches were higher than 0 dB, MFP-B 
and SLSC-II exhibited performance degradations.  Fig. 9(b) pre- 
sents plots of the MSR versus model mismatch.  As the model 
mismatch increased, the MSR observed for SLSC-II decreased 
but was considerably higher than those observed for the MFP-B 
and MFP-M when the disturbance was lower than 0 dB.  There- 
fore, the simulation figures indicate the robustness of SLSC-II 
to model mismatches, representing that SLSC-II is less sensitive 
to model mismatches for disturbances of less than 0 dB. 

The simulation results in this subsection clearly demonstrate 
the superior performance of the SLSC-type algorithms (i.e., 
high robustness to model mismatches), obtained by utilizing in- 
formation from the sparsity constraint, compared with MFP-B 
and MFP-M. 

4. Source Localization Performance versus Constraint 
Parameter 

The preceding numerical results were obtained under the 
condition of fixed constraint parameters.  However, the advan- 
tages of SLSC-type algorithms can only be materialized if 
appropriate constraint parameters are selected.  Selecting appro- 
priate constraint parameters is crucial in practical applications.  
From a statistical perspective, we evaluated the performance 
of the SLSC-type algorithms by considering source localization 
under different constraint parameters. 

The simulation condition was the same as those described in 
Section 5.2, except that the constraint parameter  was changed 
from 0.5  10-5 to 5  10-5.  Fig. 10 shows the numerical results 
observed for SLSC-I.  The curves are labeled with different 
SNRs in decibels.  Each curve varies with respect to two para- 
meters, namely a constraint parameter corresponding to the 
horizontal axis and the SNR value. 

Fig. 10(a) illustrates plots of the SLE as a function of the 
constraint parameter at a fixed SNR.  At intermediate para- 
meters, where the constraint parameter was varied from 0.8  
10-5 to 3.5  10-5, SLSC-I had a low SLE and high overall 
performance.  This signifies that localization accuracy was 
achieved in this range of constraint parameters, which can be 
termed the confidence interval indicated by the two vertical 
dashed lines.  However, when the parameters were higher than  
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Fig. 10.  SLE and MSR versus constraint parameter for SLSC-I. 

 
 

3.5  10-5, the SLE became higher and performance degradation 
occurred.  Fig. 10(b) presents plots of the MSR against the con- 
straint parameter at a fixed SNR.  At intermediate parameters, 
where the parameter was varied from 0.8  10-5 to 3.5  10-5, a 
higher SNR indicated a higher MSR.  However, when the pa- 
rameter was higher than 3.5  10-5, the simulation results were 
invalid because of inaccurate localization results (Fig. 10(a)).  
Therefore, these results demonstrate that accurate localization 
depends on the parameter choice or confidence intervals (i.e., 
from 0.8  10-5 to 3.5  10-5 under this simulation condition). 

Fig. 11 shows the numerical results observed for SLSC-II.  
The simulation conditions were the same as the mentioned 
conditions, except that the constraint parameter  was changed 
from 1  105 to 2  10-4.  The confidence interval could be de- 
fined from 0.4  10-4 to 1  10-4, as indicated by the two vertical 
dashed lines (Fig. 11).  In this confidence interval, SLSC-II 
achieved a lower SLE and higher MSR than those in other in- 
tervals.  As the SNR increased, performance was improved.  
For example, SLSC-II exhibited a higher MSR at an SNR of 0 
dB than it did at an SNR of -5 dB (Fig. 11(b)).  SLSC-II per-
formed appropriately when the parameter was selected from 
the confidence interval (i.e., from 0.4  10-4 to 1  10-4). 

The simulation results presented in this section demonstrate 
the superior performance of the SLSC-type algorithms, which 
could be achieved by selecting the appropriate confidence in- 
terval.  The confidence interval can be specified under certain 
simulation conditions and can be used as a guide to parameter 
section. 

VI. CONCLUSION 

This paper proposes a robust super-resolution source local-
ization approach in an ocean waveguide.  The proposed technique 
explicitly applies the inherent sparse structure of the localization 
problem and underwater sound propagation model to achieve 
a relatively high spatial resolution.  Moreover, the proposed 
approach can be formulated as a sparse representation problem 
and further converted into a convex optimization problem with 
a sparsity constraint, which can be efficiently solved using the 
CVX toolbox.  Computer simulations were conducted to com- 
pare the AMS results in several frequently encountered situations, 
such as single source localization, coherent source localization, 
and targets outside the area of interest.  In addition, the effect  
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Fig. 11.  SLE and MSR versus constraint parameter for SLSC-II. 

 
 

of the SNR, constraint parameters, and model mismatch on source 
localization performance was thoroughly analyzed using nume- 
rical simulations.  In summary, the numerical simulation results 
indicate that the proposed SLSC-type algorithms (i) can per-
form well in source localization in the ocean waveguide, (ii) 
are highly robust to model mismatches, and (iii) have consid-
erably higher resolution (lower SLE and higher MSR) than do 
the available conventional methods under appropriate condi-
tions and appropriate confidence intervals of constraint para- 
meters. 

ACKNOWLEDGEMENTS 

This work was supported by the Fund for Young Fostering 
Talents of the Higher Education Institutions in Heilongjiang 
Province in 2015 (Grant No. UNPYSCT-2015101), the Natural 
Science Foundation for Outstanding Young Talents of Heilong-
jiang Province and the Fundamental Research Funds for the 
Universities of Education Department of Heilongjiang Province 
(Innovative Research Team: Grant No. 2018CX11). 

REFERENCES 

Baggeroer, A. B., W. A. Kuperman and P. N. Mikhalevsky (1993). Overview of 
matched field methods in ocean acoustics. IEEE Journal of Oceanic En-
gineering, Vol. 18, No. 4, 401-424. 

Baraniuk, R. G. (2007). Compressive sensing. IEEE Signal Processing Maga- 
zine, Vol. 24, No. 4, 118-124. 

Bilik, I. (2011). Spatial Compressive sensing for direction-of-arrival estimation 
of multiple sources using dynamic sensor arrays. IEEE Transactions on Aero- 
space and Electronic Systems, Vol. 47, No. 3, 1754-1769. 

Boyd, S. and L. Vandenberghe (2004). Convex Optimization. Cambridge Uni- 
versity Press, New York. 

Candès, E. J., J. Romberg and T. Tao (2006). Robust uncertainty principles: Exact 
signal reconstruction from highly incomplete frequency information. IEEE 
Transactions on Information Theory, Vol. 52, No. 2, 489-509. 

Candès, E. J. and J. Romberg (2015). l1-magic: Recovery of sparse signals via con- 
vex programming. http://statweb.stanford.edu/~candes/l1magic/#code (last 
viewed July 31, 2015) 

Candes, E. J. and M. B. Wakin (2008). An introduction to compressive sampling. 
IEEE Signal Processing Magazine, Vol. 25, No. 2, 21-30. 

Chang, S. H., J. C. Liu and C. W. Chiu (2001). Applying time-frequency distri- 
bution function to DOA of mobile active sensor. Journal of Marine Science 
and Technology, Vol. 9, No. 2, 161-166. 

Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information 
Theory, Vol. 52, No. 4, 1289-1306. 

Dosso, S. E. and M. J. Wilmut (2013). Bayesian tracking of multiple acoustic 



 H.-Y. Song et al.: Robust Source Localization in Ocean Waveguide 27 

 

sources in an uncertain ocean environment. The Journal of the Acoustical 
Society of America, Vol. 133, No. 4, 274-280. 

Edelmann, G. F. and C. F. Gaumond (2011). Beamforming using compressive 
sensing. The Journal of the Acoustical Society of America, Vol. 130, No. 
4, 232-237. 

Eldar, Y. C. and G. Kutyniok (2012). Compressed Sensing: Theory and Appli- 
cations. Cambridge University Press, New York. 

Etter, P. C. (2013). Underwater Acoustic Modeling and Simulation. CRC Press, 
New York. 

Forero, P. A. and P. A. Baxley (2014). Shallow-water sparsity-cognizant source- 
location mapping. The Journal of the Acoustical Society of America, Vol. 135, 
No. 6, 3483-3501. 

Gorodnitsky, I. F. and B. D. Rao (1997). Sparse signal reconstruction from 
limited data using FOCUSS: A re-weighted minimum norm algorithm. 
IEEE Transactions on Signal Processing, Vol. 45, No. 3, 600-616. 

Grant, M. and S. Boyd (2015). CVX: Matlab software for disciplined convex 
programming, version 2.0 beta. http://cvxr.com/cvx (Last viewed July 31, 
2015). 

Hou, S. Y., S. H. Chang, H. S. Hung and J. Y. Chen (2009). DSP-based imple- 
mentation of a real-time DOA estimator for underwater acoustic sources. 
Journal of Marine Science and Technology, Vol. 17, No. 4, 320-325. 

Jensen, F. B., W. A. Kuperman, M. B. Porter and H. Schmidt (2011). Computa- 
tional Ocean Acoustics. New York, Springer. 

Jiang, L., R. He, Y. Hong, J. Wu and H. Shu (2017a). Active wideband higher- 
order raypath separation in multipath environment. The Journal of the 
Acoustical Society of America, Vol. 141, No. 1, EL38-EL44. 

Jiang, L., R. He, Y. Hong, J. Wu and H. Shu (2017b). Two-dimensional active 
raypath separation using examination of the roots of the spectrum poly-
nomial. The Journal of the Acoustical Society of America, Vol. 142, No. 4, 
EL408-EL414. 

Jiang, L., W. Song, Z. Zhang, C. Yang, S. Wang and P. Roux (2017). Fast raypath 
separation based on low-rank matrix approximation in a shallow-water wave- 
guide. The Journal of the Acoustical Society of America, Vol. 143, No. 4, 
EL271-EL277. 

Kuperman, W. A. and H. C. Song (2012). Integrating ocean acoustics and signal 
processing. In: AIP Conference Proceedings, Beijing, China, 69-82. 

Le Touze, G., B. Nicolas, J. I. Mars, P. Roux and B. Oudompheng (2012). 
Double-capon and double-musical for arrival separation and observable 
estimation in an acoustic waveguide. EURASIP Journal on Advances in 
Signal Processing, Vol. 2012, No. 1, p.187. 

Li, Y. and G. Zhang (2015). A seismic blind deconvolution algorithm based on 
bayesian compressive sensing. Mathematical Problems in Engineering, 
427153. 

Malioutov, D., M. Çetin and A. S. Willsky (2005). A sparse signal reconstruction 
perspective for source localization with sensor arrays. IEEE Transactions on 
Signal Processing, Vol. 53, No. 8, 3010-3022. 

Malioutov, D. (2011). A sparse signal reconstruction perspective for source local-
ization with sensor arrays. B.S. Thesis, Electrical and Computer Engi-
neering Northeastern University, Massachusetts Institute of Technology, 
USA.  

Mantzel, W., J. Romberg and K. Sabra (2012). Compressive matched-field pro- 

cessing. The Journal of the Acoustical Society of America, Vol. 132, No. 
1, 90-102. 

Orović, I., V. Papić, C.Ioana, X. Li and S. Stanković (2016). Compressive sens- 
ing in signal processing: algorithms and transform domain formulations. 
Mathematical Problems in Engineering, 7616393. 

Rossi, M., A. M. Haimovich and Y. C. Eldar (2014). Spatial compressive sens- 
ing for MIMO radar. IEEE Transactions on Signal Processing, Vol. 62, No. 
2, 419-430. 

Schmidt, H. and F. B. Jensen (2012). Computational ocean acoustics: Advances 
in 3D ocean acoustic modeling. In: AIP Conference Proceedings, Beijing, 
China, 3-15. 

Shi, J., D. S. Yang and S. G. Shi (2011a). Robust localization and identification 
method of moving sound sources based on worst-case performance op-
timization. Acta Physica Sinica, Vol. 60, No. 6, 064301. 

Shi, J., D. S. Yang and S. G. Shi (2011b). A robust localization and identification 
method of noise sources using second-order cone programming. Journal 
of Harbin Engineering University, Vol. 32, No. 12, 1549-1555. 

Shi, J., D. S. Yang and S. G. Shi, (2011c). Near-field source localization algo- 
rithm based on the combination array. Acta Electronica Sinica, Vol. 39, 
No. 6, 1231-1237. 

Shi, J., D. S. Yang and S. G. Shi, (2012). Experimental research on cylindrical 
focused beamforming localization method of moving sound sources based 
on vector sensor array. Acta Physica Sinica, Vol. 61, No. 12, 124302. 

Si, W., X. Qu, Y. Jiang and T. Chen (2015). Multiple sparse measurement gra- 
dient reconstruction algorithm for DOA Estimation in compressed sensing. 
Mathematical Problems in Engineering, 152570. 

Somasundaram, S. D., N. H. Parsons, P. Li and R. C. Lamare (2015). Reduced- 
dimension robust capon beamforming using Krylov-subspace techniques. 
IEEE Transactions on Aerospace and Electronic Systems, Vol. 51, No. 1, 
270-289. 

Song, H. Y., J. Shi, C. Y. Yang, B. S. Liu and M. Diao (2015). Robust bearing 
estimation in shallow water using vector optimization. Journal of Marine 
Science and Technology, Vol. 23, No. 2, 151-161. 

Sturm, J. F. (1999). Using Sedumi 1.02, a MATLAB toolbox for optimization 
over symmetric cones. Optimization Methods and Software, Vol. 11, No. 1, 
625-653. 

Tolstoy, A. (1993). Matched field processing for underwater acoustics. World 
Scientific Publishing, Singapore. 

Xenaki, A., P. Gerstoft and K. Mosegaard (2014). Compressive beamforming. The 
Journal of the Acoustical Society of America, Vol. 136, No. 1, 260-271. 

Yang, T. C (2014). Data-based matched-mode source localization for a moving 
source. The Journal of the Acoustical Society of America, Vol. 135, No. 3, 
1218-1230. 

Yin, M., K. Yu and Z. Wang (2016). Compressive Sensing Based Sampling and 
Reconstruction for Wireless Sensor Array Network. Mathematical Problems 
in Engineering, 9641608. 

Zhang, L., Z. Zhu, B. Yang, W. Liu, H. Zhu and M. Zou (2015). Medical image 
encryption and compression scheme using compressive sensing and pixel 
swapping based permutation approach. Mathematical Problems in Engi-
neering, 940638. 

 


	ROBUST SUPER-RESOLUTION APPROACH TO SOURCE LOCALIZATION IN OCEAN WAVEGUIDE USING SPARSITY CONSTRAINT
	Recommended Citation

	ROBUST SUPER-RESOLUTION APPROACH TO SOURCE LOCALIZATION IN OCEAN WAVEGUIDE USING SPARSITY CONSTRAINT
	Acknowledgements

	untitled

